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Abstract

Boxed Ambients (BA) replace Mobile Ambients’open capability with communication
primitives acting across ambient boundaries. The expressiveness of the new model of
communication is achieved at the price of interferences that affect message reception
and whose resolution requires synchronisation of activities at multiple, distributed lo-
cations. We study a variant of BA aimed at controlling communication interferences
as well as mobility ones. Our calculus modifies the communication mechanism of BA,
and introduces a new form of co-capability, inspired from Safe Ambients (SA) (with
passwords), that registers incoming agents with the receiver ambient while at the same
time performing access control. We prove that new calculus has a rich semantics the-
ory, including a sound and complete coinductive characterisation, and an expressive,
yet simple type system. Through a set of examples, and an encoding, we characterise
its expressiveness with respect to both BA and SA.

Introduction

The calculus of Mobile Ambients [5] (MA) introduced the notion of ambient acting at the
same time as administrative domain and computational environment. Processes live inside
ambients, and inside ambients compute and interact. Ambients relocate themselves, carry-
ing along all their contents: their migration, triggered by the processes they enclose, models
mobility of entire domains and active computational loci. Two capabilities control ambient
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movements:in andout. These are performed by processes wishing their enclosing ambi-
ent to move to a sibling and, respectively, out of its parent. The corresponding reductions
are shown below, whereP, Q andR are processes,m andn ambient names,| is parallel
composition, and square brackets delimit ambients’ contents:

n[ in m.P | Q] | m[R]−→ m[n[P | Q] | R], m[n[out m.P | Q] | R]−→ n[P | Q] | m[R].

A third capability,open, can be used to dissolve ambients, as expressed by the reduction
open n.P | n[Q] −→ P | Q. Process interaction is by anonymous message exchanges con-
fined inside ambients, as in

n[〈M〉.P | (x).Q]−→ n[P | Q{x := M} ],

where brackets represent outputs, curly brackets substitutions, and round parentheses bind
input variables.

These ideas have given rise to an innovative calculus capturing several aspects of cur-
rent real-world distributed systems, and have posed some new hard problems. Paper [11]
unveiled a set of so-called grave interferences, i.e. situations where the inherent nondeter-
minism of movement goes wild. For instance, in

k[n[ in m.P | out k.R] | m[Q] ]

althoughn’s next hop is beyondn’s control, the difference that such a choice brings about is
so big that it is difficult to see how such a situation could have been purposely programmed.
Levi and Sangiorgi’s proposal of Safe Ambients (SA) in [11] counters the problem by using
‘co-actions’ to grant ambients a form of control over other ambients’ access. A process
willing to be entered will manifest that explicitly, as e.g. in

n[ in m.P | Q] | m[ ın m.R | S]−→ m[n[P | Q] | R | S],

and similarly forout andopen. Building on such infrastructure, a type-system enforced
notion ofsingle-threadednessensures that at any time ambients are willing to engage in at
most one activity (across boundaries) that may lead to grave interferences.

Recently, Merro and Hennessy [12] found it useful to work with a version of SA called
SAP, where incoming ambients must be able to present a suitable password in order to
cross ambients’ boundaries. Paper [12] develops a treatable semantic theory for SAP in the
form of a labelled transition system (LTS) based characterisation of its (reduction) barbed
congruence. We will find use for some of these ideas in the present paper too.

Another source of potential problems isopen in its own nature as ambient dissolver. A
process exercising such a capability will embody all the contents of the dissolved ambient,
including its capabilities and migration strategies. Of course there is nothing inherently
wrong with that and indeed it is from open that MA gain part of their expressiveness in
systems with dynamic topology. However, despite its usefulness, from the system designer’s
point of viewopen must be handled with the greatest care.

The calculus of Boxed Ambients [3] (BA) was born out of the observation that, after
all, there is an alternative way to yield expressiveness: namely, by direct communication
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across boundaries, as in the Seal calculus [21]. As shown below, in BA it is possible to
draw an input from a sub-ambientn’s local channel (viz.(x)n) as well as from the parent’s
local channel (viz.(x)↑), and dually with the roles of input and output swapped.

(x)n.P | n[〈M〉.Q | R] −→ P{x := M} | n[Q | R]
〈M〉.P | n[ (x)↑.Q | R] −→ P | n[Q{x := M} | R].

Although remarkable in many respects (cf. [3]), such design choices, have the drawback
of introducing a great amount of non-local nondeterminism and communication interfer-
ence. This is exemplified perfectly by the term below, where a single message issued inn
unleashes a nondeterministic race among three potential receivers located in three different
ambients:

m[ (x)n.P | n[〈M〉 | (x).Q | k[ (x)↑.R] ] ]

This raises difficulties for a distributed implementation of BA, as there is a hidden, non
trivial distributed consensus problem to address at each communication. These forms of
interference are as grave as those that led to the definition of SA, and they should be regarded
as programming errors too.

In this paper we propose a variant of BA aimed at controlling such interferences and at
providing a fresh foundation for the ideas behind BA. Our proposal, NBA, takes inspiration
from [9], and is based on the idea that each ambient comes equipped with two mutually
non-interfering channels, respectively for local and upward communications.

(x)n.P | n[〈M〉ˆ̂.Q | R] −→ P{x := M} | n[Q | R]
〈M〉n.P | n[(x)ˆ̂.Q | R] −→ P | n[Q{x := M} | R]

Hierarchical communication, whose new rules are shown above, is indicated by a pair of
distinct constructors, simultaneously on input and output, so that no communication inter-
ference is possible. The upward channel can be thought of as a gateway between parent and
child, located at the child’s and travelling with it, and poses no particular implementation
challenges.

