Correzione del facsimile C

Esercizio 1. Dire quali delle seguenti affermazioni sono vere. Ove false, fornire un controesempio.

- 1. f(n) = O(g(n)) implies $\log_2(f(n) + 2) = O(\log_2(g(n) + 2))$.
- 2. f(n) = O(g(n)) implies h(f(n)) = O(h(g(n)).
- 3. f(n) = O(g(n)) implies $f(n) + g(n) = \Theta(g(n))$.
- 4. f(n) = O(f(n+1)).

Svolgimento Esercizio 1

1. f(n) = O(g(n)) implica $\log_2(f(n) + 2) = O(\log_2(g(n) + 1))$? Vero. La dimostrazione formale, non richiesta, sarebbe la seguente. Sappiamo che $\exists k, \exists n_0 \mid \forall n \geq n_0, 0 \leq f(n) \leq kg(n)$. Sia $h = \max(1, k)$; abbiamo

$$f(n) + 2 \le kg(n) + 2 \le hg(n) + 2 \le hg(n) + 2h = h(g(n) + 2).$$

Siccome $\log n$ è una funzione crescente, otteniamo

$$\log_2(f(n) + 2) \le \log_2 h + \log_2(g(n) + 2).$$

Notiamo anche che $\log_2(f(n)+2) \ge 1$, essendo $f(n) \ge 0$; quindi la positività è assicurata per ogni $n \ge n_0$. Essendo, per i medesimi valori di n, anche $g(n) \ge 0$, abbiamo allo stesso modo $\log_2(g(n)+2) \ge 1$, da cui

$$\log_2(f(n)+2) < (\log_2 h) \cdot \log_2(g(n)+2) + \log_2(g(n)+2) = (\log_2 h+1) \log_2(g(n)+2).$$

Essendo $\log_2 h$ positivo, la costante trovata è certamente positiva.

- 2. f(n) = O(g(n)) implica h(f(n)) = O(h(g(n))). Falso, come si vede prendendo $f(n) = n, g(n) = n^2, h(x) = 1/x$. Ma risulta falso anche per $h(n) \ge 1$ per ogni n, come si vede prendendo $f(n) = n, g(n) = 2n, h(x) = 2^x$.
- 3. f(n) = O(g(n)) implica $f(n) + g(n) = \Theta(g(n))$. Vero. Abbiamo infatti che

 $\exists k, \exists n_0 \mid \forall n \geq n_0, 0 \leq f(n) \leq kg(n)$. Quindi, sommando membro a membro g(n), otteniamo $g(n) \leq f(n) + g(n) \leq (k+1)g(n)$, il che implica la tesi.

4. f(n) = O(f(n+1)).

Falso, come si vede prendendo $f(n) = 2^{-n^2}$. Detto infatti g(n) = f(n+1), abbiamo

$$\frac{f(n)}{g(n)} = \frac{2^{-n^2}}{2^{-(n+1)^2}} = 2^{(n+1)^2 - n^2} = 2^{2n+1}$$

il cui limite è infinito, per cui $f(n) \in \omega(q(n))$. Se f(n) è non decrescente, la tesi è invece senz'altro vera.

Esercizio 2. Siano f(n) e g(n) due funzioni definitivamente non negative. Dimostrare che $f(n) + g(n) = \Theta(\max\{f(n), g(n)\})$.

1

Svolgimento Esercizio 2

Sappiamo che $\exists n_1 \mid \forall n \geq n_1, f(n) \geq 0$. Analogamente, sappiamo che $\exists n_2 \mid \forall n \geq n_2, g(n) \geq 0$. A partire da $n_0 = \max\{n_1, n_2\}$, le due funzioni sono quindi entrambe non negative. Per ogni $n \geq n_0$ vale poi $f(n) + g(n) \leq 2 \max\{f(n), g(n)\}$. Riassumendo

$$\forall n \ge n_0, 0 \le \max\{f(n), g(n)\} \le f(n) + g(n) \le k \max\{f(n), g(n)\}\$$

ove k=2.

