Communication and Mobility Control
in Boxed Ambient$

Michele Bugliesi
Universit “Ca’ Foscari”, Venezia

Silvia Crafa
Universit “Ca’ Foscari”, Venezia

Massimo Merro
Universit di Verona

Vladimiro Sassone
University of Sussex

Abstract

Boxed Ambients (BA) replace Mobile Ambientspen capability with communication
primitives acting across ambient boundaries. The expressiveness of the new model of
communication is achieved at the price of interferences that affect message reception
and whose resolution requires synchronisation of activities at multiple, distributed lo-
cations. We study a variant of BA aimed at controlling communication interferences
as well as mobility ones. Our calculus modifies the communication mechanism of BA,
and introduces a new form of co-capability, inspired from Safe Ambients (SA) (with
passwords), that registers incoming agents with the receiver ambient while at the same
time performing access control. We prove that new calculus has a rich semantics the-
ory, including a sound and complete coinductive characterisation, and an expressive,
yet simple type system. Through a set of examples, and an encoding, we characterise
its expressiveness with respect to both BA and SA.

Introduction

The calculus of Mobile Ambients [5] (MA) introduced the notion of ambient acting at the
same time as administrative domain and computational environment. Processes live inside
ambients, and inside ambients compute and interact. Ambients relocate themselves, carry-
ing along all their contents: their migration, triggered by the processes they enclose, models
mobility of entire domains and active computational loci. Two capabilities control ambient

*Work supported by ‘MyThS: Models and Types for Security in Mobile Distributed Systems’, EU FET-GC
IST-2001-32617; ‘Mikado: Mobile Calculi based on Domains’ EU FET-GC IST-2001-32222; and by MIUR
Project ‘Mefisto: Modelli Formali per la Sicurezza’.

August 27, 2003 2

movementsin andout. These are performed by processes wishing their enclosing ambi-
ent to move to a sibling and, respectively, out of its parent. The corresponding reductions
are shown below, where, Q andR are processesn andn ambient names| is parallel
composition, and square brackets delimit ambients’ contents:

nfinmP [Q][m[R] — m[n[P | Q] |R], m[nfout m.P|Q][R] — n[P|Q]|m[R].

A third capability,open, can be used to dissolve ambients, as expressed by the reduction
open N.P | n[Q] — P | Q. Process interaction is by anonymous message exchanges con-
fined inside ambients, as in

n[(M).P[(x).Q] — n[P| Q{x:=M}],

where brackets represent outputs, curly brackets substitutions, and round parentheses bind
input variables.

These ideas have given rise to an innovative calculus capturing several aspects of cur-
rent real-world distributed systems, and have posed some new hard problems. Paper [11]
unveiled a set of so-called grave interferences, i.e. situations where the inherent nondeter-
minism of movement goes wild. For instance, in

K[n[in mP | out kR] | mQ]]

althoughn’s next hop is beyond's control, the difference that such a choice brings about is
so big that it is difficult to see how such a situation could have been purposely programmed.
Levi and Sangiorgi’s proposal of Safe Ambients (SA)In [11] counters the problem by using
‘co-actions’ to grant ambients a form of control over other ambients’ access. A process
willing to be entered will manifest that explicitly, as e.g. in

nlinmP| Q] | m{in mR|S] — mn[P| Q] |R| S,

and similarly forout andopen. Building on such infrastructure, a type-system enforced
notion ofsingle-threadednesmsures that at any time ambients are willing to engage in at
most one activity (across boundaries) that may lead to grave interferences.

Recently, Merro and Hennessy [12] found it useful to work with a version of SA called
SAP, where incoming ambients must be able to present a suitable password in order to
cross ambients’ boundaries. Paper [12] develops a treatable semantic theory for SAP in the
form of a labelled transition system (LTS) based characterisation of its (reduction) barbed
congruence. We will find use for some of these ideas in the present paper too.

Another source of potential problemsadgen in its own nature as ambient dissolver. A
process exercising such a capability will embody all the contents of the dissolved ambient,
including its capabilities and migration strategies. Of course there is nothing inherently
wrong with that and indeed it is from open that MA gain part of their expressiveness in
systems with dynamic topology. However, despite its usefulness, from the system designer’s
point of viewopen must be handled with the greatest care.

The calculus of Boxed Ambients][3] (BA) was born out of the observation that, after
all, there is an alternative way to yield expressiveness: namely, by direct communication

August 27, 2003 3

across boundaries, as in the Seal calculus [21]. As shown below, in BA it is possible to
draw an input from a sub-ambien's local channel (viz(x)") as well as from the parent’s
local channel (viz(x)"), and dually with the roles of input and output swapped.

()"P|n[(M).Q|R] — P{x:=M}[n[Q|R]
(M).P[n[(0)I.Q[R] — P[n[Q{x:=M}|R].

Although remarkable in many respects (Cf. [3]), such design choices, have the drawback
of introducing a great amount of non-local hondeterminism and communication interfer-
ence. This is exemplified perfectly by the term below, where a single message issued in
unleashes a nondeterministic race among three potential receivers located in three different
ambients:

m(x)"P | n[(M) | (x).Q | K[(x)".R]]]

This raises difficulties for a distributed implementation of BA, as there is a hidden, non
trivial distributed consensus problem to address at each communication. These forms of
interference are as grave as those that led to the definition of SA, and they should be regarded
as programming errors too.

In this paper we propose a variant of BA aimed at controlling such interferences and at
providing a fresh foundation for the ideas behind BA. Our proposal, NBA, takes inspiration
from [9], and is based on the idea that each ambient comes equipped with two mutually
non-interfering channels, respectively for local and upward communications.

(0"P[n[(M)"Q|R] — P{x:=M}|n[Q|R]
(M"P|n()".Q[R] — P[n[Q{x:=M}[R]

Hierarchical communication, whose new rules are shown above, is indicated by a pair of
distinct constructors, simultaneously on input and output, so that no communication inter-
ference is possible. The upward channel can be thought of as a gateway between parent and
child, located at the child’s and travelling with it, and poses no particular implementation
challenges.

From the theoretical viewpoint, a first consequence of the elimination of unwanted in-
terferences is a set of good, expected algebraic laws for NBA, as illustrated in §4. Also, the
type system for BA results considerably simplified. In particular, the types of ambients and
capabilities need only record upward exchanges, while processes are characterised by their
local and hierarchical exchanges. The details are discussgfl in §5.

Unfortunately, limiting ourselves to banning communication interferences as above
would result in a poorly expressive calculus (although some of its good properties have
been underlined i [9]). For instance, in the systel| there would be no way foP to
communicate with its sub-ambients, unless their names were statically known. In our ef-
fort to tackle interference we seem to have killed hierarchical communication at all. Far
from that, in order to regain expressive power we only need to reinstate a mechanism for
an ambient to learn dynamically the names of incoming ambients. Essentially, our idea is
to introduce co-actions of the form(x) that have the effect of binding such names to the

August 27, 2003 4

variablex. Similarly to SA, co-actions provide a mechanism for expressing a general will-
ingness to accept incoming ambients; in addition to that, the receiving ambient learns the
incoming ambient’s name. It can thus be thought as (an abstraction of) an access protocol
as it would actually take place in real computational domains, where newly arrived agents
would have to register themselves in order to be granted access to local resources.

Observe, however, that a purely binding mechanism such as this would not in itself be
able to control access, but only to register it. In order to provide ambients with a finer
mechanism of access control, we add a second component to our (co-)capabilities and write
rules as the one below.

afin(b,k).Py | P2] | b[in(x,k).Q1 | Q2] — b[a[Py [2] [Qu{x:=a} | Q2]

In practical terms, this enhances our access protocol with a form of control over the creden-
tials of incoming processek (n the rule above), as a preliminary step to the registration
protocol. An example for all of the practical relevance and naturality of this mechanism,
is the negotiation of credential that takes place when connecting to a wireless LAN or to a
LAN using DHCP or to a ISP using PPP.

Remarkably, our admission mechanism resembles quite closely the notion of passwords
as developed in [12], which thus arises yet again as a natural notion to consider. As a conse-
guence, we benefit from results similar to thosem cit. In particular, we devise a labelled
transition semantics for NBA that yields a bisimulation congruence sound with respect to
(reduction) barbed congruence, and we use it to prove a number of laws. Passwords also
have a relevant role in the type system, where their types keep track of the type of (up-
ward exchanges of) incoming ambients, so contributing effectively to a clean and easy type
system.

As the paper will show, besides having practical, implementation-oriented features and
enjoying good theoretical properties, such as a rich and tractable algebraic theory and a
simple type system, at the same time NBA remains expressive enough. In particular, by
means of examples and encodings[ih §7 we show that the expressive power we loose with
respect to BA is, as expected and planned, essentially that directly related to communication
interferences.

Structure of the paper.]| introduces the calculus, presents the reduction semantics and
the associated notion of behavioural equivalenté. §2 @hd §3 develop an alternative seman-
tics based on an LTS, that yields a bisimilarity that is proved to be sound with respect to the
reduction barbed congruence pf §1. [§4 we use this relation to prove a number of algebraic
laws for the calculus. The type system of NBA is illustrated and discussédl ifn§5.]86, §7 and
g§ focus on expressiveness issues in relation to BA and SA, including several examples, an
encoding of thetcalculus, and an encoding of BA into (an extension of) NBA. §9 shows an
alternative LTS, whose associated bisimilarity fully characterises barbed congruence at the
price of introducing additional higher order labels. Finally,|810 is dedicated to conclusions.

A preliminary version of this paper appeared/in [4].

August 27, 2003)

1 The NBA Calculus

The syntax includes two syntactic categoriegssageandprocessessummarised in Table
[d. Messages (or expressions) are ranged ovevl iy and includenames variablesand
capabilities We presuppose two mutually disjoint sets:of names, and/ of variables.
The setV is ranged over by letters toward the end of the alphabet, typixally, while the
remaining letterg,b,...,mn,...,q,r are reserved for the names in the Net

Processes, ranged overBy), R S, are built from the constructors ofactivity, parallel
composition replication andrestriction, prefix, anonymous (polyadidnput, output and
ambient The syntactic structure is similar to that of the original calculusBA [3]. The main
differences are in the constructs for mobility: the movement capabilities now have two
arguments — the name of the target ambient, and the password to be provided along with the
name— and they are matched by co-actimis, N) andout(x,N) built around a variable
and an expression (typically, a nanid) Also, the calculus has replicated prefixing, rather
than full replication: this will result in an image-finite labelled transition system.

The input operatofX : W).P is a binder for thevariables&, and so are the two co-
actionsin(x,M).P andout(x,M).P, whereas the restriction operatom : W)P binds the
name n in all cases the scope of the binderHs As it is customary, terms that ace
convertible are considered identical. The notiondreé namesand free variablesof a
process, noted {®) and fYP) respectively, arise as expected, and so does the definition of
capture freesubstitutionP{% := M}. We sometime use the notationB)Q) as a shorthand
for fn(P)Ufn(Q), and similarly (P, Q). A name (variable) ifreshin a term if it is different
from any other free name (variable) in that term. A procestosedif has no free variables
(though it may have free names). We use a number of notational conventions. Parallel
composition has the lowest precedence among the operators. The pvbobeBss read as
M.(N.P). We write (M), and(X) for (My,...,M)" and(xq, . .., %) respectively. Similarly,
we write (vA) for (vny)... (vnk), and define term equality up to rearrangements of adjacent
restrictions. We omit trailing dead processes, writMdor M.0, (M) for (M).0, andn(]
for n[Q].

1.1 Reduction and Behavioural Semantics

The dynamics of the calculus is defined in Tdhle 1 and, as usual, is up to structural congru-
ence. The definition of structural congruence, nateds standard (cf.[5]).

Themobility rulesrequire as in[[12] that the ambients involved in the move to agree on
some passworl; in addition the target of the move gets to know the name of the moving
ambient as a result of synchronisation. Also differently friom cit., the co-out action in
rule (Ex1T) does not mention the name of moving ambient, and so it provides for lesser
control over ambient movement.

Thecommunication ruleare explained and motivated in the introduction. As usual, in
all communication rules we assume that tuples have the same arity, a condition that will be
enforced by the type system.

As to behavioural equivalence, we rely mduction barbed congruend@0], defined
in terms of reduction and observability, which appears appropriate to capture the dynamics

August 27, 2003 6

Locations: Messages:

n = a child M,N == a name
A parent in(M,N) enter
* local out(M,N) exit

M.N path

Processes: Prefixes:

P = 0 nil process nm = M capability
Pi|P composition (X1, .-, %)" input
(vn)P restriction (Mq,...,M)" output
ItP replication mn(x,M) allow enter
M[P] ambient out(x,M) allow exit
TP prefixing

mobility

(ENTER) nlin(m.k).Py | Po] | min(x,k).Q1 | Q2] — m[n[Py | Py] | Qu{x:=n}| Q]

(EXIT) n[mlout(n,k).P; | P;] | Q] | out(x,k).R — m[Py | Py] | n[Q] | R{x:=m}
communication

(LOCAL) (®).P| (M).Q — P{Xx:=M}|Q

(INPUT N) (R"Pn(MY.Q|R — P{X:=M}|nQ|R
(OUTPUTN) (M)"P|n[(®"Q|R — P[nQ{X:=M}|R
structural rules

(STRUCT) P=P, F”P: gﬂ '=Q

(CONTEXT) P—Q = E{P} —E{Q}
Evaluation context E = {} | EIP| PE | (vnE | n[E]

Table 1: Syntax and Reduction Rules

of the calculus, and its behavioural theory, given the presence of the newly introduced syn-
chronisation mechanisms based on binding and passwords. The observation pReglicate
and the resulting notion of observational congruence are defined below.