From the theoretical viewpoint, a first consequence of the elimination of unwanted in-
terferences is a set of good, expected algebraic laws for NBA, as illustrated in §4. Also, the
type system for BA results considerably simplified. In particular, the types of ambients and
capabilities need only record upward exchanges, while processes are characterised by their
local and hierarchical exchanges. The details are discussed in §5.

Unfortunately, limiting ourselves to banning communication interferences as above
would result in a poorly expressive calculus (although some of its good properties have
been underlined in [9]). For instance, in the systemn[P] there would be no way forP to
communicate with its sub-ambients, unless their names were statically known. In our ef-
fort to tackle interference we seem to have killed hierarchical communication at all. Far
from that, in order to regain expressive power we only need to reinstate a mechanism for
an ambient to learn dynamically the names of incoming ambients. Essentially, our idea is
to introduce co-actions of the formın(x) that have the effect of binding such names to the
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variablex. Similarly to SA, co-actions provide a mechanism for expressing a general will-
ingness to accept incoming ambients; in addition to that, the receiving ambient learns the
incoming ambient’s name. It can thus be thought as (an abstraction of) an access protocol
as it would actually take place in real computational domains, where newly arrived agents
would have to register themselves in order to be granted access to local resources.

Observe, however, that a purely binding mechanism such as this would not in itself be
able to control access, but only to register it. In order to provide ambients with a finer
mechanism of access control, we add a second component to our (co-)capabilities and write
rules as the one below.

a[ in〈b,k〉.P1 | P2 ] | b[ ın(x,k).Q1 | Q2 ]−→ b[a[P1 | P2 ] | Q1{x := a} | Q2 ]

In practical terms, this enhances our access protocol with a form of control over the creden-
tials of incoming processes (k in the rule above), as a preliminary step to the registration
protocol. An example for all of the practical relevance and naturality of this mechanism,
is the negotiation of credential that takes place when connecting to a wireless LAN or to a
LAN using DHCP or to a ISP using PPP.

Remarkably, our admission mechanism resembles quite closely the notion of passwords
as developed in [12], which thus arises yet again as a natural notion to consider. As a conse-
quence, we benefit from results similar to those inloc. cit. In particular, we devise a labelled
transition semantics for NBA that yields a bisimulation congruence sound with respect to
(reduction) barbed congruence, and we use it to prove a number of laws. Passwords also
have a relevant role in the type system, where their types keep track of the type of (up-
ward exchanges of) incoming ambients, so contributing effectively to a clean and easy type
system.

As the paper will show, besides having practical, implementation-oriented features and
enjoying good theoretical properties, such as a rich and tractable algebraic theory and a
simple type system, at the same time NBA remains expressive enough. In particular, by
means of examples and encodings in §7 we show that the expressive power we loose with
respect to BA is, as expected and planned, essentially that directly related to communication
interferences.

Structure of the paper. §1 introduces the calculus, presents the reduction semantics and
the associated notion of behavioural equivalence. §2 and §3 develop an alternative seman-
tics based on an LTS, that yields a bisimilarity that is proved to be sound with respect to the
reduction barbed congruence of §1. In §4 we use this relation to prove a number of algebraic
laws for the calculus. The type system of NBA is illustrated and discussed in §5. §6, §7 and
§8 focus on expressiveness issues in relation to BA and SA, including several examples, an
encoding of theπ calculus, and an encoding of BA into (an extension of) NBA. §9 shows an
alternative LTS, whose associated bisimilarity fully characterises barbed congruence at the
price of introducing additional higher order labels. Finally, §10 is dedicated to conclusions.

A preliminary version of this paper appeared in [4].
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1 The NBA Calculus

The syntax includes two syntactic categories,messagesandprocesses, summarised in Table
1. Messages (or expressions) are ranged over byM,N and includenames, variablesand
capabilities. We presuppose two mutually disjoint sets:N of names, andV of variables.
The setV is ranged over by letters toward the end of the alphabet, typicallyx,y,z, while the
remaining lettersa,b, . . . ,m,n, . . . ,q, r are reserved for the names in the setN.

Processes, ranged over byP,Q,R,S, are built from the constructors ofinactivity, parallel
composition, replication andrestriction, prefix, anonymous (polyadic)input , output, and
ambient. The syntactic structure is similar to that of the original calculus BA [3]. The main
differences are in the constructs for mobility: the movement capabilities now have two
arguments – the name of the target ambient, and the password to be provided along with the
name– and they are matched by co-actionsın(x,N) andout(x,N) built around a variablex
and an expression (typically, a name)N. Also, the calculus has replicated prefixing, rather
than full replication: this will result in an image-finite labelled transition system.