Esercizio 3. Ordinare le seguenti funzioni per ordine di crescita asintotico non decrescente, ove k sia una costante positiva comune. Ve ne sono alcune che presentano lo stesso ordine di crescita? $f(n) = n^k$, $f(n) = (n+5)^k$, $f(n) = \binom{n}{k}$, $f(n) = n^{\left(k-\frac{1}{k}\right)} \log^k n^k$, $f(n) = 2^{k \log_2 n}$.

Svolgimento Esercizio 3

Abbiamo

$$f_1(n) = n^k,$$

$$f_2(n) = (n+5)^k,$$

$$f_3(n) = \binom{n}{k},$$

$$f_4(n) = n^{\left(k-\frac{1}{k}\right)} \log^k n^k,$$

$$f_5(n) = 2^{k \log_2 n} = n^k.$$

Abbiamo dunque $f_1(n) = f_5(n)$. Inoltre,

$$\lim_{n \to \infty} \frac{f_2(n)}{f_1(n)} = \lim_{n \to \infty} \frac{(n+5)^k}{n^k} = \left(\lim_{n \to \infty} \frac{n+5}{n}\right)^k = 1^k = 1$$

Segue poi

$$\lim_{n \to \infty} \frac{f_3(n)}{f_1(n)} = \lim_{n \to \infty} \frac{n(n-1)\dots(n-k+1)}{k! n^k}$$

$$= \frac{1}{k!} \lim_{n \to \infty} \frac{n}{n} \frac{n-1}{n} \dots \frac{n-k+1}{n}$$

$$= \frac{1}{k!} \lim_{n \to \infty} \frac{n}{n} \lim_{n \to \infty} \frac{n-1}{n} \lim_{n \to \infty} \dots \frac{n-k+1}{n}$$

$$= \frac{1}{k!} \cdot 1 \cdot 1 \dots \cdot 1 = \frac{1}{k!}$$

Infine, notando che $(\log n^k)^k = (k \log n)^k = k^k \log^k n$, otteniamo

$$\lim_{n \to \infty} \frac{f_4(n)}{f_1(n)} = \lim_{n \to \infty} \frac{k^k n^{\left(k - \frac{1}{k}\right)} \log^k n}{n^k}$$
$$= k^k \lim_{n \to \infty} \frac{\log^k n}{n^{1/k}} = 0$$

poiché abbiamo visto che una qualunque potenza positiva del logaritmo cresce meno di una qualunque potenza positiva di n. Ricordiamo per completezza la dimostrazione di questo fatto: sia $\beta > 0$, allora

$$\lim_{n\to\infty}\frac{\ln n}{n^\beta}=\lim_{n\to\infty}\frac{D(\ln n)}{D(n^\beta)}=\lim_{n\to\infty}\frac{1}{n}\frac{1}{n^{\beta-1}}=\lim_{n\to\infty}n^{-\beta}=0.$$

Se $\alpha > 0$,

$$\lim_{n\to\infty}\frac{\log^\alpha n}{n^\beta}=\lim_{n\to\infty}\left(\frac{\log n}{n^{\beta/\alpha}}\right)^\alpha=\left(\lim_{n\to\infty}\frac{\log n}{n^{\beta/\alpha}}\right)^\alpha=0^\alpha=0,$$

dove abbiamo usato il fatto che β/α è pur sempre una costante positiva cui si applica il fatto appena dimostrato. In definitiva, come ordine di crescita abbiamo

$$f_4(n) < f_1(n) = f_2(n) = f_3(n) = f_5(n).$$

Esercizio 4. Si dimostri che $\sum_{k=1}^{n} \left(\frac{1}{k} + \frac{1}{k+1}\right) = \Theta(\log n)$.