Definition 1.1 (Barbs). Given a procesB, we writeP |, if P = (vin)(n[in(x,k).Q | R |)
for {n,k} n{m} = 0. We writeP |}, if P— P’ andP’ |,, where— is the reflexive and
transitive closure of—. O]

Definition 1.2. A relation.Z is reduction closedf P.% Q andP — P’ imply the existence
of someQ’ such thaQ =— Q' andP’ Z Q'. Z is barb preservingf P % Q andP |, imply
Qln.]

Definition 1.3 (Reduction Barbed Congruence).Reduction barbed congruence, written
2 is the largest equivalence relation that is preserved by contexts (i.e. is a congruence) and,
when restricted to closed processes, is reduction closed and barb preserving. [

August 27, 2003 7

Notice that the choice of barb is different from the one we usedlin [9], reflecting here the
new observable interactions that an ambient may engage with the context, via mobility.
Indeed, we could still rely on our original definition of observation: as we shall prove, the
barbed congruence relation we just defined has the extensional property we expect, namely
it is independent of the particular choice of the barb (cf. Thegrein 2.7).

2 Labelled Transition Semantics

We now prepare the ground for a characterisation of reduction barbed congruence in terms
of a labelled bisimilarity. Because of its co-inductive nature, the latter will provide powerful
proof techniques for establishing equivalences|[[16], 18, 17].

The labelled transition semantics is given in terms of the reductions collected in Tables
[3H5. To ease the notation, we present the transitions the monadic version of the calculus;

the case of polyadic NBA is straightforward. The transitions are of the Rrm— O,
where 0 is an8utcome’ The labela, defined in Tablg]2, codifies the context with whigh
may interact, as usual.

Prefixes p o= in(nk) | out(n,k) | (M) | (=) | In(m,K) | out(m, k)
Labels o = T|H|enter(n k)| menter(nKk) | exit(n,k) | pop(k)

| mget M | mput (—)
Concretions K = (vin)(P)Q | (vi)(M)P

Outcomes O := P|K

Table 2: Labels, concretions and outcomes

The outcome is either a proces®, whena is a prefix or the silent action, ora@ncretion

of the forms(vf)(P)Q and (vf)(M)Q, with P and Q processes, anlfl an expression.
Intuitively, in (vp)(P)Q proces, theprime represents the sub-component of the system
that interacts with the environment, while(wmj) (M)Q, the expressioM represents a piece

of information that is transmitted to the environment. In both cases the prQaegsesents

the remaining components of the process that are not affected by the interaction with the
environment, angb is the set of private names sharedm{or M) andQ.

Although our bisimilarity will consider only transitions from process to process, the
transitions having concretions as derivatives are useful to formally definetthasitions
of the system. More precisely, concretions represent partial derivatives which need a con-
tribution from the environment to be completed (such contribution is modelledl] in §3, via
corresponding higher-order transitions). We use the following conventions.

> if Ois the concretiorjvp)(P)Q, then:
> (vr)O= (VP)(P)(vr)Q, if r £ fn(P), and(vr)O = (vr, p)(P)Q otherwise;

August 27, 2003 8

(CaP) (Co-capP) (PATH)
M € {in(n,k),out(n, k)} T(x) € {in(x,k),out(x,k)} Mp.(M2.P) —— P/
MP . P 0P 2 Pixi=n} (MLM2)P s P
(INPUT) (OuTPUT)
(M)" (=)"
X)"P —— P{x:=M} (MNP —— (V)(M)P
(GET) (PuT)
(M)* = <
P— P P — (VBM)PL (m¢ {p})
mp] " ey miPl 2) (Mymipy]
(ENTER) (CO-ENTER)
in(n,k) ” m(nk) P
enter(n,k) m enter(n,k) ,
mP] ———— (v)(m[P])0 mP] ———— (v)(P)0
(EXIT) (PoP)
out(n,k) , exit(n,k) 5
P— P P —— (vP)(mPL))P,
exit(n,k) , pop(k) .
m[P] ———— (v)(m[P])0 NP} —— (vB)(m)(m[PL] | n[R])

Table 3: Commitments: Visible transitions

> O|R=(VH)(P)(QIR),
wherepare chosen so thatZ { f} and f(R) N {p} = 0.
> if Ois the concretiorfvp)(M)P, then:

> (vr)Ois (VR)(M)((vr)P), if r & fn(M), and(vr, p)(M)Q otherwise;
> OR= (VA(M)(P|R),

where agairp are chosen so thatZ {p} and fnflR) N {p} = 0.

The labelled transition system builds on those in [11, 12]. The main differences are in the
transitions for hierarchical communications, distinctive of NBA, and in the transitions for
mobility, as in the latter need to account for the binding of names that arises upon mobility.
A further difference is in our use of a standard structural rule for parallel composition, as
opposed to the ad-hoc ruleAR EXIT) in [12].

August 27, 2003

(t-ENTER)

enter(mk) m enter(n.k) (fn(Pl) Ufl’l(Pz))

P—— (PP, Q ————— (v§)(Q1)Q2 fn(Q)Q {{g

Il
SWSS

!
}

PIQ —— (VA.G)(MQu|n[P] | P2 Q2)

(T-EXIT)

poplkl SwE(mK i
P—— (vVp)(mPL Q —— Q1 pnNfn(Q) =0

PIQ — (VP)(P1| Qi)

(T-EXCHANGE)

(M) - -
P— P Q — (V)(M)Q1 f(P)n{G}=0

PIQ —— (vi)(P1| Q)

PIQ — (VH)(P1| Qi)

(M) n put (-)

(va)(M)Q1 f(P)N{d} =0
PIQ — (va)(PL| Q)

Table 4: Commitmentst transitions

(PAR) (RES) (T-AmMB) (REPL)

T

[0} a a
P— O P — O n¢fn(a) P— P nmP — O

T

PIQ 2 0|Q (WP —— wnO nP] — nP] 'MP —— IMP|O

Table 5: Commitments: Structural transitions

August 27, 2003 10

The transitions for non-local exchanges are defined by the rules (, (GET n)
and theirt-counterparts-PuT), (T-EXCHANGE) and ({-GET): they all should be self-
explanatory. A few remarks are in order for the movement transitions. The rade (C
ENTER) says that ambiermn[P] is willing to accept an incoming ambientexhibiting the
passwordk. Dually, the rule (RITER) leaves in the prime position the ambient involved in
the move. The two rules synchronise in the radeENTER). The treatment of out moves
is more complex, and requires three steps. Rubef{Eisolates the exiting ambient in the
prime of the concretion, leaving the process that will not move in the residual. Then, the
(EX1T) rule completes the move by leaving the namef the exiting ambient in a buffer.
This name should then match the name that is expected by the accepting context, as required
in the rule ¢-ExIT).

Next, we show that the labelled transition semantics coincides with the reduction seman-
tics. The proof is not difficult, but long. We first need to extend the definition of structural
congruence to concretions. That can be accomplished as follows:

> (VP)(P)Q= (vDp)(P)Q if P=P andQ=Q
> (VP (MYP= (vRp)(M)P'if P=P'.

Then we prove the following two preliminary lemmas. The first describes the structure of
processes and outcomes involved in the labelled transitions (we only give the cases that
involve ‘in’ moves: the other cases are similar). The second relates labelled transitions and
structural congruence.

Lemma 2.1.

in(mk)
1. If P —— P’ then there exist namgs with {m,k} N {p} = 0, and processe?, >
such thaP = (vp)(in(im k).Py | P2) andP’ = (vP)(Py | P2).

in(mk)
2. If P ——", P'then there exist namgs With {m, k} N {p} = 0, and processdd, P>

such thaP = (vp)(in(x,k).Py | P2) andP’ = (vp) (P {x:=m} | Py).

enter(mk)

3. If P ——— O then there exist namgs i, with {m k} N {p} = 0, and processes

in(m,k)
P,. P}, P> such thaP = (VB)(n[Py] | P2), P ——— P}, andO = (vf5)(n[P.))P2,

4. IfP @ O then there exist names With {m,n,k} N {f} = 0, and processes
P1, P, P> such thaP = (V) (m[Py] | P2), P M P1, andO = (V) (P;)P.
Proof. By transition induction. O
Lemma 2.2. If P -2 O and P= Q, then there exists’‘Guch that Q-2 @ and O= 0.

Proof. By induction on the derivation d® = Q. As it often happens in proofs involving
structural congruence, to handle the law of symmetry we prove the following two state-
ments, by simultaneous induction on the derivationB ef Q (Q = P).

August 27, 2003 11

1. If P -2 O andP = Q, then there exist®’ such tha) — Q andO=0O'.
2. If P -2 0 andQ = P, then there exist® such that) - O’ andO = Q.

The inductive cases are standard. There are a multitude of base cases, which also are
rather standard. We give just one case to illustrate the role of the side-conditions on the
T-transitions of Tabl¢]4. Note, to this regard, that all theansitions have the side condi-

tion pNfn(Q) = 0 (or duallygnfn(P) = 0): this condition is needed to capture the effect

of scope extrusion, as all such transition involve the transmission of possibly private names
(the name of the moving ambient for the transitiondENTER) and {-EXIT)).

To illustrate, in case (1), take the sub-@%enp =Qis (VI)(P| Q)= (V)P | Q, for
| & fn(Q). Then the labelled transition must be of the fofwh)(P | Q) —— (vI)O, derived
by (Res) from P | Q —— O for | ¢ fn(a). Of the many possible cases to analyse, let us

focus the one whera is the silent action and the last transition is derived BENTER)
enter(mk) m enter(n,k)

fromP ——— (vp)(n[P])RandQ ——— (v§)(Q1)Q2, where{d} Nfn(PL, P,) =
{p} Nf(Q) =0andO = (vp,d)(m[Qy | n[P1]] [P2 | Qz).
We need to show thqvl)P | Q ——= (vl)O. To see that, we first observe that m,k,

asl ¢ fn(Q) by hypothesis, andm,k} C fn(Q) as it can be shown by transition induction.
nter(mk) nter(mKk)
Thus fromP e, (VP)(n[P1])P,, we derive(vl)P e, (v ((vP)(n[P1])P.) by

(Res). Now we distinguish the two cases that arise from two possible formats of the out-

come of this last transition.

, nter(mk) : .
In the first case we havevl)P o (v, P)(n[P1])P.. This, together with the

transition fromQ, yields (V)P | Q — (vI, §,8)(m[Q1 | n[P1]] | P2 | Q2) = (v1)O, by (-
ENTER). The side conditions to the rule are satisfied thanks to the hypothegeamhg™
and to the additional conditidnZ fn(Q). Note that the proof wouldot go through had we
replaced the side conditioff} Nfn(Q) = 0 in rule (T-ENTER) with {f} NfN(Q1,Q2) =0
from [11,/12]. In particular, the latter condition could be violated pgsl ¢ fn(Q) does not
imply thatl ¢ fn(Q1,Qz), for | could ben, which may occur free iQ;.

ter(mK
Otherwise the transition in question (gl)P m (vP)(n[P1])(vI)P,, which im-

plies thatl # n. From this, and from the transition fro, we derive(vI)P | Q —
T(VR,§)(M[Q1 | n[P1]] | (VI)P2 | Q2) Finally, from the hypothesis¢ fn(Q) and the fact that
| # n,m, it follows that(vl)O = (vp,§)(m[Q1 | n[P1]] | (V)P | Q2). O

We are finally ready to establish the desired connection between the reduction and the la-
belled transition semantics.

Theorem 2.3.

1. If P— P then P— P/
2. IfP— P thenP-=P

1 This sub-case should rather be writter(@g (P | Q) = P | (vI)Q, but the equivalence as given is consistent
with the format of the (-ENTER) rule displayed in TablE]4, where it B that contains the moving ambient,
whose name is transmitted with the move.

August 27, 2003 12

Proof. By transition induction, and a case analysis on the last rule applied in the derivation
of the hypothesis. The proof of (1) appeals to Lenima 2.1 to reconstruct the structure of
P andP'. We give the caset(-ENTER) as representative. In this case, the transition in

question iP | Q LR (VP,q)(M[Q1 | n[P1]] | P2 | Q2), derived from

enter(mKk) m enter(n,k)

P———— (VB)(n[P)R;, Q ———— (vG)(Qu)Q2

with fn(Py,P2) N§ = fn(Q) N p = 0. By (repeated applications of) Lemra]2.1 there exist
f,5 Ry, R, S, S such that

P = (vp)(n[(vF)in(m,k).Ry | Re] [P2) | (v&)(M[(vE)in(x, k).S1 | S [Q2)

with P, = (VP)(Ry | Rz) andQq = (v8)(Si{x:=n} | S). By choosing the bound names ~
ands’appropriately, we may rearran@eby structural congruence, as in

P= (v, G)(VF,§)(nfin(mk).Ry | Re] [Min(x,K)S; |] | P2 | Q2).

Then
P— (vB,G)(mM[(v§)(Si{x:=n} | &) | n[(VF)(Ry | R2)]] | P> | Q2)

by an (ENTER) reduction followed by rearrangements via structural congruence.

The proof of (2) is also by transition induction. It needs Lenima 2.2, @ithprocess,
to handle the case whéh— P’ by (STRuUCT). O

We now re-examine our definition of barbed congruesda the light of the new labelled
transition semantics. As already mentioned, the prediedtedetects the ability of the
processP to interact with its environment via the ambiant We start by noting that our
definition of barb coincides with the choice of one particular action.

n enter(mk)
Lemma 2.4. P |, ifand only if P ——— for some k.