The input operator(x̃ : W̃).P is a binder for thevariablesx̃, and so are the two co-
actionsın(x,M).P andout(x,M).P, whereas the restriction operator(νn : W)P binds the
name n: in all cases the scope of the binder isP. As it is customary, terms that areα-
convertible are considered identical. The notions offree namesand free variablesof a
process, noted fn(P) and fv(P) respectively, arise as expected, and so does the definition of
capture freesubstitutionP{x̃ := M̃}. We sometime use the notation fn(P,Q) as a shorthand
for fn(P)∪ fn(Q), and similarly fv(P,Q). A name (variable) isfreshin a term if it is different
from any other free name (variable) in that term. A process isclosedif has no free variables
(though it may have free names). We use a number of notational conventions. Parallel
composition has the lowest precedence among the operators. The processM.N.P is read as
M.(N.P). We write〈M̃〉η, and(x̃) for 〈M1, . . . ,Mk〉η and(x1, . . . ,xk) respectively. Similarly,
we write(νñ) for (νn1) . . .(νnk), and define term equality up to rearrangements of adjacent
restrictions. We omit trailing dead processes, writingM for M.0, 〈M̃〉 for 〈M̃〉.0, andn[ ]
for n[0].

1.1 Reduction and Behavioural Semantics

The dynamics of the calculus is defined in Table 1 and, as usual, is up to structural congru-
ence. The definition of structural congruence, noted≡, is standard (cf. [5]).

Themobility rulesrequire as in [12] that the ambients involved in the move to agree on
some passwordk; in addition the target of the move gets to know the name of the moving
ambient as a result of synchronisation. Also differently fromloc. cit., the co-out action in
rule (EXIT ) does not mention the name of moving ambient, and so it provides for lesser
control over ambient movement.

Thecommunication rulesare explained and motivated in the introduction. As usual, in
all communication rules we assume that tuples have the same arity, a condition that will be
enforced by the type system.

As to behavioural equivalence, we rely onreduction barbed congruence[10], defined
in terms of reduction and observability, which appears appropriate to capture the dynamics
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Locations: Messages:
η ::= a child M,N ::= a name∣∣ ˆ̂ parent

∣∣ in〈M,N〉 enter∣∣ ? local
∣∣ out〈M,N〉 exit∣∣ M.N path

Processes: Prefixes:
P ::= 0 nil process π ::= M capability∣∣ P1|P2 composition

∣∣ (x1, . . . ,xk)η input∣∣ (νn)P restriction
∣∣ 〈M1, . . . ,Mk〉η output∣∣ !π.P replication
∣∣ ın(x,M) allow enter∣∣ M[P] ambient
∣∣ out(x,M) allow exit∣∣ π.P prefixing

mobility

(ENTER) n[in〈m,k〉.P1 | P2]
∣∣ m[ın(x,k).Q1 | Q2] −→ m[n[P1 | P2] | Q1{x := n} | Q2]

(EXIT) n[m[out〈n,k〉.P1 | P2] | Q]
∣∣ out(x,k).R −→ m[P1 | P2] | n[Q] | R{x := m}

communication

(LOCAL) (x̃).P
∣∣ 〈M̃〉.Q −→ P{x̃ := M̃} | Q

(INPUT n) (x̃)n.P
∣∣n[〈M̃〉ˆ̂.Q | R] −→ P{x̃ := M̃}

∣∣n[Q | R]

(OUTPUT n) 〈M̃〉n.P
∣∣ n[(x̃)ˆ̂.Q | R] −→ P

∣∣n[Q{x̃ := M̃} | R]

structural rules

(STRUCT)
P≡ P′, P′ −→ Q′, Q′ ≡Q

P−→ Q

(CONTEXT) P−→ Q ⇒ E{P} −→ E{Q}

Evaluation context E ::= {·} | E|P | P|E | (νn)E | n[E]

Table 1: Syntax and Reduction Rules

of the calculus, and its behavioural theory, given the presence of the newly introduced syn-
chronisation mechanisms based on binding and passwords. The observation predicateP ↓n,
and the resulting notion of observational congruence are defined below.

Definition 1.1 (Barbs). Given a processP, we writeP↓n if P≡ (νm̃)(n[ın(x,k).Q | R] | S)
for {n,k}∩{m̃} = /0. We writeP⇓n if P =⇒ P′ andP′ ↓n, where=⇒ is the reflexive and
transitive closure of−→.

Definition 1.2. A relationR is reduction closedif PR Q andP−→ P′ imply the existence
of someQ′ such thatQ =⇒ Q′ andP′ R Q′. R is barb preservingif P R Q andP↓n imply
Q⇓n.

Definition 1.3 (Reduction Barbed Congruence).Reduction barbed congruence, written
∼=, is the largest equivalence relation that is preserved by contexts (i.e. is a congruence) and,
when restricted to closed processes, is reduction closed and barb preserving.
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Notice that the choice of barb is different from the one we used in [9], reflecting here the
new observable interactions that an ambient may engage with the context, via mobility.
Indeed, we could still rely on our original definition of observation: as we shall prove, the
barbed congruence relation we just defined has the extensional property we expect, namely
it is independent of the particular choice of the barb (cf. Theorem 2.7).

2 Labelled Transition Semantics

We now prepare the ground for a characterisation of reduction barbed congruence in terms
of a labelled bisimilarity. Because of its co-inductive nature, the latter will provide powerful
proof techniques for establishing equivalences [16, 18, 17].

The labelled transition semantics is given in terms of the reductions collected in Tables
3–5. To ease the notation, we present the transitions the monadic version of the calculus;

the case of polyadic NBA is straightforward. The transitions are of the formP
α

−−→ O,
where 0 is an “outcome.” The labelα, defined in Table 2, codifies the context with whichP
may interact, as usual.