Svolgimento Esercizio 4

Sia

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}.$$

H(n) è detto ennesimo numero armonico. Abbiamo

$$S(n) = \sum_{k=1}^{n} \left(\frac{1}{k} + \frac{1}{k+1}\right) = \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{1}{k+1}$$

$$= \sum_{k=1}^{n} \frac{1}{k} + \sum_{h=2}^{n+1} \frac{1}{h}$$

$$= \sum_{k=1}^{n} \frac{1}{k} + \left(\sum_{h=1}^{n+1} \frac{1}{h}\right) - 1$$

$$= H(n) + H(n+1) - 1.$$

Per trovare un limite inferiore a H(n), notiamo che

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}$$

$$= \int_{1}^{n+1} \frac{1}{\lfloor x \rfloor} dx$$

$$\geq \int_{1}^{n+1} \frac{1}{x} dx$$

$$= [\ln x]_{1}^{n+1}$$

$$= \ln(n+1).$$

È consigliato farsi il disegno con l'"istogramma" e la funzione che lo approssima per capire meglio le manipolazioni effettuate. L'istogramma viene poi buono anche per l'altra metà della dimostrazione. Analogamente, infatti,

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}$$

$$= 1 + \int_{2}^{n+1} \frac{1}{\lfloor x \rfloor} dx$$

$$\leq 1 + \int_{2}^{n+1} \frac{1}{x-1} dx$$

$$= 1 + \int_{1}^{n} \frac{1}{x} dx$$

$$= 1 + [\ln x]_{1}^{n}$$

$$= 1 + \ln n.$$

Quindi, avendo $\ln(n+1) \le H(n) \le 1 + \ln n$, otteniamo

$$\ln(n+1) + \ln(n+2) - 1 \le H(n) + H(n+1) - 1 = S(n) \le 1 + \ln n + \ln(n+1).$$

Essendo

$$\lim_{n \to \infty} \frac{\ln(n+1) + \ln(n+2) - 1}{\ln n} = \lim_{n \to \infty} \frac{1 + \ln n + \ln(n+1)}{\ln n} = 1,$$

otteniamo che $S(n) \in \Theta(\log n)$. Notare che la base del logaritmo diventa irrilevante nel passaggio alla notazione $\Theta()$.

Approfondimento. La tesi $\ln(n+1) \le H(n) \le 1 + \ln n$, si può anche dimostrare per induzione - al solito, con un tantino di senno di poi.

Per n = 1, infatti, essa vale: $\ln 2 \le H(1) = 1 \le 1 + \ln 1$.

Supponendola vera per un certo $n \ge 1$, sommiamo membro a membro 1/(n+1) ad ottenere

$$\ln(n+1) + \frac{1}{n+1} \le H(n) + \frac{1}{n+1} = H(n+1) \le (1+\ln n) + \frac{1}{n+1}.$$

Se riuscissimo dunque a mostrare che, per ogni $n \ge 1$,

$$\ln(n+2) \le \ln(n+1) + \frac{1}{n+1}$$

e

$$1 + \ln n + \frac{1}{n+1} \le 1 + \ln(n+1),$$

saremmo giunti alla tesi.

Le due richieste di sopra si possono riscrivere, effettuando anche uno spostamento di indici nella prima, come segue:

$$\forall n \geq 2, \quad \ln(n+1) - \ln n \quad \leq \frac{1}{n},$$

 $\forall n \geq 1, \quad \ln(n+1) - \ln n \quad \geq \frac{1}{n+1}.$

I due fatti si possono dimostrare in un sol colpo ricordando il teorema di Lagrange, per il quale data una funzione reale derivabile in [x, y],

$$\frac{h(y) - h(x)}{y - x} = f'(\xi),$$

ove $\xi \in (x, y)$. Nel nostro caso

$$\ln(n+1) - \ln n = \frac{\ln(n+1) - \ln n}{(n+1) - n} = \frac{1}{\xi},$$

ove $\xi \in (n, n+1)$. Da questo fatto le due tesi seguono immediatamente.

Si possono limitare i numeri armonici anche senza fare riferimento al calcolo integrale. Sia $T = \lfloor \log_2 n \rfloor$. Notiamo che

$$\sum_{k=1}^{2^{T}} \frac{1}{k} \le H(n) \le \sum_{k=1}^{2^{T+1}-1} \frac{1}{k}.$$