Proof. Directly by the definition oP |, and an inspection of the transition rules. O

We now study how the definition of barbed congruence is affected by inheriting the def-
inition of barb from the labelled transition system. More precisely, we show that for all
possible labels generated by the labelled transitions, the corresponding definitions of barbed
congruence collapse, and coincide with We write P L to say that? %, P for some

P". In force of Theore3, in the following we confuse> andL*.

Definition 2.5. For o € Labelswe write P | if P -2, andP |4 if P=>—. Let then
a € Labels\ {1}, and definex, to be the largest congruence that, when restricted to closed
processes, is reduction closed and presexviearbs, i.e P~y QandP |4 impliesQly. [

Proposition 2.6. Assume P2, Q. Then

1. P— P’ implies Q—> Q' for some Qsuch that P2, Q';

August 27, 2003 13

2. Plgifand only if Qg .

Proof. Part (1) is proved by induction on the number of step®ia= P'. If P = P,
then choos&€) = Q. Otherwise, assumeé — P* — P’ in n+ 1 steps. Sinc® >, Q,
there exist€)* such thalQ — Q* andP* =, Q*. Now the proof follows by the induction

hypothesis.
For part (2), assumB |4. By definition,P = P’ | for someP’. SinceP =, Q, by
part (1) there exist®' such thaQ = Q' andP’ =, Q. ThusQ = Q' |}q. O

Theorem 2.7. For all a € Labels\ {1}, P= Q if and only if P=4 Q.

Proof. Since the definitions o and=, differ only in the notion of barb, it is enough to
show that the two barbs imply each other.

> o =n put (—). Consider the implication from left to right first. L&~ Q and
Pl put () we want to show tha® |, ,.; (). Consider the following context, where
Lis fresh inP andQ:
C[] £ []] (x)"¢[m(x k).0].

Given anyRwith ¢ fresh inR, it is easy to show thal},, ;.. () if and only if C[R] {,.
This is enough to complete the proof, B¢, ,: (-, iImpliesC[P], put (), and since
P = Q, one ha[Q] I put (—) Which impliesQ, put (—)-

For the reverse implication, 1&=, ...) Q, andP . Consider the context defined

as follows: A
CK[] 2 [] | £[in(n,k).out(n,£).(-Y] | out(x,?).0.

Given anyRwith 7 fresh inR, it is easily shown that
> if R{n then there existk such thaCX[R] 4y put ()
> CKRI{y put () impliesRp.

Now, P, implies that there existssuch that such th&[P] |, put (=) Thus we have
CQ] ¢ put (), and therQ), as desired.

> o = pop(k). For the implication from left to right, choose the following context, with
£ fresh inP andQ:
C[] 2 [| out(-,k).C[m(-,h)].

The proof proceeds as in the previous case as foRallith ¢ ¢ fn(R), we have
Rl pop(k if and only if C[R] |},. For the reverse implication, choose the context:

CK[] £ [] | ¢[in(n,Kk).out(n,h)].

with h fresh. For eaclR with h ¢ fn(R), we have(i) R, implies thatCX[R] Upop(hy
for a suitablek, and(ii) C¥[R] Upop(ny impliesR{n. From this, we conclude as in the
previous cases.

August 27, 2003 14

> o = exit(n,k). For the implication from left to right, choose the context
C[] = n[[]] | out(-k).[m(,h)].

Again, if £ Z fn(R), one haR e (n k) if and only if C[R] |},. For the reverse implica-
tion, choose the context:

CK[] £ []] ¢[in(n,k).out(n,h).out(¢,h)] | out(_.h)
with h fresh, and verify thaR ., if and only if C¥[R] Vexit(t,h)-

> o = in(n,k). For the implication from left to right, choose the context
C[] £ a[[]] | n[in(-k).blout(n,h).in(_,K)]] | out(-,h)

with a, b, h fresh, and verify thaR |,k if and only if R{},. For the reverse implica-
tion, choose

C[] 2 [alin{n,k).out(n,h)] | out(,h).in(a,h)
with a, h fresh, and verify thaP |}, if and only if C¥[P] Yincah)-
> The other cases are handled similarly. O

Notice that in the proof above we have usdd denote a “dummy” bound variable. By that
we mean that appears only in binding occurrences. We will use such notation again.

3 Labelled Bisimilarity

In this section we provide a sound characterisation of barbed congruence in terms of (weak)
labelled bisimilarity. To define the latter, we need a way to test the equivalence of processes
after any (number of transition following any) visible transition. To account for that,

we introduce a new, higher-order, transition for each of the first-order transitions whose
outcome is a concretion, rather than a process.

The new transitions are collected in Tabje 6. The higher-order labels occurring in these
transitions encode the minimal contribution by the environment needed by the process to
complete a transition. Thus, in (R HO) and (QuTPuT HO) the proces® represents the
context receiving the valud output byP, and the variable is a placeholder for that value.

The rule (QTPUT™ HO) is similar, but more complex because the value outpu® kil
be received at a different nesting level. In particular, to complete its ouRmueds to be
placed into an ambiemt (possibly containing a sibling proce®3 and the valuévl output
by P will be received at the enclosing nesting level.

The higher-order transitions for mobility have the same rationale. Thus, for instance, in
the rule (®-ENTER HO) the environment provides an ambi@f®] moving intom. In the
rule (ExitT HO) we can imagine the environment wrapping the proeséth an ambient
n[QJ, and receiving the nanma of the exiting ambient aR.

August 27, 2003 15

(OuTPUTHO)
="
P —— (vVB)(M)P" v(Q) C {x}, PNfn(Q) =0, n #*

P2 B P | Qxi=M))

(OUTPUT HO) (PUT HO)

= fv(R) C {x}, mput (-) , (Q) S {x},
P — (VR)(M)P B fn(n(Q),R) = 0 P ——— (VR)(M)P pNfn(Q) =0

_\n m put (—)

p TR WP | Q) Rix=MY) p TR wpP | Qixi=M))
(ENTERHO) (Co-ENTERHO)

enter(n,k) m enter(n,k)
P wpmpe 519 S P B (PUP: BNN(Q) =0

enter(n,k) menter(n,
p 0) (nimiPy | Qx = mi] | Py) p MR o) minQ) | Py | Py)
(ExiIT HO) (PoPHO)

exit(n,k) op(K)

S vpmege, SO e L wpme O CM
p SR) miPy [nlP2 | QI | R{x:= m}) p PP pP | QExi=m))

Table 6: Commitments: Higher-Order Transitions

Having defined the new higher-order transitions, we are now ready to give the relation of
labelled bisimilarity. Let\ be the set of all labels including the first-order labels of Table 2
as well as the higher-order labels determined by the transitions in[Table 6. We denadte with
any label in the seA. As usual, we focus on weak bisimilarities based on weak transitions,
and use the following notation:

) =2 denotes—> 2 —
i) -2, denotes= if A = T and=> otherwise.

Definition 3.1 (Bisimilarity). A symmetric relatiorZ over closed processes ibsimula-
tionif P Q andP Ap imply that there exist®’ such thaQ 2 Q andP Z Q. Two
processe® andQ are bisimilar, writterP =~ Q, if P % Q for some bisimulationz. O

This definition of bisimilarity is only defined over closed processes. We generalise it to
arbitrary processes as follows:

Definition 3.2 (Full bisimilarity). Two processe® andQ arefull bisimilar, P ~¢ Q, if
Po ~ Qo for every closing substitutioa. O

August 27, 2003 16

Note that the definition of bisimilarity only tests transitions from processes to processes,
which typically involve higher-order actions. To this regard, it is important to point out that
the structural rules of Tab[g 5 only apply whare Labels in other words, there are no
structural rules associated with higher-order transitions. (Observe thoughtoatersion

and, as a consequence, rearrangement of the order of adjacent restrictions still applies.)
We will return to this observation in the proof of Theorém|3.4, where we show that full
bisimilarity is a congruence.

Lemma 3.3.

exit(n,k)OR pop(K)R
1. fP —— P'thendP] ——— P'.

(=)"n[O]R nput (—)R
2. fP ——— P’ then P ——— P.

Proof. By transition induction. O
Theorem 3.4. Full bisimilarity is a congruence

Proof. It is easy to show that~ is preserved by input prefixes (these include, proper
input prefixes and co-capability prefixes). For instance, assuRing. Q, we need to
show that(x)".Po ~ (x)1.Qo for all closing substitution®. By definition, one has
((x)".P)o = (x)1.(Po) (with o capture free). The only moves from)".(Po) are of the

(M)
form (x)".(Po) —— Po{x:= M} for an arbitrary expression (messadé) Since also

(M) . :
(x)".(Qo) —— Qo{x:= M}, it remains to show th&o{x:=M} ~ Qo{x:=M}. But
this follows directly from the assumptidh =~ Q.

For the remaining constructs we can safely restrict to closed processes in the language,
and prove thatx~ is a congruence. We treat all the constructs simultaneously, as follows.
Let . be the least equivalence relation that contaimsand is closed by prefix, parallel
composition, restriction and ambient, i.e.:

> ~CY

> P. QimpliesTtP . LQ

> P. QimpliesP | R.¥ Q| Rfor all processe®

> P. Qimpliesn[P] . n[Q], (vn)P.# (vn)Q and P .!Q.

We show that¥ is a bisimulation up ta= (cf. [19]). The theorem follows directly from
this fact (for, then,¥ is itself a bisimulation, hence’C = , which implies.¥= =). The
proof is by induction on the formation g¥.

> P.¥ Qbecaus® ~ Q. This case follows by definition.

> TLP . TLQ becausé® . Q. There are five sub-cases to considerr i$ a capability,

M M
sayM, the only move fromM.P is of the formM.P —— P. ThenM.Q — Q,
and this concludes the proof becase” Q by hypothesis.

The case whemis an input prefix has already been worked out above. There are two
more sub-cases for output prefixes.

August 27, 2003 17

A
> TP —— P’ becausat= (M)" with n #% A = (—)"TRandP’ is structurally
equivalent td® | R{x:= M}. The same move is also available{M)".Q, hence

A
one hagM)" —— Q| R{x:=M}. SinceP . Q by hypothesis, and since and
.7 is closed by parallel composition, we concll@eR{x: =M} . Q| R{x:=
M}, as desired.

> The case whem = (M)” is similar: it also requires the closure of by the
ambient constructor.

A
> P|R.¥ Q| Rbecausd . Q. We proceed by a case analysis of whyR —— O,
with O a process (not a concretion). There thirteen cases in all to consider, plus their
symmetric cases. We start with the structural case, below.

A A
> P|R — P’ | Rbecausé®® —— P'’. SinceP . Q, by induction hypothesis
we find a weak transitio@ LN Q with P . Q. Thus, we also have a weak

transitionQ | R N Q' | R and since¥ is closed by parallel composition,
P |RY Q| Ras desired.

Then there are six caseswofransitions, plus their symmetric cases.
enter(mk) m enter(n,k) _
> P|[R—0asP ——— (vp)(n[P])P,andR (VF)(R1) Rz, with
O= (Vi) (vP)(M[Ry | n[P1]] | P2 | Rz), andRy = Rye{x:= n} for a suitableR,. We
must find a matching mov®@ | R— O’ with 0. 0.

enter(mKk)Rx

By rule (ENTER HO) one ha®? ————— P = (vP)(m[n[P1] | Ry] | Po).
SinceP . Q, by induction hypothesis there exiggy such that?’ .« @/, for

enter enter(mk)R¢
whichQ —=2™0R v ThusQ —V —— ", 7 — (¥ for appropri-

ateV andZ. An inspection of the transition rules shows tRamust be of the
form (v§)(M[1[Q1] | R{x:=1}] | Q2) for suitable namek § and processe®;

o enter(mKk)R .
andQ,. Furthermore, the transitionn ———— Z must have been derived
enter(mk) m enter(n,Kk)
fromV. ———— (v§)(1[Q1])Q2. FromR ———— (VF)(R1)Ry, it follows

m enter(l k) . .
thatR (VF)(R«{x:=1})Ro. Hence by an application of the rule (

ENTER), we haveQ | R=—=V | R 2, (V) (Z | R2) = (V)(Q' | Rz). From
P .7 @, since. is closed by restriction and parallel composition, it follows
thatO = (Vi) (P | Ry) .« (Vi) (Q' | Rx) = O/, as desired.

P ‘ m enter(n,k) (Vp)<P1>P2 andRentﬂTQ 1K) (F)(n[R1]>R2,
with O = (VF)(vp)(M[P1 | n[Ry]] | R2 | P2). We must find a matching move
Q| R= O with 0. 0. By an application of rule (6-ENTER HO) one

m enter(n,k)Ry

hasP
P.7 Q, there exist€) such thaQ —V

P = (vP)(Mn[R4] | P1] | P2), with fnfn(Ry) = 0. Since
m enter(n,k)Ry .
Z— QwithP .7 Q.

August 27, 2003 18

An inspection of the transition rules shows tlat (v§)(m[n[Ry] | Q1] | Q2)
for suitable names), "and processe®; and Q». In particular, the transition

m enter(n,k)Ry . m enter(n,k)
V —————— Z must have been derived from (v§)(Q1) Q2.

Thus, by an application oft (ENTER)

QIR = VR

s (vi)(vE)(mnRY | Q] | Re | Q2)
= (W)(Z|R)
— (Q|R)

FromP . @/, since.” is closed by restriction and parallel composition, it
follows thatO = (Vi) (P’ | Ry) 7 (V) (Q | Rz) = O/, as desired.

T popk) out(mk)
> P| R —— O because® —— (vf)(mP" andR R, whereO

structurally equivalent tgvf)(P' | R) andR is of the formR{x := m} for
a suitableR,.