Prefixes µ ::= in〈n,k〉 | out〈n,k〉 | (M)η | 〈−〉η | ın(m,k) | out(m,k)

Labels α ::= τ | µ | enter〈n,k〉 | m enter(n,k) | exit〈n,k〉 | pop〈k〉
| mget M | mput 〈−〉

Concretions K ::= (νm̃)〈P〉Q | (νm̃)〈M〉P

Outcomes O ::= P | K

Table 2: Labels, concretions and outcomes

The outcomeO is either a processQ, whenα is a prefix or the silent action, or aconcretion
of the forms(νp̃)〈P〉Q and (νp̃)〈M〉Q, with P and Q processes, andM an expression.
Intuitively, in (νp̃)〈P〉Q processP, theprime, represents the sub-component of the system
that interacts with the environment, while in(νp̃)〈M〉Q, the expressionM represents a piece
of information that is transmitted to the environment. In both cases the processQ represents
the remaining components of the process that are not affected by the interaction with the
environment, and ˜p is the set of private names shared byP (or M) andQ.

Although our bisimilarity will consider only transitions from process to process, the
transitions having concretions as derivatives are useful to formally define theτ-transitions
of the system. More precisely, concretions represent partial derivatives which need a con-
tribution from the environment to be completed (such contribution is modelled, in §3, via
corresponding higher-order transitions). We use the following conventions.

. if O is the concretion(νp̃)〈P〉Q, then:

. (νr)O = (νp̃)〈P〉(νr)Q, if r 6∈ fn(P), and(νr)O = (νr, p̃)〈P〉Q otherwise;
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(CAP)
M ∈ {in〈n,k〉,out〈n,k〉}

M.P
M

−−→ P

(CO-CAP)

π(x) ∈ {ın(x,k),out(x,k)}

π(x).P
π(n)
−−→ P{x := n}

(PATH)

M1.(M2.P)
α

−−→ P′

(M1.M2).P
α

−−→ P′

(INPUT)

(x)η.P
(M)η

−−−→ P{x := M}

(OUTPUT)

〈M〉η.P
〈−〉η
−−→ (ν)〈M〉P

(GET)

P
(M)ˆ̂
−−→ P1

m[P]
m get M
−−−−−→ m[P1]

(PUT)

P
〈−〉ˆ̂
−−→ (νp̃)〈M〉P1 (m 6∈ {p̃})

m[P]
m put 〈−〉
−−−−−−→ (νp̃)〈M〉m[P1]

(ENTER)

P
in〈n,k〉
−−−→ P′

m[P]
enter〈n,k〉
−−−−−−→ (ν)〈m[P′]〉0

(CO-ENTER)

P
ın(n,k)
−−−→ P′

m[P]
m enter(n,k)
−−−−−−−→ (ν)〈P′〉0

(EXIT )

P
out〈n,k〉
−−−−→ P′

m[P]
exit〈n,k〉
−−−−−→ (ν)〈m[P′]〉0

(POP)

P
exit〈n,k〉
−−−−−→ (νp̃)〈m[P1]〉P2

n[P]
pop〈k〉
−−−−→ (νp̃)〈m〉(m[P1] | n[P2])

Table 3: Commitments: Visible transitions

. O | R= (νp̃)〈P〉(Q | R),

wherep̃ are chosen so thatr 6∈ {p̃} and fn(R)∩{p̃}= /0.

. if O is the concretion(νp̃)〈M〉P, then:

. (νr)O is (νp̃)〈M〉((νr)P), if r 6∈ fn(M), and(νr, p̃)〈M〉Q otherwise;

. O | R= (νp̃)〈M〉(P | R),

where again ˜p are chosen so thatr 6∈ {p̃} and fn(R)∩{p̃}= /0.

The labelled transition system builds on those in [11, 12]. The main differences are in the
transitions for hierarchical communications, distinctive of NBA, and in the transitions for
mobility, as in the latter need to account for the binding of names that arises upon mobility.
A further difference is in our use of a standard structural rule for parallel composition, as
opposed to the ad-hoc rule (PAR EXIT) in [12].
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(τ-ENTER)

P
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉P2 Q

m enter(n,k)
−−−−−−−→ (νq̃)〈Q1〉Q2

(fn(P1)∪ fn(P2))∩{q̃} = /0
fn(Q)∩{p̃} = /0

P | Q
τ

−−→ (νp̃, q̃)(m[Q1 | n[P1]] | P2 | Q2)

(τ-EXIT )

P
pop〈k〉
−−−−→ (νp̃)〈m〉P1 Q

out(m,k)
−−−−−→ Q1 p̃∩ fn(Q) = /0

P | Q
τ

−−→ (νp̃)(P1 | Q1)

(τ-EXCHANGE)

P
(M)
−−→ P1 Q

〈−〉
−−→ (νq̃)〈M〉Q1 fn(P)∩{q̃}= /0

P | Q
τ

−−→ (νq̃)(P1 | Q1)

(τ-PUT)

P
〈−〉n
−−→ (νp̃)〈M〉P1 Q

n get M
−−−−→ Q1 fn(Q)∩{p̃}= /0

P | Q
τ

−−→ (νp̃)(P1 | Q1)

(τ-GET)

P
(M)n

−−→ P1 Q
n put 〈−〉
−−−−−−→ (νq̃)〈M〉Q1 fn(P)∩{q̃}= /0

P | Q
τ

−−→ (νq̃)(P1 | Q1)

Table 4: Commitments:τ transitions

(PAR)

P
α

−−→ O

P | Q
α

−−→ O | Q

(RES)