Trattiamo separatamente, per comodità, limite inferiore e superiore. Per il primo, notiamo che

$$H(n) \geq \sum_{k=1}^{2^{T}} \frac{1}{k}$$

$$\geq \sum_{k=1}^{2^{T}-1} \frac{1}{k}$$

$$= \sum_{k=2^{0}}^{2^{1}-1} \frac{1}{k} + \sum_{k=2^{1}}^{2^{2}-1} \frac{1}{k} + \dots + \sum_{k=2^{T-2}}^{2^{T-1}-1} \frac{1}{k} + \sum_{k=2^{T-1}}^{2^{T}-1} \frac{1}{k}$$

$$= \sum_{t=0}^{T-1} \left(\sum_{k=2^{t-1}}^{2^{t}-1} \frac{1}{k} \right)$$

$$\geq \sum_{t=0}^{T-1} \left(\sum_{k=2^{t-1}}^{2^{t}-1} \frac{1}{2^{t}} \right)$$

$$= \sum_{t=0}^{T-1} 2^{t-1} \frac{1}{2^{t}}$$

$$= \sum_{t=0}^{T-1} \frac{1}{2}$$

$$= \frac{T}{2} = \frac{\lfloor \log_{2} n \rfloor}{2}.$$

Analogamente, per il limite superiore,

$$H(n) \leq \sum_{k=1}^{2^{T+1}-1} \frac{1}{k}$$

$$= \sum_{k=2^{0}}^{2^{1}-1} \frac{1}{k} + \sum_{k=2^{1}}^{2^{2}-1} \frac{1}{k} + \dots + \sum_{k=2^{T}}^{2^{T+1}-1} \frac{1}{k}$$

$$= \sum_{t=0}^{T} \sum_{k=2^{t}}^{2^{t+1}-1} \frac{1}{k}$$

$$\leq \sum_{t=0}^{T} \sum_{k=2^{t}}^{2^{t+1}-1} \frac{1}{2^{t}}$$

$$= \sum_{t=0}^{T} 2^{t} \frac{1}{2^{t}}$$

$$= \sum_{t=0}^{T} 1$$

$$= T+1 = |\log_{2} n| + 1$$

Abbiamo cosí mostrato, con mezzi del tutto elementari, che

$$\frac{\lfloor \log_2 n \rfloor}{2} < H(n) \le \lfloor \log_2 n \rfloor + 1.$$

Esercizio 5. Dato un intero a > 0, allo scopo di calcolare la potenza a^n , usiamo la seguente procedura iterativa:

```
#include<iostream.h>
int main() {
  int a; cout << "Dammi a: "; cin >> a; cout << endl;
  int n; cout << "Dammi n: "; cin >> n; cout << endl;
  long long int P[n +1];
  P[0] = 1;
  for(int k=1; k<=n; k++)
      P[k] = a*P[k-1];
  cout << "P[" << n << "] = " << P[n] << endl;</pre>
```

Si stabilisca l'ordine di crescita del tempo di calcolo della procedura proposta. Si stabilisca l'ordine di crescita della memoria impiegata dalla procedura proposta.

Svolgimento Esercizio 5

}

La ricorrenza che calcola, ad esempio, il numero di moltiplicazioni, è:

$$T(0) = 0,$$

$$T(n) = T(n-1) + 1$$

che ha l'ovvia soluzione T(n) = n.

Per la memoria, siccome riserviamo per il calcolo di a^n un array di dimensione n+1, abbiamo M(n)=n+1.

Esercizio 6. Il professor Gonzalez, propone di utilizzare la seguente procedura ricorsiva allo scopo di calcolare la medesima funzione:

```
#include<iostream.h>
long long int P(int a, int n) {
   if (n==0) return 1;
   if (n==1) return a;
   return P(a, n/2)* P(a, n- (n/2));
}
int main() {
   int a; cout << "Dammi a: "; cin >> a; cout << endl;
   int n; cout << "Dammi n: "; cin >> n; cout << endl;
   cout << "P[" << n << "] = " << P(a, n) << endl;
}</pre>
```

Si stabilisca l'ordine asintotico di crescita per il tempo di calcolo della procedura proposta dal professor Gonzalez. Si stabilisca l'ordine di crescita della memoria impiegata dalla procedura di Gonzalez.