(KR
By the rule (RPPHO), we derive? R O. SinceP .7 Q, by the induction

(k)R
hypothesis we find a transiticl@ — V R 72— O with0.# 0. An

: : " pop(K)Rx :
inspection of the transition rules shows that——— Z must derive from

K
y Pl (vF)(1)V’ for suitablev’ andl, with Z = (VF) (V' | R({x:=1}). Also,

Sut(mk) out(l k

: (1K)
R, itfollows thatR —— — Re{x:=1}. ThusV |R —— Z,
and we are done, sin(g| R—V | R . z=0

fromR

T out(mk) pop(k) .
> P|R —— O becausd P andR —— (vi)(mR with O struc-

turally equivalent tavi) (R | P'). SinceP . Q, by induction hypothesis, we

Sut(mk)
Z— Q. Thus

know thatQ — U

Sut(mk)

QIR=U|R —— (W)(R|2)= (vi)(R | Q) =0.
Now, O . O derives fromP’ . Q because? is closed by parallel composi-

tion and restriction.

(=) (M) ,
> P|R . Obecaus® — (VvP)(M)P, R —— R andO is structurally
equivalent tovp) (P’ | R) andR is of the formR{x:= M}.

(=) : (=R :
FromP —— (vp)(M)P, by (OuTPUTHO) we derive® —— O. By induc-
(-)R«
tion hypothesis, since . Q, we haveQ —=U —— Z=— 0 withO.7 0.
. . i : (=)
The previous higher-order transition must be derived ftdm—— (v§)(N)V

(N)
with Z of the form(v)(V | R{Xx:= N}). Thus, sincR — Ry{x:= N}, we
haveU | R ', Zand thel@|R=—U |R ', Z— O as desired.

August 27, 2003 19

> The dual case of the previous transitiothEXCHANGE), and the two cases of
(t-GET) and {-PuT) follow the same pattern outline in the previous cases.

Finally we have seven cases for the higher-order transitions: these need a special treat-
ment because, as we noted, there are no structural rules associated with the higher-
order transition. We give the case of (OPuT "~ HO), which is the most complex.

(=) n[RyJRe (- .
> PR ————— O, becaus® | R —— Kgs= (v§)(M)S andOis structurally

equivalent to(v8)(n[S| Ry] | Rx{x:= M}). We have two possible sub-cases,
depending on whethé? or R move. We consider the second case first.
-7
If R — Kg, thenKs = Kgr | P, which implieskKg = (v§)(M)R and S=
R | P. ThusO = C[P] whereC[P] = (v§)(n[R | P | Ri] | Re{x:= M}). Clearly,

(=) n[ReJR
QIR A C[QJ. By induction hypothesiB.¥ Q, and since¥ is closed

by all the operators in the contegf:|, we haveC[P] . C|Q] as desired.
<_ R
If insteadP moves, i.e.P —— Kp, thenKs = Kp | R, which impliesKp =
(V§)(M)P andS=P | R ThusO = (v8§)(n[P’ | R| Ry] | Re{x:= M}). Now
(=) N (=)n[R | RyJR
from P —— Kp, by (OuTPuT "~ HO), we deriveP "”, 0. Since
P .7 Q, by the induction hypothesis there ex¥tsuch thaD.# O’ and a weak
(=)nR| RiJR,

transition of the form:Q —- U Z = O'. By an inspection of
the transition rulesZ = (vin)(n[Q | R| Ry] | Re{x:= N}). Furthermore, the

i, , (=)
transition fromU must derive fromJ —— (vm)(N)Q'. Then by rule (BR)

(=) . , , (=) nR1IR
U|R— (vin)(N)Q' | R from whichU | R ———— Z. We are done,

sinceQ |R—U |RandZ = O/,

> n[P] . n[Q] becaus® . Q. There are again several sub-cases to consider, one for
each possible transition. The first, and simplest, case is Whker, and the transition
n[P] — O derives by (AB). Then, O is the process[P’] and the transition is
derived byP — P’. From the hypothesi® .7 Q, we know thatQ = Q' with
P . Q. Then the claim follows by the assumption tk#tis closed by the ambient
constructor. The remaining cases are as follows.

ngetM ?

(M)
> n[P] —— Obecaus® —— P’ andO=n[P’]. SinceP.¥ Q, by the induc-

tion hypothesis, we know th& LN Q with P' . Q. From this, we have

nQ =& M. Q)= 0, and0.¥ O because¥ is closed by the ambient

constructor.
exit(mk)RS exit(m,k) .
> n[P] ————— ObecausaP] ——— (v)(n[P])0, whereQ is structurally
equivalent ton[P’] | mR] | S{x:=n}. The latter transition must have been
t(mk)
derived fromP Baly-% SinceP .7 Q, by the induction hypothesis there

August 27, 2003 20

out(m,k)
existsQ such that it follows by induction thd) — ——— — Q@ and

P Q. Then

n(z) | mR) | S{x:=n}

That O . O’ follows again fromP’ . Q' and from.¥ being closed under
parallel composition and ambient construction.

pop(K)R pop(k) - .
> n[P] ——— O because[P] ——— (vP)(m)(m[Py] | n[P.]), with O struc-

turally equivalent tavp)(m[P1] | n[P2] | R{x:=m}). The latter transition must

. exit(n,k) . exit(n,k)OR .
be derived frorP ——— (vP)(m[P1])P,, from whichP ———— O. Since
exit(n,k)OR

P.# Q, by induction hypothesis there exi€¥s.t.Q— —— Z=—0
whereZ = (v§)(1[Q4] | n[Q2] | R{x:=1}) andO . O'. By Lemmg 3.H(L), we

then have the desiredQ] 2“2 (vg)(11Qu] | n[Qs] | R{x:=1}) — O.

n put (—)R nput (—) N .
> n[P] ———— O because[P] ———— (vp)(M)n[P’], whereO is struc-

turally equivalent to(vp)(n[P’] | R{x := M}). The last transition must de-

rive from P l (VP)(M)P', from which P _>—H> (vPp)(n[P] | R{x:=

M}) derives by an applicatlon of (LG)rPUT HO). SinceP . Q, by induc-

tion hypothesis it follows that there exis® such thatQ % O and

O .7 O. An inspection of the transition rules shows tl@itis of the form
(vg)(n[Q] | R{x:= N}) for suitableQ’,RandN. By Lemmg 3.8(R), we then

haven[Q] =% o as desired.

> The remaining cases, namelyNEER HO) and (@-ENTERHO) similar to and
simpler than the previous ones.

> (vn)P . (vn)Q becausé® . Q. Assume(vn)P . (vn)Q, and let(vn)P SR P.
The move may either derived by ER), or else by one of the higher-order transi-
tions. In the first case the proof follows directly by the induction hypothesis and the
assumption that” is closed by the restriction operator. For the remaining cases, the
proof is by a case analysis of the higher-order transition involved in the move. We
give one of these cases below, as representative.

(KR
Assume(vn)P .7 (vn)Q, and(vn)P P, O, and let this transition be derived

by (Pop HO) from (vn)P m (vn, p)(mP’, with O = (vn, p)(P" | R{x:=m})

and{n, f} Nfn(R) = 0. We need to find a weak transitigan)Q 2RUR - o with
ov 0.

op(k)
The transition from'vn)P must derive by (Rs) from P R (vP)(m)P". From

KR
this transition, we have ﬂ P* with P* = (vP)(P' | R{x:=m}) (and thuD =

August 27, 2003 21

op(k)R
(vn)P*). SinceP . Q we find a weak transition of the for@ —-V o, 71—
, . . (KR .
Q* with P* . Q*. By examining the transitiod AN Z, we see that it must de-

op(k)
rive fromV ——, (vg)(1HV’, for Z = (vg)(V' | R{x:=1}) and a suitablé. Now,

pop (k) N pop(K)R
by (RES), (vn)V —— (vn,§)(I)V’, and then by (BPHO), (vn)V —— =

(vn)Z. Since(vn)Q = (vn)V and(vn)Z = (vn)Q*, we have found a weak tran-

sition (vn)Q _PoplR, (vn)Q*. We are done sincéun)Q* .7 (vn)P* follows by

P* . Q* and the assumption that’ is closed by restriction.

A
> IP.1Q becausd® . Q. Assume P.~!Q, and let P —— P’. The move may ei-

A A
ther be offormP —— !P | P, derived fromP —— P’ by (RePL), or else derived
by one of the higher-order transitions. If it is derived byEfR), give the assump-

tion P . Q, we may use induction to find a mo@ LN Q with P . Q. Thus

IQ N Q| Q by an application of (RPL). Then we haveP .!1Q andP’ .¥ Q.
Since.” is closed by parallel composition, this implig3 |P' .1Q | Q/, as desired.

For the remaining cases, the proof is by a case analysis of the higher-order transition
involved in the move. This analysis is similar to that carried out in the previous cases
and thus omitted.

O]

We conclude with the proof thes is contained in our relation of barbed congruence. An
alternative notion of labelled bisimilarity that completely captures barbed congruence will
be discussed in §9.

Theorem 3.5 (Soundness of full bisimilarity).If P ~; Q then P= Q.

Proof. It is enough to show that, is a barbed bisimulation up ta. AssumeP =~ Q. If
nget M nget M

P |, then, by Lemm4l? —— , and we know thaQ ———, from whichQ {p..
Now assume tha® — P'. By Theore —=P. SinceP ~ Q, there exitxY such
thatQ = Q' andP’ = ~.= Q/, as desired. O

4 Algebraic Laws

In this section we give some of the characterising algebraic laws for NBA. Some of these
laws are inherited from the companion calculi, notably SA(P) and BA, while others are
specific to the new calculus, and show the beneficial effects of the new primitives for com-
munication and mobility.

Mobility. The first set of laws are related to mobility and inherited from Safe Ambients
(with/out passwords). They show that there are two ways to equate a mobility redex and the

August 27, 2003 22

result of reduction: either by relying on secret passwords, or by having the move happen
within a protected context (i.e. an ambient).

Theorem 4.1.

1. (vp)(mfin(n, p).P] | n[in(x, p).QJ) = (vp)(n[Q{x:=m} | m[P]})
2. 1[mfin(n, p).P] | n[in(x, p).QJ] = I[n[Q{x:=m} | m[P]]]
3. (vp)(n[mlout(n, p).P]] | out(x, p).Q) = (vp)(m[P] | Q{x:=m})
4. I[n[mlin{n, p).P]] | out(x, p).Q] = I[m[P] | Q{x:= m}].

Proof. By exhibiting the appropriate bisimulation. In all cases, the bisimulation has the
form {(LHS RHS} U.#, whereLHSandRHSdenote, respectively, the left-hand side and
the right-hand side of the equation, asdis the identity. O

Garbage Collection. The next set of laws provide useful ways to single out inert pro-
cesses that can be safely garbage collected.

Theorem 4.2. For any |, J, H finite:

1.1 Mia (R)™.P | Mjea(%).Pj | Mhen (Mp)™.Ph] = 0
2. [Migi (%)".P | Mjea(M;).Pj | Mpen (Mp)™.Py] = 0
Proof. In both cases, the singleton set containing the pair of the two processes is a full

bisimulation: this follows by observing that none of the processes in the two laws has any
transition. O

Taking| = J =H = 0 in the previous theorem, one also deriv€s= 0, a very useful
eqguation that allows empty ambients to be garbage collected. This equation holds in Safe
Ambients (with/out passwords) as well, while it is not valid for Mobile Ambients, nor for
the calculus BA studied in_[3]. Notice, in particular, that in NBA the equation is the result
of both the presence of co-capabilitisd of the new semantics of parent-child communi-
cation.

Buffer Laws. A further set of laws shows how outputs distribute over the ambient con-
structor.

Theorem 4.3. For any finite J:
L[Mjea(Mj).P] = Mgl [(M;).P;).
2. [Mjea(Mj)™] = Mieal (M),

Proof. The first equation follows directly by Theorgm §.R(1), as both sides are equivalent
to the null process. For (2), we reason by induction on the sideedr the base case, when
J =0, the equation follows by Theorem 4.2(1). For the inductive case, we first show that

[Mjea(Mp)*] e H[(M] 1 Mg g (M)])

August 27, 2003 23

We give a direct proof, showing that the derivatives of the two terms are bisimilar. Assume

~oas A
I[Mjes(M;)"] — P". An inspection of the transition rules shows that | put (—)S,
and that?’ =1 Mjcy_q(M i)'] | S{%:= My}, for some procesS, andk € J. On the other

| put (—)
hand, first observe thaf(Vi)] —— - (v)(NMiI[]. Then, an application of the AR)

rule derives
LY 1Mo V5] 2) KA | Mg 1N

~ A s A A
Then, by (WTPuT HO) we derivel [(My)] | I[Mjea (M;)"] —— 1[] | P/, which is what
we need, becausg = 0. The reasoning for the symmetric case is essentially the same.

From [1), by Theorerh 3|4, we habeljcy(M;)"] 2 I[(Mi)] | 1] Mjeg i (M)]. Now
we may use the induction hypothesis and conclude
I MjeaM5) T = 1 MI] 1] e (V)] 2 [MI] | Mo gig 1M] = Mieal[(M)7]
as desired. O
The first equation is a consequence of the semantics of communication of NBA, which
makes local communication not observable. This this is not true of the semantics of com-
munication in BA. To see that, talke=[[(M1) | (M2)] andQ = [[(M1)] | I[(M2)]. Then the
contextC[-] = [-] | n[in{1).(x)".(x)".out(1).()] distinguishes them, &P] ||, while C[Q] |/,
according to the semantics of BA (cf. Introduction, pape 3).

The second equation, instead, holds with either semantics. In neither case it generalises
to output prefixes with non-null continuation, as in genef& | P,] 2 n[Pi] | n[P2]. As a
simple example, takig; = ().in(x,n).0andP, = (). Then,n[P.] | n[P,] = 0, by Theorem 4]2,
while n[Py | P,] = n[in(x, n)] which is active and observable.