P
α

−−→ O n 6∈ fn(α)

(νn)P
α

−−→ (νn)O

(τ-AMB)

P
τ

−−→ P′

n[P]
τ

−−→ n[P′]

(REPL)

π.P
α

−−→ O

!π.P
α

−−→ !π.P | O

Table 5: Commitments: Structural transitions
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The transitions for non-local exchanges are defined by the rules (PUT n), (GET n)
and theirτ-counterparts (τ-PUT), (τ-EXCHANGE) and (τ-GET): they all should be self-
explanatory. A few remarks are in order for the movement transitions. The rule (CO-
ENTER) says that ambientm[P] is willing to accept an incoming ambientn exhibiting the
passwordk. Dually, the rule (ENTER) leaves in the prime position the ambient involved in
the move. The two rules synchronise in the rule (τ ENTER). The treatment of out moves
is more complex, and requires three steps. Rule (EXIT ) isolates the exiting ambient in the
prime of the concretion, leaving the process that will not move in the residual. Then, the
(EXIT ) rule completes the move by leaving the namem of the exiting ambient in a buffer.
This name should then match the name that is expected by the accepting context, as required
in the rule (τ-EXIT ).

Next, we show that the labelled transition semantics coincides with the reduction seman-
tics. The proof is not difficult, but long. We first need to extend the definition of structural
congruence to concretions. That can be accomplished as follows:

. (νp̃)〈P〉Q≡ (νp̃)〈P′〉Q′ if P≡ P′ andQ≡Q′

. (νp̃)〈M〉P≡ (νp̃)〈M〉P′ if P≡ P′.

Then we prove the following two preliminary lemmas. The first describes the structure of
processes and outcomes involved in the labelled transitions (we only give the cases that
involve ‘in’ moves: the other cases are similar). The second relates labelled transitions and
structural congruence.

Lemma 2.1.

1. If P
in〈m,k〉
−−−−→ P′ then there exist names ˜p, with {m,k}∩{p̃}= /0, and processesP1,P2

such thatP≡ (νp̃)(in〈m,k〉.P1 | P2) andP′ ≡ (νp̃)(P1 | P2).

2. If P
ın(m,k)
−−−−→ P′ then there exist names ˜p, with {m,k}∩{p̃}= /0, and processesP1,P2

such thatP≡ (νp̃)(ın(x,k).P1 | P2) andP′ ≡ (νp̃)(P1{x := m} | P2).

3. If P
enter〈m,k〉
−−−−−−→ O then there exist names ˜p,n, with {m,k}∩{p̃} = /0, and processes

P1,P′1,P2 such thatP≡ (νp̃)(n[P1] | P2), P1

in〈m,k〉
−−−−→ P′1, andO≡ (νp̃)〈n[P′1]〉P2,

4. If P
m enter(n,k)
−−−−−−−→ O then there exist names ˜p, with {m,n,k}∩{p̃}= /0, and processes

P1,P′1,P2 such thatP≡ (νp̃)(m[P1] | P2), P1

ın(n,k)
−−−→ P′1, andO≡ (νp̃)〈P′1〉P2.

Proof. By transition induction.

Lemma 2.2. If P
α−→ O and P≡Q, then there exists O′ such that Q

α−→ Q′ and O≡O′.

Proof. By induction on the derivation ofP≡ Q. As it often happens in proofs involving
structural congruence, to handle the law of symmetry we prove the following two state-
ments, by simultaneous induction on the derivations ofP≡Q (Q≡ P).
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1. If P
α−→ O andP≡Q, then there existsO′ such thatQ

α−→ Q′ andO≡O′.

2. If P
α−→ O andQ≡ P, then there existsO′ such thatQ

α−→ O′ andO≡Q′.

The inductive cases are standard. There are a multitude of base cases, which also are
rather standard. We give just one case to illustrate the role of the side-conditions on the
τ-transitions of Table 4. Note, to this regard, that all theτ-transitions have the side condi-
tion p̃∩ fn(Q) = /0 (or dually q̃∩ fn(P) = /0): this condition is needed to capture the effect
of scope extrusion, as all such transition involve the transmission of possibly private names
(the name of the moving ambient for the transitions (τ-ENTER) and (τ-EXIT )).

To illustrate, in case (1), take the sub-case1 whenP≡ Q is (νl)(P | Q)≡ (νl)P | Q, for
l 6∈ fn(Q). Then the labelled transition must be of the form(νl)(P | Q) α−→ (νl)O, derived
by (RES) from P | Q

α−→ O for l 6∈ fn(α). Of the many possible cases to analyse, let us
focus the one whereα is the silent action and the last transition is derived by (τ-ENTER)

fromP
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉P2 andQ

m enter(n,k)
−−−−−−−→ (νq̃)〈Q1〉Q2, where{q̃}∩ fn(P1,P2) =

{p̃}∩ fn(Q) = /0 andO≡ (νp̃, q̃)(m[Q1 | n[P1]] | P2 | Q2).
We need to show that(νl)P | Q

τ−→≡ (νl)O. To see that, we first observe thatl 6= m,k,
asl 6∈ fn(Q) by hypothesis, and{m,k} ⊆ fn(Q) as it can be shown by transition induction.

Thus fromP
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉P2, we derive(νl)P

enter〈m,k〉
−−−−−−→ (νl)((νp̃)〈n[P1]〉P2) by

(RES). Now we distinguish the two cases that arise from two possible formats of the out-
come of this last transition.