Svolgimento Esercizio 6

Conoscendo come funziona la divisione intera del C, vediamo che il procedimento di calcolo adottato è il seguente:

$$a^{0} = 1,$$
 $a^{1} = a,$ $a^{n} = a^{\left\lfloor \frac{n}{2} \right\rfloor} a^{\left\lceil \frac{n}{2} \right\rceil}.$

A livello di moltiplicazioni abbiamo dunque

$$T(0) = T(1) = 0;$$

$$T(n) = T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + 1.$$

Ovviamente, possiamo applicare il Master Theorem ove a=b=2, $f(n)=1\in O(n^{\log_b a-\epsilon})$, dove ad esempio $\epsilon=1/2$, per ottenere $T(n)\in\Theta(n^{\log_b a})=\Theta(n)$. Chi, giustamente, non s'accontenta, cercherà di arrivare a una soluzione precisa, data la facilità del caso. Procedendo a mano col seguente programmino:

#include <iostream.h>
int T[10];

main() {
 int i;
 T[0]= T[1]= 0;
 for (i=2; i<10; i++) {
 T[i]= T[i/2] + T[i - i/2] + 1;
 cout<<i<<" "<<T[i]<<endl;
 }
}</pre>

constaterà che per $n \ge 1$ abbiamo T(n) = n-1. Proviamo a dimostrarlo per induzione. Base, T(0) = T(1) = 1. Serve trattare il caso n = 1 entro la base poiché altrimenti otterremmo T(1) = T(0) + T(1) + 1 che non ha senso, non da ultimo, perché descrive la ricorsione di un programma che non termina. Usiamo dunque l'ipotesi induttiva $(T(0) = 0) \land (\forall k < n, T(k) = k-1)$. Abbiamo, per $n \ge 2$,

$$T(n) = T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + 1$$
$$= (\left\lfloor \frac{n}{2} \right\rfloor - 1) + (\left\lceil \frac{n}{2} \right\rceil - 1) + 1$$
$$= (\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil) - 1 = n - 1$$

dove abbiamo usato nell'ordine: la relazione di ricorrenza; l'ipotesi induttiva, ricordando che per $n \ge 2$ abbiamo sempre $\left\lfloor \frac{n}{2} \right\rfloor > 0$, per cui ci possiamo disinteressare al caso base n=0; infine, il fatto che l'arrotondamento superiore e quello inferiore della metà di un numero sommano al numero stesso (distinguere i due casi pari e dispari per vederlo facilmente). Abbiamo anche, ovviamente, sfruttato il fatto che per $n \ge 2$, $\lceil n/2 \rceil < n$, ed è quindi lecito applicarvi l'ipotesi induttiva. La dimostrazione è quindi completa.

Per quanto riguarda la mamoria, notare che essa è proporzionale al numero di attivazioni della procedura che coesistono sullo stack, il quale a sua volta è al piú pari alla massimo numero di nodi su un ramo dell'albero di ricorsione (radice e foglia comprese). Tale distanza è governata dalla seguente ricorrenza:

$$D(1) = 1$$

$$D(n) = D(\left\lceil \frac{n}{2} \right\rceil) + 1.$$

Qui, ovviamente, gli uni stanno per unità di memoria consumate dalla singola attivazione. Per il Master theorem, con a=1,b=2,f(n)=1, otteniamo che $D(n)\in\Theta(\log n)$. La soluzione esatta della ricorrenza è poi stata ricavata in una delle precedenti raccolte di esercizi.

Notare che a=1, ben diversamente dalla ricorrenza che esprime il tempo di calcolo; questo è legato al fatto che, ad ogni istante, al più una attivazione di procedura chiamata consiste con l'attivazione della procedura chiamante. Detto in altre parole, i comportamenti di D(n) e di T(n) differiscono cosí profondamente perché si può scrivere due volte nella stessa locazione di memoria, ma non si può vivere due volte lo stesso istante...

Complemento 6+ Dire come il prof. Gonzalez possa, con un semplice accorgimento, ridurre il tempo di calcolo della sua procedura tanto da meritarsi l'appellativo di Speedy. Qualeè il nuovo tempo di calcolo?