Communication. The next block of equations gives further insight into the semantics of
communication.

Theorem 4.4. If |X|=|M | then:

L [(%)-P | (M).Q] = I[P{X:=M} | Q
2. (W)((®'PII[(M)".Q]) = ()(P{XZM}I [Q)
3. mM(®)".P[I[(M).Q]] = mP{%:=M}|I[Q]

The dual laws df]2 and 3 (resulting from exchanging input with output prefixes) hold as well.

Proof. Again, by exhibiting the appropriate bisimulation. In all cases, the bisimulation
has the form{(LHS RHS} U.#, whereLHS andRHSdenote the left-hand side and the
right-hand side of the equation, respectively. O

The first equatiorj, 4]@(1) shows again that NBA does not suffer from interferences on local
communications: this law holds in Safe Ambients but not in Mobile Ambients, dogeig
nor in Boxed Ambients. The remaining equations are distinctive of NBA.

August 27, 2003 24

Firewalls. As afurther illustration of the algebraic properties of NBA, consideptréect
firewall equation from([6]:(vn)n[P] 22 O, for n ¢ fn(P). This equation is not valid in NBA,

nor in BA. In BA, ambients with secret names may exchange values with their parent. In
NBA they can move, and reveal their name. For examplé tetout(m, m), for m+# n, and
consider the contexZ[-] = (vm)(m[[-]] | out(x,m).Q), wherem ¢ fn(Q) andQ %2 0. Then

C[0] = 0, while C[(vn)n[P]] —=2 (vn)(Q{x:=n} | n[P]).

Indeed, the lawvn)n[P] = 0 (n ¢ fn(P)) is not valid in SA or SA(P) either, because the
movement of secret ambients is observable in such calculi like in NBA (due to the presence
of co-capabilities). In SAP, the equation is re-statedves) (vn)m[n[P]] = 0, which holds
thanks to the format of theut capability used in[[12], which mentions the name of the
moving ambientrf in this case). The different syntax fout we adopted in NBA yields
yet another variant of the firewall equation.

Theorem 4.5 (Perfect Firewall). m[n[P]] = 0, for all m and P such that rZ fn(P).

Proof. The set.”= { (m[n[P]],0) | m¢ fn(P) } is a bisimulation. To see that observe
that the only visible transitions fromm[n[P]] must have a labglop(k) (or its higher-order
counterpart) for somé&, derived from a transition with labeixit(m k). But this is not
possible, ifm ¢ fn(P). O

5 The Type System

We already remarked the effects of revised semantics of communication on the typing sys-
tem. In this section we elaborate on those ideas, and show that the combination of such
semantics with the movement co-capabilities distinctive of NBA can be accounted for at a
low complexity cost in the type system, while allowing a degree of flexibility comparable
with that of the moded types df][3].

We start our discussion by introducing the structure of types.

Message Types W 1= NI[E] ambient/password
0O ClE] capability
Exchange Types [:= shh no exchange

O Wpx---xWk tuples k>0)

Process Types T 1= [E,F] composite exchange

The types of ambients trace the upward exchanges of ambients with this type. In addition,
in the present system the types of the fa¥fi| also serve as the types of passwords: hence,
N[E] is indeed the class afametypes. When used as a password tylg¢| informs on

the typeE of the upward exchanges of any ambient whose movement is probedll [} a
password. There is no type confusion in this double role of name types, as different uses of
a name have different, and orthogonal, imports in the typing rules. An alternative, perhaps
more easily understood solution would be to use two different constructors for ambient and
password names: however, this would also have the undesired effect of disallowing the

August 27, 2003 25

same name to be used in the two roles, a feature that is harmless, and rather convenient in
many examples.

As for capability typesC[E] is the type of capabilities exercised within ambients with
upward exchange of type. Perhaps unexpectedly, tracing the t¥pés necessary to pro-
vide static guarantees of type safety, even with the new semantics of communication. This
is due to the dynamic binding of names that takes place upon ambient mobility. On one side,
the target context relies on the type of the password presented by the incoming ambients to
make assumptions on the upward exchange types of these ambients. Correspondingly, on
the side of the moving ambients, the capability types guarantee the consistency between the
upward exchanges of that ambient and the type of the passwords used to move.

Exchange and process types also have the same structure as in previous type systems for
Ambient Calculi. Typeshh, however, besides indicating the absence of exchanges, provides
here for asilentmode for mobility similar to, but substantially simpler than, theded types
of [3]]. Specifically, the typing rules guarantee that the name of an ambiem, sayssing
a boundary with a password of typEshh] will not be used by the receiving environment.
Thus, unless the target ambient knows the nantke use of &l[shh] password guarantees
safe mobility for regardless of the ambients’ upward exchanges.

We proceed with the presentation of the typing rules. The rules for valid type environments
are standard.

(ENV EMPTY) (ENV NAME)
Mo a¢ Dom(lN)

gFo MNa:wWkro

Table[T gives the typing rules for messages. The notdtiehG, with F andG exchange
types, is short foF € {shh,G}; operator! is the (partial) lub operator associated with
Rule (FRROJECTION is standard. Rules Kl) and (QuT) define the types of capabilities in
terms of the type of the component passwords: together with the typing rules for the process
constructs for ambients in Taljlé 9, they construe the types of passwortedacesfor
mobility. In particular, if the typd- associated with the passwokblis a message typ&/
(equivalently, a tuple), theN requires any ambient relying upad for mobility to have
upward exchanges of typ® (cf. rules (ReFiX) and (AvB) in Table[9). If, insteadf =
shh, then the typ&s of the upward exchanges can be any type: this is sound, because a move
based on al[shh] password is guarantee to not reveal the name of the incoming ambient
to the target context (cf. rules (EIN/OUT-SILENT) in Table[9. Rule (RTH) follows the
same intuition: it is applicable only whdh LI E; is defined.

Tableqd 8 tg 10 define the typing of processes. The rules in Table 8 are standard. The
rules in Tabl¢ P complement those in Tghle 7 in governing mobility. Ruleg)Ais standard,
and construes the typgE| as the interface of the ambievtfor any process that knows the
nameM: any such process may have souh@xchanges wittM, as the process enclosed
within M has upward exchanges of this type. The rules for the mobility co-actions provide
similar guarantees for the exchanges a process may have with ambients whose name the
process gets to know by exercising the co-capability. In this case, it is the type of the

passwordM that acts as interface: M has a typeN|W]| as in rules ¢o-IN) and CO-0UT),

August 27, 2003 26

(PROJECTION (PATH)
F7a:W,F/|—<> rFM1:C[E1] rFMQZC[Ez]
ra:W,rra:w MMMz : C[E1 UES]
(IN) (OuT)
FrEM:N[E] TEN:N[F] (F<G) FEM:N[E] TEN:N[F] (FLG)
IFin(M,N) : C[G] I Fout(M,N) : C[G]

Table 7: Good MessageB:+M : W

(PAR) (REPL) (DEAD) (NEW)
Nr-P:[E,F] THQ:IE,F] reP:[E,F] Mo I,n:N[G]FP:[E,F]
N-P|Q:[E,F] rE1P:[E,F] ME0:[E,F] I (vn:N[G))P: [E,F]

Table 8: Good processedl-P: [E,F]

we are guaranteed th¥ is indeed the type of the exchanges of the incoming ambient.

If instead the password type Mjshh], no such guarantee can be made, as easily verified
inspecting (REFIX) and the communication rules in Talple| 10). Accordingly, rules-(
IN-SILENT) and CO-OUT-SILENT) require that the continuation proceBsmakes no use

of the variablex and, hence, of the name of the incoming ambient (unless that is already
known toP). An alternative, and still sound solution, would be to generalise dte (

IN) and €o-ouT) rules by (systematically) replacing the typéwith a generic exchange

type G. Following this, rules €O-IN-SILENT) and CO-OUT-SILENT) could be dispensed

with. On the other hand, the resulting system would be less general than the present one,
in that any ambient using a silent password for mobility would be required to be upward
silent. The current solution, instead, has no such constraint: the typing rules only prevent
upward exchanges with the processes enclosed into ambients reached by the use of a silent
password. The last set of rules, in Taplg 10, are those for input output and contain no
surprise. In rules for output the judgemérit M : W stands for the judgemenfts- M; : W
fori=1,...,nwhenW =W x --- x W,

Proposition 5.1 (Subject Reduction).If TP :T,and P— Q, thenf FQ: T.

Proof. A rather standard proof. The only novelties are the presence of substitutions in the
reductions for mobility, and the use of passwords. For the latter, the essence of the proof
is in the following observation: if[in(m,k).P; | P;] (similarly njout(m,K).P; | P;]) is well

typed forn: N[E], thenk : N[F] for F < E, andP; | P, : [G,E]. Perhaps interestingly, it
need not be the case tHat= E. In particular, it could be tha = shh, in which case the
context probingn with k must know the name, hence its typeN[E], to have exchanges

with n[P1 | Pz]. O

August 27, 2003 27

(AMB) (PREFIX)

F-M:N[E] T+P:[FE] F-M:C[F] THP:[E,G] (F<G)
[+MIP|: [G,H] +-M.P:[E,G]

(Co-IN) (Co-ouT)

FEM:NW] ,x:NW]FP:[E,F] FEM:NW] T,x:NW]FP:[E,F]
I Fm(x,M).P: [E,F] [out(x,M).P: [E,F]

(CO-IN-SILENT) (CO-OUT-SILENT)

MM :N[shh] THP:[E,F] (x¢v(P)) MM :N[shh] T FP:[E,F] (x¢v(P))

I Hm(x,M).P: [E,F] I Fout(x,M).P: [E,F]

Table 9: Good Processes Il (mobility)

6 Encoding thettcalculus

As a standard test of expressive power for NBA, we give an encoding of the following,
choice-free fragment of the synchronaesalculus [15].

Pem:=ab).P| a®X).P| PP | (vaP

There are several choices for the encoding. One solution is obtained directly from the
channel encoding of [3] now tailored to the new semantics of communication.

{ab).P (vnald,n)] [(r[0~0T 10" {PE) rgm(P)
{a®.Qft = Xy)0)Y{Ql y¢Ztv(Q)
A different, somewhat more compact encoding, illustrates the power of the binding mech-

anisms associated with NBA’s co-actions. We only show the encoding of channels, the
remaining clauses are defined compositionally.

(a).P) £ (vp)(al(b)alout(a,p)]] |out(-,p)-(P)) (p¢n(P))
(a®).P) = (R2.(P)

Given the direct nature of the encoding, its operational correctness is simple to prove. We do
need, however, some preliminary definitions. First, we rely on the commitment semantics
of thettcalculus given in Table 11. The definition is adapted from [14]: it uses concretions
of the form(vp)(g)P with {p} C {§}, and relies on the same conventions for the notation
(vn)O andO | Q defined in ER (on padg 7).

Then we introduce aexpansiomelation [1] for NBA, which is the standard asymmetric
variant of the reduction barbed congrueiee The formal definition is as follows, where
indicatesoneor more reduction steps .

August 27, 2003 28

(INPUT) (OuTPUT)

& WFEP: W, E] FrEM:W [HP:[W,E]

M (%:W).P: W, E] [+ (M).P: W,E]

(INPUTY) (OuTPUT)

MXWHP:[E,W] FrEM:W T[HP:[E,W]

M (WY .P:[E,W] r= (MY .P:[E,W]

(INPUT M) (OuTPUTN)

FEM:NW] [L%WFEP:[G,H] FTEN:NW] TEM:W TFP:[GH]
M= (&EW)MP:[G,H] = (MNP [GH]

Table 10: Good Processes Il (input/output)

Definition 6.1 (Expansion [20]). A relationZ is anexpansionf wheneverP % Q,

i) for each name, P |, impliesQl},, andQ | impliesP | .
i) P— P impliesQ —=—=— Q withP Z Q
i) Q— Q impliesPZ Q orP— P withP Z Q
We note by < the largest expansion relation preserved by contexts, and say thatands
Pif P < Q, thatis ifP % Q for some expansios. O

We give a simple, but useful version of one of the algebraic laws given in the previous
section, now stated in terms of the expansion relation. We @riteP wheneveP < Q.

Lemma 6.2. (vp)(nimlout(n, p).P]] | 5UE(x p).Q) = (vp)(MIP] | Q{x:=m})

Proof. Let LHS and RHSdenote the left-hand and right-hand sides, respectively. First
observe thah[0] = 0. Also, it is easy to see thaHS — RHS| n[0] is the only reduction

for LHS. Now assumdHS > RHS Clearly, if RHS|, thenLHSJ},; furthermore,LHS
exhibits no barbs, hence the second part of condition (i) holds trivially. For the remaining
conditions, ifRHSmoves, as iRHS— P, we haveLHS — RHS| n[0] — P | n[0], and

P | n[0] 2 P because>, is closed by parallel composition. lHSmoves, as ihHS — P,
thenP = RHS| n[0], and we know thaRHS| n[0] = RHS This line of reasoning applies
unchanged when we close by contextsCsHS — R implies thatR = C'[LHS), with

C[0] — C/[0], orR=C[|RHS. O

As an immediate corollary, we hayep)(n[mlout(n, p)]] | out(x, p).Q) 2 (VP)Q{x:=m}.
We will use this latter relation in the proof of the following result.