In the first case we have(νl)P
enter〈m,k〉
−−−−−−→ (νl , p̃)〈n[P1]〉P2. This, together with the

transition fromQ, yields (νl)P | Q
τ−→ (νl , p̃, q̃)(m[Q1 | n[P1]] | P2 | Q2) ≡ (νl)O, by (τ-

ENTER). The side conditions to the rule are satisfied thanks to the hypotheses on ˜p andq̃
and to the additional conditionl 6∈ fn(Q). Note that the proof wouldnot go through had we
replaced the side condition{p̃}∩ fn(Q) = /0 in rule (τ-ENTER) with {p̃}∩ fn(Q1,Q2) = /0
from [11, 12]. In particular, the latter condition could be violated byl , asl 6∈ fn(Q) does not
imply that l 6∈ fn(Q1,Q2), for l could ben, which may occur free inQ1.

Otherwise the transition in question is(νl)P
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉(νl)P2, which im-

plies that l 6= n. From this, and from the transition fromQ, we derive(νl)P | Q −→
τ(νp̃, q̃)(m[Q1 | n[P1]] | (νl)P2 | Q2) Finally, from the hypothesisl 6∈ fn(Q) and the fact that
l 6= n,m, it follows that(νl)O≡ (νp̃, q̃)(m[Q1 | n[P1]] | (νl)P2 | Q2).

We are finally ready to establish the desired connection between the reduction and the la-
belled transition semantics.

Theorem 2.3.

1. If P
τ−→ P′ then P−→ P′

2. If P−→ P′ then P
τ−→≡ P′

1 This sub-case should rather be written as(νl)(P |Q)≡P | (νl)Q, but the equivalence as given is consistent
with the format of the (τ-ENTER) rule displayed in Table 4, where it isP that contains the moving ambient,
whose name is transmitted with the move.
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Proof. By transition induction, and a case analysis on the last rule applied in the derivation
of the hypothesis. The proof of (1) appeals to Lemma 2.1 to reconstruct the structure of
P andP′. We give the case (τ−ENTER) as representative. In this case, the transition in

question isP | Q
τ

−−→ (νp̃, q̃)(m[Q1 | n[P1]] | P2 | Q2), derived from

P
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉P2, Q

m enter(n,k)
−−−−−−−→ (νq̃)〈Q1〉Q2

with fn(P1,P2)∩ q̃ = fn(Q)∩ p̃ = /0. By (repeated applications of) Lemma 2.1 there exist
r̃, s̃,R1,R2,S1,S2 such that

P≡ (νp̃)(n[(νr̃)in〈m,k〉.R1 | R2] | P2) | (νq̃)(m[(νs̃)ın(x,k).S1 | S2] | Q2)

with P1 = (νr̃)(R1 | R2) andQ1 = (νs̃)(S1{x := n} | S2). By choosing the bound names ˜r
ands̃ appropriately, we may rearrangeP by structural congruence, as in

P≡ (νp̃, q̃)(νr̃, s̃)(n[in〈m,k〉.R1 | R2] | m[ın(x,k)S1 | S2] | P2 | Q2).

Then
P−→ (νp̃, q̃)(m[(νs̃)(S1{x := n} | S2) | n[(νr̃)(R1 | R2)]] | P2 | Q2)

by an (ENTER) reduction followed by rearrangements via structural congruence.

The proof of (2) is also by transition induction. It needs Lemma 2.2, withO a process,
to handle the case whenP−→ P′ by (STRUCT).

We now re-examine our definition of barbed congruence∼= in the light of the new labelled
transition semantics. As already mentioned, the predicateP↓n detects the ability of the
processP to interact with its environment via the ambientn. We start by noting that our
definition of barb coincides with the choice of one particular action.

Lemma 2.4. P↓n if and only if P
n enter(m,k)
−−−−−−−→ for some m,k.

Proof. Directly by the definition ofP↓n and an inspection of the transition rules.

We now study how the definition of barbed congruence is affected by inheriting the def-
inition of barb from the labelled transition system. More precisely, we show that for all
possible labels generated by the labelled transitions, the corresponding definitions of barbed
congruence collapse, and coincide with∼=. We writeP

α−→ to say thatP
α−→ P′ for some

P′. In force of Theorem 2.3, in the following we confuse=⇒ and
τ−→

∗
.

Definition 2.5. For α ∈ Labelswe write P↓α if P
α−→, andP⇓α if P =⇒ α−→. Let then

α ∈ Labels\{τ}, and define∼=α to be the largest congruence that, when restricted to closed
processes, is reduction closed and preservesα-barbs, i.e.P∼=α Q andP↓α impliesQ⇓α.

Proposition 2.6. Assume P∼=α Q. Then

1. P=⇒ P′ implies Q=⇒ Q′ for some Q′ such that P′ ∼=α Q′;
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2. P⇓α if and only if Q⇓α .

Proof. Part (1) is proved by induction on the number of steps inP =⇒ P′. If P′ = P,
then chooseQ′ = Q. Otherwise, assumeP−→ P∗ =⇒ P′ in n+ 1 steps. SinceP∼=α Q,
there existsQ∗ such thatQ =⇒ Q∗ andP∗ ∼=α Q∗. Now the proof follows by the induction
hypothesis.

For part (2), assumeP⇓α. By definition,P =⇒ P′ ↓α for someP′. SinceP∼=α Q, by
part (1) there existsQ′ such thatQ =⇒ Q′ andP′ ∼=α Q′. ThusQ =⇒ Q′⇓α.