Svolgimento Complemento 6+

Si vede che la procedura può facilmente evitare di fare due chiamate ricorsive. Infatti, possiamo osservare che per n pari, $a^n = (a^{\lfloor \frac{n}{2} \rfloor})^2$; per n dispari, $a^n = a \cdot (a^{\lfloor \frac{n}{2} \rfloor})^2$. Questo suggerisce la scrittura della seguente funzione:

```
int power(int a, int n) {
  int tmp;
  if (n==0)
    return 1;
  if (n==1)
    return a;
  tmp= power(a, n/2);
  return (n % 2) ? (a*(tmp*tmp)) : (tmp*tmp);
}
```

Applicando il Master Theorem ove $a=1,b=2,f(n)\in\{1,2\}$, otteniamo $T(n)\in\Theta(\log_2 n)$.

Approfondimento. Qui, il computo esatto delle moltiplicazioni segue la legge

$$T(0) = T(1) = 0;$$

 $T(2k) = T(k) + 1,$
 $T(2k + 1) = T(k) + 2,$

la cui tabulazione, e.g. con il programmino

```
main() {
  int i;
  T[0]= T[1]= 0;
  for (i=2; i<20; i++) {
    T[i]= (i%2) ? (T[i/2]+2) : (T[i/2]+1);
    cout<<i<<" "<<T[i]<<endl;
  }
}</pre>
```

dà i seguenti risultati:

$$n = 2$$
 3 4 5 6 7 8 9 10 11 12 13 14 15 16 $T(n) = 1$ 2 2 3 3 4 3 4 4 5 4 5 5 6 4

La decifrazione non è immediata come nei casi precedenti; ci si rende conto che tuttavia T(n) è legato al numero U(n) di uno che compaiono nello sviluppo binario di n, oltre che alla lunghezza L(n) di detto sviluppo. Nella procedura power di sopra, infatti, la moltiplicazione per a viene eseguita se e solo se n è dispari, ovvero, se la sua cifra meno significativa è uno. Ricorsivamente, ci interesseremo poi alla parità di $\lfloor n/2 \rfloor$, e via dicendo. La cosa più naturale è cercare una formuletta del tipo

$$M(n) = \alpha L(n) + \beta U(n) + \gamma.$$

Scegliamo tre valori a caso, e.g. $n=6,\,n=12$ e n=16. Lo sviluppo di 6 è 110, quello di 12 è 1100, quello di 16 è 10000; vogliamo quindi

$$3\alpha + 2\beta + \gamma = 3$$
$$4\alpha + 2\beta + \gamma = 4$$
$$5\alpha + \beta + \gamma = 4$$

da cui $\alpha = 1, \beta = 1, \gamma = -2$. Proviamo a vedere se la formula funziona:

n	L(n)	U(n)	L(n)+U(n)-2
0	1	0	-1
1	1	1	0
2	2	1	1
3	2	2	2
4	3	1	2
5	3	2	3
6	3	2	3
7	3	3	4
8	4	1	3

Sembra che per n>0 funzioni. Dimostriamolo dunque per induzione. Innanzitutto, 0=T(1)=L(1)+U(1)-2=1+1-2. Supponiamo che per $k\in[1,n-1]$ sia T(k)=L(k)+U(k)-2. Sia n pari. Allora n/2 ha un bit in meno, e lo stesso numero di uni.

Abbiamo

$$T(n) = T(n/2) + 1 = [L(n/2) + U(n/2) - 2] + 1 = [(L(n) - 1) + U(n) - 2] + 1 = L(n) + U(n) - 2.$$

Sia n dispari. Allora $\lfloor n/2 \rfloor$ ha un bit in meno, e anche un uno in meno. Abbiamo

$$T(n) = T(n/2) + 2 = [L(n/2) + U(n/2) - 2] + 1 = [(L(n) - 1) + (U(n) - 1) - 2] + 2 = L(n) + U(n) - 2.$$

La dimostrazione è dunque completa. Sappiamo poi che, per n>0, $L(n)=\lfloor \log_2 n\rfloor+1,$ e che ovviamente $1\leq U(n)\leq L(n)$ (casi estremi: solo la cifra piú significativa dello sviluppo è uno, oppure tutte le cifre sono uno). Abbiamo quindi

$$|\log_2 n| \le T(n) \le 2 |\log_2 n|,$$

dove il limite inferiore è toccato quando $n=2^t$, quello superiore quando $n=2^t-1$.