Lemma 6.3 (Operational Correspondence)Let Pe 1t

1. Assume PL O. Then the following cases arise:

August 27, 2003 29

(INPUT) (OuTPUT)

a(x).P =0, P(x:=b) ab).P — (V)({H)P

(comm)
P vOBP 0 - Q fn(Qn{e =0

PIQ — (WP |Q)

(RES) (PAR)
P20 agfn(a) P20
(vaP —— (va)O PIQ - 0|Q

Table 11: Commitments for the pi-calculus

(a) a =a(b), O is a process and P) ﬂ = (0)
(b) a =a, O= (v€)(b)P' and (P) L@ (V&) (b)P* with P* > (P')
(c) a=rt,0Oisaprocess andP) LN = (0O)

~—r

2. Assumg(P) %, 0. Thenthe following cases arise:

~ (b) :
(@) a = (b)3 Ois a process and P’ € mtsuch that Pl p withO 2 (P').
(b) a=aput (), 0= (v&)(b)P,and3 P’ € ts.t. P—2 (v&)(b)P and R > (P')
(c) a =1, Ois aprocess, and P’ € tsuch that P Pand Oz (P)

Proof. Part 1 is proved by transition induction. We distinguish the following cases.

> P L~ Oisa(X).P, 0, P.{%:= b}. By definition, (P) = (x)2. (P}, and then
(P) o (P1) {%X:=b}. We are done sincéP,) {X:=b} = (P {%:=b}).

> P — Oisalb).P. —— (v)(B)P.. By definition,

aput (—)

(P) = (vp)(@(b) alout(a p)]] | out(x, p). (PL)) ——— (P)(v)(b)P"

for p ¢ (fn(Py) U {b}), andP* = (vp)(alajout(a, p)]] | out(x, p).{P1)). Sincex ¢
fv(P1), by Lemmd 6.pP > (Py) as desired.

August 27, 2003 30

>P 2. OisP | P, — (VE)(P, | P}), derived fromP, —— (v&)(B)P,, and

from P, ﬂ P,, with fn(P,) N {€} = 0. By induction hypothesis, there exiBf
andP; such that{Py) —o - (v&)(B)P; and (P,) o P, with Py > (P})
andP; > (P5). Aninspection of the translation shows thatfs) N {€} = 0 implies
fn((P2))N{€} =0. Then(Py | P) =, (VE)(P; | P3). Since 2 is closed by con-
text, fromP; z_<<P1>> andP; > (P;) we have(ve)(Py | Py) = (VE)((Py) | (P5)).
We are done since€)((P;) | (P5)) = ((VE)(Py | P%)).

> The remaining cases, of the two structural transitionsgjRnd (RR) follow easily
by the induction hypothesis and the fagt is closed under restriction and parallel
composition, respectively.

Part 2 is proved by induction on the structurePofThe casd® = 0 is immediate.

> P =a(X).P.. By definition, (P) = (X)2.(P.), thusa = (b)2 andO = (P,) {%X:=
bl. On the other hand, imt one hasP ﬂ Pi{% := b}, and we are done since
(P{X:=b}) = (Pr) {X:=Db}.

—a(b).Pi. By definition, (P) = (vp)(a [(b)*.alout(a, p)]] | out(x, p). (P1)), with
p ¢ (fn(Pr) U{b}). ThusO = (v)(b)P;, derived witha = a put — and withP} =
)

(vp)(ala [out(a p)]] | out(x, p). (P >> On the other hand, im, P 2, (v)(b)Py.
Now P; > (Py) follows by Lemmd 6.p.

> P =Py | P. By definition (Py|P.) = (P1) | (P). If (P1) | (P) — Ode-
rives by (RAR) the proof follows directly by the induction hypothesis. Otherwise, the
transition must be of the fornjPy) | (P2) — (v&)(P; | P;), derived by (©MM)

b)2 ut —
from (P1) L P; and from (P) & (v)(b)PZ,forfn(<< 1))N{E} =0.
The proof follows now routinely.

> P = (vn)Py. This case follows by the induction hypothesis and the fact fhais a
congruence. O

Lemma[6.8, extends readily to weak reductions. The proof of the following proposition
derives directly from[[2] (cfloc. cit., Proposition 3.6, pg 216).

Proposition 6.4. Let Pe 1T
1. ifP= P then(P) = = (P')
2. if (P) = Q, then there exists'RBuch that P— P’ and Q= (P’)
3. Plnifandonly if (P) {n.

Proof. Items 1 and 2 are both proved by induction on the number of reduction steps. Iltem
3 follows from 1 and 2.

August 27, 2003 31

1. The base case is trivial. For the inductive case, asfme-""1 P* — P/. By
induction hypothesigP) = R > (P*). FromP* — P, by Lemmg 6.3(1) we
know that(P*) — = (P'). FromR> (P*) and(P*) — 2= (P’), we know
thatR— > (P'). Thus(P) —= R—=— 2= (P') as desired.

2. The base case is again trivial. For the inductive step, asgije— Q' — Q.
By induction hypothesis there exisBs € 1t such thatP — P’ with Q' > (P').
From this, and fronY — Q we have two possible cases: eitl@r> (P'), or
(P') — P” = Q. Inthe first case we are done. In the second, by Le@a 6.3(2) there
is P* such thaP’ — P* with P” > (P*). Thus, there i®* such thaP — P’ — P*
with Q =2 P” > (P*), as desired.

3. From the definition of the encoding and Theofenj 2.7, it is verified Rijatif and
only if (P) |n.
Then, for the (only if) part of the claim, assurRe—> P’ |,. By (1) we have that
(P)y = Rz (P"). ThusR{y and hence als¢P) {n.

For the (if) part, assuméP) — Q| ,. By (2) there exist$’ such thaP — P’ and
Q2= (P'). Thus(P) |, which impliesP’ |, and therP . O

Exploiting this proposition together with the compositionality(ef) , we can show that the
encoding is sound, in the sense below. £ebn tterms denote the reduction barbed con-
gruence induced by the following definition of baf},, justin casé® = (vp)(N(—).Q | R),

forn¢ {p}.
Theorem 6.5 (Equational Soundness)lif (P) = (Q) in NBAthen P QinTt

Proof. Let. ={(P,Q) | (P) = (Q) }: we show that” is a reduction barbed congruence.

. is easily shown to be a congruence. By the compositionality of the encoding, given
any proces® and contexC[-], there exists a conteXd such that(C[P]) = D[(P)]. Let
thenP.Q, and letC|-] be any context: we need to show tl&#P] .~ C[Q], that is (C[P]) =
(C[Q]). By compositionality, we know tha{C[P]) = D[(P)] and (C[Q]) =D[(Q)].

Then the proof follows directly, because(on NBA terms) is a congruence.
Next, we need to show tha?’ is barb preserving and reduction closed. Assim¥€Q.

> If P |, then by an inspection of the encoding we see tf@} |,, which in turn
implies (Q) {ln and henc® |}, as desired, by Propositipn §.4(3).

> Now assumé — P’. By Lemmg 6.B(1) we know thatP) — R > (P'). Since
(P) = (Q), we findSsuch that{ Q) = S~ R. Then, by Proposition 64(2), there
existsQ' such thaQ = Q andS > (Q'). Then we havg(P') SR=S> (Q'),
thus (P') = (Q'), thatisP' . Q as desired.

> The proofs of the symmetric cases are exactly the same. O

August 27, 2003 32

7 NBA versus BA

In order to relate BA and NBA formally and to characterise the differences between the
respective semantics of communication, we present an encoding of BA into an extended
version of NBA. Precisely, we enrich NBA with a limited, focused form of nondeterminism
that we use in the encoding to circumscribe the communication interferences typical of BA
(cf. pagg B). This approach has the advantage of localising the gap between the two calculi
in a single construct. Formally, we use below a sum operator with a semarnc8CS,
thatisP+Q — Rif eitherP— RorQ — R

The encoding is defined parametrically over four namesv, pr, pw: nis the name of
the ambient (if any) that encloses the process that we are encoding, while the remaining
three names are used as passwords. To ease the notation, we use the following shorthands:
cross = lin(x,mv) | lout(x,mv), in(n) = in(n,mv), andout(n) = out(n,mv). We define
two mutually recursive translationg;) » and{ - [}. The interesting cases are below.

(P)n = cross | { Pl

{mPIfn = mM(P)ml

(%P = (0%{Pfn

{0Phn = (X-{Pha+ (X {Phn+ out(y.pw).(x)Y.{Pln y ¢ fn(P)
1) Pl = (vp)plout(n,pr).(x)in{n, p).(x)"] | (Y, p).()Y-{Plin P,y ¢ fn(P)
{M)EPEn = (M)2{Pfn

{(M.Phn = (M).{PIn+ (M) {P]n+ out(y,pr).(M)Y.{P}n y ¢ fn(P)
{M)IPYn = (vp)plout(n,pw).(M)%in(n, p).()"] [Ty, p).()Y-{Pln P,y ¢ f(P)

The remaining cases are defined compositionally. The translétipnprovides unbound-
edly many co-capabilities, at all nesting levels, so that ambient mobility in BA is rendered
faithfully. As for the translation of the communication primitives, the intuition is the fol-
lowing. The upward exchanges of a BA term are dealt with by the taxi ambients that exit
the enclosing ambiemtto deliver output (or collect input) and then returmtto unlock the
continuationP. The use of restricted names as passwords is essential here for the continu-
ation P to be able to identify its helper taxi ambient without risk of confusion. As for the
translation of a local input/output, the three branches of the choice reflect the three possible
synchronisations: local, from upward, from a nested ambient. Note in particular that the
right-most branch of these choices may only match upward requests that encode upward
requests from BA terms: this is guaranteed by the use of the two passpvaaddpw that
regulate the moves of the read/write taxi ambients. The use of two different passwords en-
sure that they do not interfere with each other, nor they interfere with other BA ambients’
moves (the latter usav).

Using the algebraic laws irf B4 we can show that the encoding is operationally correct
(and equationally sound) feingle-threadederms. Here, the notion of single-threadedness,
although morally identical to SAs, needs to be adapted to NBAto record that engaging

August 27, 2003 33

in inter-ambient communications is an activity across ambient boundaries that may cre-
ate grave interferences. For instaneg(x)" | out(n,k).P] cannot be considered single-
threaded, as illustrated by, say, the context(x,k).R | n[(x)2.Q | —]. To ease the presen-
tation, we work with a direct syntactic characterisation of single-threadedness, rather than
providing a type system as in [11]. We say tlRais single threaded if it does not contain

any subprocess of the for8) S, whereSis built according to the following productions:

Si=(VP) m.. TMS | (VP ... T.(M)"S | (vp) ... Tk.(X.P (k>0)
Theorem 7.1.1f P and Q are single-threaded , thefP), = (Q) » implies P~ Q.

Proof. Follows the same pattern as the one given formttualculus. with= on BA terms
denoting the reduction barbed congruence arising in BA from the following definition of
barb:P |, justin caseP = (vin) (n[(—)".Q | R | S), for {n} ¢ {m}.

The single-threadedness hypothesis on the two source ReandQ is needed to guar-
antee the atomicity of the protocol that implements an upward exchange (once the taxi
ambient leaves, we need to make sure that no process insidauses to move). O

Typed Encoding. The encoding extends smoothly to the typed case. The definition is
given inductively on the structure of terms, and relative a type environment that records
the types of the free names and variables in such terms. The encoding of terms presup-
poses a corresponding encoding of types, which is indeed the most interesting aspect of the
definition.

The structure of types in BA is similar to that of types in NBA, but somewhat more
complex. Specifically, BA-ambient types are formechas|E, F], whereE is the type of
local exchanges, arfd the type of the upward exchanges. Capabilities types, in turn, have
the formcap|E], denoting capabilities exercised in ambients with upward exchanges of type
E. Finally, process types have exactly the same structure (and interpretation) as the process
types of NBA.

The different structure of ambient and capability types in the two calculi reflects the
different semantics of communication, and in particular, the fact that in BA the upward
exchanges of a migrating ambient may interfere with the local exchanges of the ambients
traversed by the ambient on the move. The translation of types is given below:

{lamb[E,F][} = N[{E}], {cap[E] [} = C[shh], {shh[= shh, {[E,F]} = [{E[},{E}].

Observe that the type traced {remb[E,F]| |} is (the encoding of) the type of the local
exchanges: this is because the upward exchanges of in BA are implemented by the helper
taxi ambients, whose type will trace the (encoding of) the tifpeThe local exchanges
(again of the source term) are used for typing the upward and local exchanges generated
by the translation. The translation of the capability and process types follows the same
intuitions, and are direct consequence of the fact that the upward exchanges in the source
ambient types are disregarded in the translation (for the reasons we just explained).

The encoding of terms is given in Talple] 12. The main difference from the untyped case
is in the use of a family of passworgs,, and pw,y, indexed on types, with the implicit

August 27, 2003

34

(F>P)n cross | {T>Pln

{F>0[n 0

{r>M.P}, MAT =P,

{F>(va: W)P[y (va: JWh{r,a:WeP[p
{r>P[Qln {roPha[{T>Qfn
{r>!1P}n {r>Pln

{remlP]n m{(T>P) m

{r>(xW).P},

(vp: NIW }]) plout(n, prow;). (< AW B in(n, p). (7] |

my, p) (WP, xW>P},
wherel (n) = amb[E, W] andy ¢ fn(P)

{r>(xW)aPl, = x{WHr,xWeP[}, wherel (a) =amb[W,E]
{reM)Phn = (Vp:N[{W}]) plout(n, pwwy).(MYin(n, p).(M)’] |
m(y, p) WP, xW>Pn
wherex,y ¢ fn(P) andl" (n) = amb[E, W]
> (M)@P[, = (M3{T>P[,
> (xW)P s = (x:ﬂW[})ﬂF,x:WDP[}n—s-(x:{]Wﬂ):ﬂF,x:WDP[}n+
+ out(y, pwwy) X W)Y{ T, xW> P,
wherel (n) = amb[W, E]) andy ¢ fn(P)
{reMPln = (M{T P+ (M >Phn+ GUE(Y, prowy) (MY T 5Pl
wherel (n) = amb[W, E]) andy ¢ fn(P)

Table 12: Typed Encoding of BA into NBA with guarded choice

assumption thapr,,, pwyy, : N[W] for all (NBA) typesW. This indexing is required in the

typed case, for each of these passwords enables exchanges of the corresponding type. The
same would seem needed for tlwe password. However, since the co-capabilities that

the translation introduces to enable mobibitya BA do not have any continuation, we can
safely keep with the solewv, provided that we stipulat@v : N[shh].