Theorem 2.7. For all α ∈ Labels\{τ}, P∼= Q if and only if P∼=α Q.

Proof. Since the definitions of∼= and∼=α differ only in the notion of barb, it is enough to
show that the two barbs imply each other.

. α = n put 〈−〉. Consider the implication from left to right first. LetP ∼= Q and
P↓n put 〈−〉: we want to show thatQ⇓n put 〈−〉. Consider the following context, where
` is fresh inP andQ:

C[·] , [·] | (x)n`[ın(x,k).0].

Given anyRwith ` fresh inR, it is easy to show thatR⇓n put 〈−〉 if and only ifC[R]⇓`.
This is enough to complete the proof, forP↓n put 〈−〉 impliesC[P]⇓n put 〈−〉, and since
P∼= Q, one hasC[Q]⇓n put 〈−〉 which impliesQ⇓n put 〈−〉.

For the reverse implication, letP∼=n put 〈−〉 Q, andP↓n. Consider the context defined
as follows:

Ck[·] , [·] | `[in〈n,k〉.out〈n, `〉.〈·〉ˆ̂] | out(x, `).0.

Given anyRwith ` fresh inR, it is easily shown that

. if R⇓n then there existsk such thatCk[R]⇓` put 〈−〉;

. Ck[R]⇓` put 〈−〉 impliesR⇓n.

Now, P↓n implies that there existsk such that such thatCk[P]⇓` put 〈−〉. Thus we have
Ck[Q]⇓` put 〈−〉, and thenQ⇓n as desired.

. α = pop〈k〉. For the implication from left to right, choose the following context, with
` fresh inP andQ:

C[·] , [·] | out( ,k).`[ın( ,h)].

The proof proceeds as in the previous case as for allR with ` 6∈ fn(R), we have
R⇓pop〈k〉 if and only if C[R]⇓`. For the reverse implication, choose the context:

Ck[·] , [·] | `[in〈n,k〉.out〈n,h〉].

with h fresh. For eachR with h 6∈ fn(R), we have(i) R⇓n implies thatCk[R]⇓pop〈h〉
for a suitablek, and(ii) Ck[R]⇓pop〈h〉 impliesR⇓n. From this, we conclude as in the
previous cases.
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. α = exit〈n,k〉. For the implication from left to right, choose the context

C[·] , n[[·]] | out( ,k).`[ın( ,h)].

Again, if ` 6∈ fn(R), one hasR⇓exit〈n,k〉 if and only ifC[R]⇓`. For the reverse implica-
tion, choose the context:

Ck[·] , [·] | `[in〈n,k〉.out〈n,h〉.out〈`,h〉] | out( .h)

with h fresh, and verify thatR⇓n if and only if Ck[R]⇓exit〈`,h〉.

. α = in〈n,k〉. For the implication from left to right, choose the context

C[·] , a[[·]] | n[ın( ,k).b[out〈n,h〉.ın( ,k)]] | out( ,h)

with a,b,h fresh, and verify thatR⇓in〈n,k〉 if and only if R⇓b. For the reverse implica-
tion, choose

Ck[·] , [·] | a[in〈n,k〉.out〈n,h〉] | out( ,h).in〈a,h〉

with a,h fresh, and verify thatP⇓n if and only if Ck[P]⇓in〈a,h〉.

. The other cases are handled similarly.

Notice that in the proof above we have usedto denote a “dummy” bound variable. By that
we mean that appears only in binding occurrences. We will use such notation again.

3 Labelled Bisimilarity

In this section we provide a sound characterisation of barbed congruence in terms of (weak)
labelled bisimilarity. To define the latter, we need a way to test the equivalence of processes
after any (number ofτ transition following any) visible transition. To account for that,
we introduce a new, higher-order, transition for each of the first-order transitions whose
outcome is a concretion, rather than a process.

The new transitions are collected in Table 6. The higher-order labels occurring in these
transitions encode the minimal contribution by the environment needed by the process to
complete a transition. Thus, in (PUT HO) and (OUTPUT HO) the processQ represents the
context receiving the valueM output byP, and the variablex is a placeholder for that value.
The rule (OUTPUT ˆ̂ HO) is similar, but more complex because the value output byP will
be received at a different nesting level. In particular, to complete its output,P needs to be
placed into an ambientn (possibly containing a sibling processQ) and the valueM output
by P will be received at the enclosing nesting level.

The higher-order transitions for mobility have the same rationale. Thus, for instance, in
the rule (CO-ENTER HO) the environment provides an ambientn[Q] moving intom. In the
rule (EXIT HO) we can imagine the environment wrapping the processP with an ambient
n[Q], and receiving the namem of the exiting ambient atR.
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(OUTPUT HO)

P
〈−〉η

−−−→ (νp̃)〈M〉P′ fv(Q)⊆ {x}, p̃∩ fn(Q) = /0, η 6= ˆ̂

P
〈−〉ηQ
−−−−→ (νp̃)(P′ | Q{x := M})

(OUTPUT ˆ̂ HO)

P
〈−〉ˆ̂
−−→ (νp̃)〈M〉P′ fv(R)⊆ {x},

p̃∩ fn(n[Q],R) = /0

P
〈−〉ˆ̂n[Q]R
−−−−−−→ (νp̃)(n[P′ | Q] | R{x := M})