Theorem 7.2 (Soundness of Typing)lf I' - P: [E, F] is derivable in the simple type system
for BA (cf. [3], pg.46) and (n) = N[E,F], then(I') - (IF'>P): {[E,F][is derivable in
NBA.

Proof. By induction on the derivation df - P: [E,F]. O

August 27, 2003 35

8 Examples

We discuss two further examples that illustrate the power of the new constructs for commu-
nication and mobility of NBA in programming non-trivial protocols for distributed systems.

8.1 A point-to-point communication server

Our first example is a system that represents a server for point-to-point communication.
w(k) = k[in(x.k).in(y,k).(1(2).(2)" | 1(2)"-(2)")]

Ambientw(k) is a bidirectional forwarder for any pair of incoming ambients. An agent
willing to participate in a point-to-point communication must know the passwoadd
should be implemented as the procégs, k,P,Q) = afin(k,k).P | out(k,k).Q], whereP
performs the expected (upward) exchanges. A complete implementation for the point-to-
point server can be then defined as shown below.

p2p(k) = (vr) (r[()"]]1O)"-(w(K) | out(-,k).out(-,k).r[()"]))

The procesg2p(k) accepts a pair of ambients within the forwarder, provides them with the
necessary support of the point-to-point exchange and then lets them out before preparing a
new instance oifv(k) for a new protocol session. Given the configuration

p2p(k) ‘A(k7al7P17Ql) ‘ ’A(kvanvmen)a

we are guaranteed that at most one pair of agents can be active kéthamy given timek
is locked until the two ambients are insikle In particular, one has:

(Vk)(p2p(k) | A(k7 ay, <M>:'P17Q1) | A(k7 ay, (X):'PZ{X}ﬂQZ) ‘ I-IiE'A(K?ai?RivS))
== (VK)(p2p(K) | a1[Py | Qu] | @2[Pr{X:=M} | Qo] | MicIA(K, 5, R;,S))

This says that once (and if) the two agents have reached the forwarder, no other agent
knowing the keyk can interfere and prevent them from completing their exchange. The
equivalence above follows by the mobility laws of Theoienj 4.1 and the laws of Theorem
[4.7. In particular, once the two ambients are back at top level, the currently active instance
of the forwardek has the fornk[! (2)%.(2)%2|!(2)%.(z)%] = 0.

The use of the forwarder to implement a point-to-point communication protocol may
at first appear artificial, for it would seem that two ambients wishing to communicate are
likely to know their partner's name, and could then interact via a simpler medium. Indeed,
in NBA the example can be simplified with this assumption. In BA, instead, the knowledge
of names still leaves a number of problems to be solved, due to possible communication
interferences. Consider implementing the protocol without using a forwarder, as shown
below.

alin(b).in(k).P] | b[K[!(x).(x)* ['(x)%.(x)] | Q]
Proces®Q can read from/write t& to exchange values witR insidea, but it is not obvious
whatP should do. Withk as given aboveR should use local communication to talk with

August 27, 2003 36

k (hence withQ): but then, to avoid interference with its own local exchandesjould

need to redirect all the latter to a private ambient. There are similar problems with other
possible implementations fde A first solution isk[!(x).(x)]: this, however, is problem-

atic becausea (or b) may end up re-reading their own messages. A second solution is
K[! (x).{x) | (X)T.(x)3]. Here, the problem is that the upward readkiyay mistakenly syn-
chronise with local output iftb that was not intended to be far The local exchanges in

b would again need to be protected from this kind of interference. Similarly for the local
exchanges i

8.2 A print server

Our next example implements a print server to print jobs arriving off the network in the
order of arrival. We give the implementation in steps. First consider the following process
that assigns a progressive number to each incoming job. With abuse of notation we use here
natural numbers as passwords.

enqueue(k) = (ve) (c[(1)*] | 1(n)C.m(x,K).(n)*.c[(n+1)*])

The (private) ambient holds the current value of the counter. The process accepts a job
and delivers it the current number. Then, it updates the counter and prepares for the next
round. This can be turned into a print server mechanism:

prtsrv(k) = K[enqueue(lf) | print |)
print = (vc) (c[(1)"]] 1(n)C.out(x,n).(data)*.(P{data} | c[(n+1)"])

job(M.,k) = (vp)plin(k.K).(n)".(va)glout(p,n).(M)"]]

The procesgob(M, k) enters the servagrtsrv(K), it is assigned a number to be used as a
password for carrying the jold to the printer procesB. (Note that the use of passwords is
critical here).

This situation appears hard to implement naturally with SA(P) or BA. In SA(P) because
one would need to know the names of the incoming jobs to be able to assign them their
numbers. In BA because dequeuing the jobs (according to the intended FIFO policy) re-
quires a test of the number a job has been assigned, and an atomic implementation of such
test is problematic, if possible at all.

9 A Characterization of Barbed Congruence

We conclude the analysis of NBA by studying an alternative labelled transition system
whose associated notion of bisimilarity fully characterises barbed congruence.

We have not found a counter-example to the incompleteness.ofThere is however
some indication that this relation might be strictly contained in barbed congruence. The

problem is the first-order transitions that enable ambient transitions. To exemplify, consider

the case of the input prefix)", and the associated transition -% P'. To show that ~¢

fully characterises, one needs to find a distinguishing context for the Iaib&)". This

August 27, 2003 37

context is typically defined &S[-] = m[[-]] | (M)™.R, with R exhibiting some fresh barb so
as to probe the label. The problem is that this context tests the continirtidgthin the
ambientn, whereas~ testsP “at top level”. Andn[P] = n[Q] does not imply thaP = Q,
sincen([-]] blocks a number of actions férandQ that could distinguish them.

, . " M)
A first attempt to solve the problem is to use transition of the e m[P’]. These
are not quite right, however, because the resulting relation of bisimilarity is not a congru-

ence. To make bisimilarity a congruence, we generalise this idea, and replace the transition
: : : . (M)'m[R] o .
P ™. b’ with the higher-order transitoR ——— m[P’ | R]. As we prove in this section,

the labelled bisimilarity arising from transitions of this form is indeed closed by context. In
addition, it also coincides with barbed congruence.

9.1 Arrefined labelled transition system

The set of (first-order) labels are defined as in Table 2. We introduce a new class of concre-
tions of the form(e)P, with P a process, meant to tag our first order transitions. The usual

conventions for composition and restrictions apply, namely:
> ()PP = (e)(P|P)
> (VP)(e)P £ (e)(vp)P

Visible transitions. The transitions (OTPUT), (PuT) and (ExiT) are as in Tablg]3, and
so are the transitionsPuT) and Co-CcAP) whenn # * and whenm(x) = out(x,k), re-
spectively. The remaining transitions are given below.

(CapP) (Co-CapP) (PATH)
M € {in{n,K), out(n,k)} T(x) € {In(x,k),out(x,k)} Mi.(M2.P) —— O
MP s (o)p TP PN} (MMo)P O
(INPUT) (GET)
(M)*
P —= ()P
. (M) mget M ,
(X).P — (&)P{x:=M} mpP] ——— m[P’]
(ENTER) (CO-ENTER) (EXIT)
in(n,k) m(n,k) , out(n,k) ,
— (a)P P—— (o)P P— (o)P
enter(n,k) , m enter(n,k) , exit(n,k) ,
mP] ——— (v)(m[P])0 mP] ————— (V)(P)0 mP] ——— (v)(mP])0

Structural and T transitions. As in Tablg$ and Table] 4, respectively.

Higher-order transitions. Those in Tabl€]6, plus the following one:

August 27, 2003 38

(PREFIXHO)
P2 (&) ac{(M) cap (nk),m(nk),out(nk)}

am[R]
P—— mP|R

Let now=z¢, denote the labelled bisimulation associated with the new transition system:
formally, =, is defined exactly assc in Definition@. In particular, likers, also=,
tests only transitions from processes to processes.

9.2 Full abstraction

The next two results establish the expected propertiessgf namely that it containss,
and is closed by contexts.

Theorem 9.1. ~. C =ia.

Proof. Follows from Theorerp 3|5 (on page|21), and from Thedrerh 9.6, proved later in this
section. O

Theorem 9.2. =4 iS a congruence.

Proof. Similar to Theoren 3]4. Given the new structure of the transitions for the input
prefixes, the inductive proof must be conducted simultaneously on all operators, including
input prefixes. We only give the cases that are new or different from those in the proof of
Theoren| 3.4. Let” be the least equivalence that containg, is closed by substitution

and preserved by all operators. We show thats a bisimulation (with respect to the new
LTS).

> TP . tQ becausd® . Q. Assumert.P 2, P’. Whentt= M, with M a capability,

A = Mm[R] for suitablem andR, and the transition derives froM.P M, (e)P with

Mm[R
P’ = m[P | R. But then, by the same reasoning one Nag J> m[Q | R and

thatm[P | R .’ m[Q | R] follows by the induction hypothesis (8% Q and.” is a
congruence).

Whenti(x) € {(x)’,(x,k)}, A = (n)m[R] and the transition derives from(x).P)

(o)P{x:=n}, with P = m[P{x:=n} | R]. The the proof follows by the induction hy-
pothesis, since” is closed under substitution and preserved by parallel composition
and ambient constructor.

> P|R.Y Q| Rbecausd.” Q. The only new cases are those relative to the transi-
tions (REFIX HO), whose labels are of the forom[R;]. We take the case when
a = (M) as representative. An inspection of the LTS shows that the transition in

. (M)"m[Ry] . (M)*
question must have the forlif R ————— m[S| Ry], derived fromP | R—= (e)S.

We have two possible sub-cases, depending on whBtbeR moved.

August 27, 2003 39

The first case is wheB= S | RandP 0K (e)Sp. From this transition, we derive

(M)mR | Ry

m[Se | R| Ry] by (PREFIX HO). Then, by induction hypothesis, there
(M) m[R | Ry]
exists a weak transitio@ — U — V= Q withmS |R|Ri] ¥ Q.

By examining the transition fromJ we know that there existg such thatv =

mZ | R| Ry, andU ™. (e)Z. Then one derivey | R ™. (o)(Z | R) by (PAR).

(M)*m[Ry] .
Thus we haveQ | R=U | R — mZ | R| R = @/, as desired.

The other case is whe®= P | Sz, andR LOA (e)SR. From this transition we derive

(M)
QIR — (0)(Q| SR) by (PAR). Then by an application of @EFix HO), we have

(M) miRy] - N A
QIR m[Q | Sz | Ry]. Summarising, foh = (M) m[R;], we haveP | R—

m[P | Sz | R1], and we have found a weak transitiqn| R mQ | Sk | Ry]. Then
the proof follows from the induction hypothesis and the fact thats closed by
context.

> The cases for the remaining constructs, namely ambient, restriction and parallel com-
positions are proved similarly. O

Next we show thatet, and barbed congruence coincide. We start by defining the following
operator of internal choice, as in12].

P&Q=(vm(n[()]| O)"P|0"Q) (n¢fn(P.Q))

Observe that the only possible activity i@ Q is a reduction to eitheP or Q. Until
that choice is made, the process cannot engage in any interaction. We can then define two
contexts that allow us to detect whether a generic process performs any action at all.

P

SPYin(hy,hz,-) = (vr)(@(xho) [r[()T) @ (T(x he) [[()T) | ("-[]
SPYou(n.ht,hz,) = (vr)(out(n,hy) | r[()]) @ (out(n,hz) | r[()7) | (".[]

The ability to spy comes about whép andh, are fresh. Then, a spy context exhibits both

of barbs as long as the process plugged inside it has not moved. This is formalised by the
following lemmas. With abuse of notation we wrkg , if P %, wherea is a (first order)

label in Tabld P, andh € fn(a). Also, we say that a context &atic if the hole does not
appear under a prefix or a replication.

The first lemma characterises those transitions that only involve the spy contexts and do
not touch the process that filled the hole.

Lemma 9.3. Let C[:] be a static context, R a process, n a name, antfresh names.

1. If C[SPYin(h1,h2,R)] = P and Py, 1,, then there exists a static contex{-Csuch
that P= C'[SPY;,(hy,hp,R)], and OR] — C'[R].

August 27, 2003 40

2. 1f C[M[SPYou(n, h1, ha, R)]] — P and Pl ,, then there exists a static conteX{-C
such that P= C'[m[SPYou(n, h1, hz, R)]], and Gm[R]] — C'[m[R]].

Proof. By transition induction. O
A further lemma allows the spy contexts to be removed.

Lemma 9.4. Let G[-] and G[-| be static contexts, {Rand R be (closed) processes, and
h1, hy be fresh names. Then

1. Cl[SPYin<h1,h2,R1>] = Cz[SPYin<h1,h2,R2>] |mpI|es Q[Rl] ng[Rz]

2. If Cl[m[SPYout(n, hl, h2, R1>H = Cz[m[SPYouKn, hl, hz, R2>H then
Ca[m[Ry]] = Co[m[Ry]]

Proof. The proof is a generalisation of the corresponding lemma_ih [12]. For part 1, since
2 js closed under restriction,

(vhy, h2)(C1[SPYin{hy,h2, Ry)]) =2 (Vhy, ho)(C[SPYin(hy, ha, Ro)]).
Sinceh; andh, are fresh and th€;|-] are static contexts,
(Vhy, h2) (Ci[SPYin(h1, h2,R)]) = Ci[(Vhy, h2)SPYin(hy,h2, R)],
fori € {1,2}. Now, one shows by exhibiting the appropriate,-bisimulation that
(vhy,h2)SPYin(h1,h2,R) ~fa R,
for all R Sincexst, implies=, we haveC; [R;] = C[Ry] as desired. O
We also need a last simple property.
Lemma9.5. P | R= Q| R andfn(R)Nfn(P,Q) = 0 implies P= Q.

Proof. Let f = fn(R) and observe thatvi)R= 0. Thus,P =P | (vi)R= (Vf)(P | R) =
(VA(QIR =Q| (VI)R=Q. O

Theorem 9.6. If P = Q then P=, Q.

Proof. We show that is a~;,-bisimulation up to=. TakeP = Q, and assum@ A, P*.

We need to find &* such thaQ A Q* andP* . Q* (equivalentlyP* = Q*). We reason
by cases, depending on We will often use the shortharfd= f[in(x,h)], wheref will
always be assumed fresh.

A
> A =in{n,k)m[R]. Then the transition in question’s —— = m[P’ | R]. Define:

C[]=m[- | out(n,ho) | SPYin(h1,h2,R)] | n[in(x,K)] | out(,ho).(hs® ha)

August 27, 2003 41

T T T

with hg—hy4 fresh. We hav€[P] — ——— m[P’ | SPYi,(hy,h2,R)] | n[] | hs. Since,
P = Q we know thatC[Q] = Z = m[P’ | SPYiy(h1,h2,R)] | h3. Therefore Z |, n,
andZ ,. This implies that the transitions fro@[Q] have consumed the two co-
capabilities. In particular, we have:

ClQ] = m[Q | out(n,hg) | SPYin(h1,h2, R)] | n[in(x,K)] | out(-, ho).(hz ® hy)
% n[mQ1 | out(n, ho) | SPYin(he, ha, R)]] | SUE(, ho). (ha & ha)
=—— M[Qz | SPYin(h1,hz,R)] [n[] | (h3 @& ha)
—— mM[Qs | SPYin(hy,hz,R)] | n[] | hs
= m[Q4| SPYin(h1,h2,R)] [n[] | hg
= Z
M[Qs | SPYin(h1,h2,R)] | hs

1

Thus, we know that
m[P" | SPYin(hy,h2,R)] | h3 = m[Q4 | SPYin(hy, h2, R)] | hs
Sincehgz is fresh by hypothesis, by Lemrpap.5
m[P" | SPYin(hy, hp, R)] 22 M[Qs | SPYin(hy, h, R)]
Then, lettingCy[-] = m[P’ | -], andCy[-] = m[Q4 | -], by Lemmd 9.14,
mP’ | R =mQs | R

To conclude, we show th& IninjomiR| m[Qa | R]. To see that, note that the reduc-

in(n,k
tion steps inC[Q] = Z above implies thaQ —- —n>> (0)Q1 and Q1 = Qu.

in(n,kym[R] .
Thus,Q = —— m[Q1 | R = m[Q | R, as desired.

The other cases of EFIx HO) are proved in a similar way, choosing appropriate
contexts. In particular,

— whenA = out(n,k)m[R], choose
Cl-] =n[m[- | SPYjn(h1,hz,R)]] | out(x,k).(h3 & ha)

~

— whenA = (M) m[R], choose
C[] =m[- | SPYin(hy,h2,R)] | (M)™.(hs @ hg)
— when\ = in(n,k)"m[R] choose

C[] =m[- | SPYin(h1,h2,R)] | n[in(m,k).out(n, hg)] | out(x, hg).(h3 & hs)

August 27, 2003 42

where theh’s are assumed fresh.

> A =enter(n,k)R. The transition in question B, (vP)(nM[P1] | R{x:=m}] | P»).
LetCq[-] = (vP)(N[m[P4] | [-]] | P2), and define:

C[] =[] | n[m(x,K).(SPYin(h1, h2, R{x:= m}) & rlout(n, h3)])]

with r, h;—hs fresh. We haveC[P] ———— Cy[SPYin(hy,ho,R{x := m})]. Since

P = Q, there exists a proce&ssuch thaC|Q] = Z = C1[SPYin(h1, hz, R{Xx:=m})].

Thus, in particularZ {n, n, andZ Jh,, which implies that the co-capabilityi(x, k)

must have been consumed in this derivation. Furthermore, by L¢mina 9.3, the deriva-
tion must have the form:

ClQ| = Q| n[in(x,k).(SPYin(hy,hz, R{x:=1}) @& r[out(n, hg)])]
— 5 C[SPYin(hy, ha, R{x:=1}) & r[out(n, h3)]]
— 5 C"[SPYin(hy,h, R{x:=11})]
— Cz[SPYin<h1, hz, R{X = |}>] =7
with C'[-],C"[-] andC;|-] static contexts. From;[SPYi,(hy,hy, R{x:=m})] = Z, by
Lemma 9.4, we know tha: [R{x := m}] = C;[R{x := I}]. To conclude, it remains
to show thatQ N Co[R{x:=1}]. Examining the above sequence of reductions

nter(n,k)R
from C[Q] we see thaQ — /T C'[R]. Similarly, it is easily verified that

C/[SPYin(h1,hp, R{X 1= 1})] = C5[SPYin(h1,ho, R{x:=1})]. Then, by Lemma 9]3,
we know thalC'[R{x:=1}] = Cy[R{x:=1}], as desired.

> The remaining cases are similar. Only they require an appropriate choice of the con-
textC[]. In particular

— whenA = menter(n,k)R, choose
Cl] =[] | nfin{m,K).(SPYout(n, h1, 2, R) & out(n, hs))]
— whenA = exit(n,k)R S choose
C[-]=n[- [SP¥in(h1,h2, R)] | out(x,k).(SP¥in(h3,hs, S) | (hs ©he))

This case requires extending Lemrpas 9.3and 9.4 and to contexts with two holes.
There is no difficulty in this extension, as the hypotheses of the lemma imply
that the processes enclosed in the spy cages do not move, hence they do not
interact.

— when\ = (—)"n[R]'S choose
C[]=n[-| SPYin(h1,h2,R)] | (X)".(SP¥in(hs,h4,S) | (hs & he))

This case also requires the extension to Lenmgs 9.8 ahd 9.4 discussed above.

August 27, 2003 43

— when) = pop(k)R, choose
C[] =[] | out(x, k).(SP¥in(hy, h2, R) @ r (X, h3)])
— whenA = mput (—)R, choose
Cl] =[] (})™(SPYin(hy, ho, Ry @ r[in(x, hs)])

> To conclude, there are only two first-order cases.

— whenA = (M), chooseC[-] = [-] | (M).(h1 @ hy).
— whenA = (M), chooseC[-] = [-] | n[(M)".r[out(n, hy)]] | out(x,hy).(h2 @ ha).

O]

Theorem 9.7. ~;, and = are the same relation

Proof. By Theorenj 9., reasoning as in the proof of Theoferp 3.5 we showthat =.
The opposite inclusion follows by Theor¢m19.6. O

10 Conclusions

We have developed new semantic foundations for the calculus of Boxed Ambients. In the
original calculus([3] the model of communication bears similarities with MA's model of
mobility. Much in the same way as a mobile ambient undergoes the move actions of its
siblings and children, a boxed ambient is subject to the access to its local communication
space by its parent and children. These similarities are also reflected in the complications
that this one-sided form of interaction brings into the algebraic theory of the two calculi, in
the form of grave interferences.

NBA removes grave interferences be resorting to co-capabilities and by providing each
boxed ambient with two distinct channels. A local channel enables the interaction of pro-
cesses local to the ambient. An upward channel allows communications with the enclosing
context. The protocol for value exchange across boundaries is similar in spirit to that of
mobility in Safe Ambients, and requires that explicit (mutual) actions be taken by the two
parties involved in the interaction. In addition, NBA promotes movement co-capabilities to
the role of binding constructs that inform ambients of the incoming ambient’s name. To-
gether with a system of password control which verifies the visitor’s credentials, this yields
an interesting way to learn names dynamically, and provides NBA with essentially the same
expressive power as BA.

From the theoretical viewpoint, NBA enjoys a rich algebraic theory, and its barbed con-
gruence admits a fully abstract coinductive characterisation built on a labelled transition
semantics. Like companion characterisations in the literature on related calculi [12, 8, 7],
our characterisation is rather complex, as it is achieved at the expense labelled transitions
which effectively bring back quantification over contexts in terms of the process terms oc-
curring in the higher-order labels.

August 27, 2003 44

The benefits of the new semantics of communication are also reflected in the simplicity
of the typing system, whose generality again relies on passwords. While some of the typed
analyses for Boxed Ambients have been carried out for original model of BA, those results
can be re-established in NBA, with no difficulty. This is true not only of the type system
developed in this paper, but also of type systems for BA developed by others, notably by
Merro and Sassone in[13].

If we look at the expressive power of NBA, and contrast it with MA, the latter is cer-
tainly superior. The ability to dissolve boundaries conferrecbpyn provides MA with
powerful mechanisms for transferring control, for ambient renaming, and for representing
systems with dynamic topology that are not available withu#th. However, even when
disciplined by the control of co-capabilities, the expressive powepei appears to make
programming with MA and analysing MA programs more difficult. These difficulties arise
principally fromopen being very general, but also very basic as a programming construct.
As we have argued, this makes the encoding of various protocols and systems, whose cor-
rectness depends on non-trivial forms of ‘atomicity’, rather complex, and sometimes hardly
possible. With NBA this is rectified by resorting to a different, and higher-level set of core
primitives that, while not as expressive as their MA counterparts, prove very effective as
programming abstractions in the design and specification of such protocols and systems.

References

[1] S. Arun-Kumar and M. Hennessy. An Efficiency Preorder for Processes Infor-
maticag 29:737-760, 1992.

[2] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Calculi.
Theoretical Computer SciencEd5:205-226, 1998.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Boxed AmbientSAGS’01 Proc. of the 4th
Int. Conference on Theoretical Aspects of Computer Scjenoeber 2215 in Lecture
Notes in Computer Science, pages 38-63. Springer-Verlag, 2001.

[4] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication interference in mo-
bile boxed ambients. IRSTTCS’'02, Int. Conf. on Foundations of Software Technology
and Theoretical Computer Scienceimber 2556 in Lecture Notes in Computer Sci-
ence, pages 71-84. Springer—Verlag, 2002.

[5] L. Cardelliand A. Gordon. Mobile Ambients. Proceedings of FOSSaCS’'38&imber
1378 in Lecture Notes in Computer Science, pages 140-155. Springer, 1998.

[6] L. Cardelli and A. Gordon. Equational Properties for Mobile AmbientsPtaceed-
ings FOSSaCS’99 ecture Notes in Computer Science. Springer-Verlag, 1999.

[7] G. Castagna, J. Vitek, and F. Zappa Nardelli. The Seal Calculus. Available from
http://www.di.ens.fr/~castagna, 2003.

August 27, 2003 45

[8] G. Castagna and F. Zappa Nardelli. The Seal Calculus revisited: contextual equiva-
lence and bisimilarity. IFST&TCS '02, 22th Conference on the Foundations of Soft-
ware Technology and Theoretical Computer Sciemeenber 2556 in Lecture Notes
in Computer Science, pages 85-96. Springer-Verlag, 2002.

[9] S. Crafa, M. Bugliesi, and G. Castagna. Information Flow Security for Boxed Am-
bients. InF-WAN: Int. Workshop on Foundations of Wide Area Network Computing
number 66.3 in ENTCS. Elsevier, 2002.

[10] K. Honda and N. Yoshida. On Reduction-based Process Semartiiesretical Com-
puter Sciencel52(2):437—-486, 1995.

[11] F. Levi and D. Sangiorgi. Controlling interference in Ambients. Rimceedins of
POPL'00, pages 352-364. ACM Press, 2000.

[12] M. Merro and M. Hennessy. Bisimulation Congruences in Safe AmbienBORL'02
Proc. 29th ACM Symposium on Principles of Programming Langugmpeges 71-80.
ACM Press, 2002.

[13] M. Merro and V. Sassone. Typing and Subtyping Mobility in Boxed Ambients. In
Proceedings of Concur'Q2iumber 2421 in Lecture Notes in Computer Science, pages
304-320. Springer, 2002.

[14] R. Milner. Communicating and Mobile Systems: tlrealculus Cambridge Univer-
sity Press, 1999.

[15] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts | and Il.
Information and Computatiqri00:1-77, September 1992.

[16] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms PhD thesis CST-99-93, Department of Computer Science, Univer-
sity of Edinburgh, 1992.

[17] D. Sangiorgi. Bisimulation for Higher-Order Process Calcliiformation and Com-
putation 131(2):141-178, 1996.

[18] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. Rroc.
of CONCUR’92 volume 630 ofLecture Notes in Computer Sciengmges 32—-46.
Springer-Verlag, 1992.

[19] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. Rroc.
CONCUR 92 volume 630 ofLecture Notes in Computer Sciengeages 32-46.
Springer-Verlag, 1992.

[20] D. Sangiorgi and D. WalkerThe pi-calculus: a Theory of Mobile Procességsam-
bridge University Press, 2001.

[21] J. Vitek and G. Castagna. Seal: A framework for Secure Mobile Computations. In
Internet Programming Languagek999.