(PUT HO)

P
m put 〈−〉
−−−−−−→ (νp̃)〈M〉P′ fv(Q)⊆ {x},

p̃∩ fn(Q) = /0

P
m put 〈−〉Q
−−−−−−−−→ (νp̃)(P′ | Q{x := M})

(ENTER HO)

P
enter〈n,k〉
−−−−−−→ (νp̃)〈m[P1]〉P2

fv(Q)⊆ {x},
p̃∩ fn(Q) = /0

P
enter〈n,k〉Q
−−−−−−−→ (νp̃)(n[m[P1] | Q{x := m}] | P2)

(CO-ENTER HO)

P
m enter(n,k)
−−−−−−−−→ (νp̃)〈P1〉P2 p̃∩ fn(Q) = /0

P
m enter(n,k)Q
−−−−−−−−−→ (νp̃)(m[n[Q] | P1] | P2)

(EXIT HO)

P
exit〈n,k〉
−−−−−→ (νp̃)〈m[P1]〉P2

fv(R)⊆ {x},
p̃∩ fn(Q,R) = /0

P
exit〈n,k〉QR
−−−−−−−→ (νp̃)(m[P1] | n[P2 | Q] | R{x := m})

(POP HO)

P
pop〈k〉
−−−−→ (νp̃)〈m〉P′ fv(Q)⊆ {x},

p̃∩ fn(Q) = /0

P
pop〈k〉Q
−−−−−→ (νp̃)(P′ | Q{x := m})

Table 6: Commitments: Higher-Order Transitions

Having defined the new higher-order transitions, we are now ready to give the relation of
labelled bisimilarity. LetΛ be the set of all labels including the first-order labels of Table 2
as well as the higher-order labels determined by the transitions in Table 6. We denote withλ
any label in the setΛ. As usual, we focus on weak bisimilarities based on weak transitions,
and use the following notation:

i)
λ=⇒ denotes=⇒ λ−→=⇒

ii)
λ̂=⇒ denotes=⇒ if λ = τ and

λ=⇒ otherwise.

Definition 3.1 (Bisimilarity). A symmetric relationR over closed processes is abisimula-

tion if P R Q andP
λ−→ P′ imply that there existsQ′ such thatQ

λ̂=⇒Q′ andP′ R Q′. Two
processesP andQ are bisimilar, writtenP≈Q, if P R Q for some bisimulationR.

This definition of bisimilarity is only defined over closed processes. We generalise it to
arbitrary processes as follows:

Definition 3.2 (Full bisimilarity). Two processesP andQ are full bisimilar, P≈c Q, if
Pσ ≈Qσ for every closing substitutionσ.
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Note that the definition of bisimilarity only tests transitions from processes to processes,
which typically involve higher-order actions. To this regard, it is important to point out that
the structural rules of Table 5 only apply whenλ ∈ Labels: in other words, there are no
structural rules associated with higher-order transitions. (Observe though thatα-conversion
and, as a consequence, rearrangement of the order of adjacent restrictions still applies.)
We will return to this observation in the proof of Theorem 3.4, where we show that full
bisimilarity is a congruence.

Lemma 3.3.

1. If P
exit〈n,k〉0R
−−−−−−→ P′ then n[P]

pop〈k〉R
−−−−−→ P′.

2. If P
〈−〉ˆ̂n[0]R
−−−−−→ P′ then n[P]

n put 〈−〉R
−−−−−−−→ P′.

Proof. By transition induction.

Theorem 3.4. Full bisimilarity is a congruence

Proof. It is easy to show that≈c is preserved by input prefixes (these include, proper
input prefixes and co-capability prefixes). For instance, assumingP ≈c Q, we need to
show that(x)η.Pσ ≈ (x)η.Qσ for all closing substitutionsσ. By definition, one has
((x)η.P)σ = (x)η.(Pσ) (with σ capture free). The only moves from(x)η.(Pσ) are of the

form (x)η.(Pσ)
(M)
−−→ Pσ{x := M} for an arbitrary expression (message)M. Since also

(x)η.(Qσ)
(M)
−−→ Qσ{x := M}, it remains to show thatPσ{x := M} ≈ Qσ{x := M}. But

this follows directly from the assumptionP ≈c Q.
For the remaining constructs we can safely restrict to closed processes in the language,

and prove that≈ is a congruence. We treat all the constructs simultaneously, as follows.
Let S be the least equivalence relation that contains≈ and is closed by prefix, parallel
composition, restriction and ambient, i.e.:

. ≈ ⊆S

. P S Q impliesπ.P S π.Q

. P S Q impliesP | RS Q | R for all processesR

. P S Q impliesn[P] S n[Q], (νn)P S (νn)Q and !P S !Q.

We show thatS is a bisimulation up to≡ (cf. [19]). The theorem follows directly from
this fact (for, then,S is itself a bisimulation, henceS⊆ ≈ , which impliesS = ≈ ). The
proof is by induction on the formation ofS .

. P S Q becauseP ≈ Q. This case follows by definition.

. π.P S π.Q becauseP S Q. There are five sub-cases to consider. Ifπ is a capability,

sayM, the only move fromM.P is of the formM.P
M

−−→ P. ThenM.Q
M

−−→ Q,
and this concludes the proof becauseP S Q by hypothesis.

The case whenπ is an input prefix has already been worked out above. There are two
more sub-cases for output prefixes.
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. π.P
λ

−−→ P′ becauseπ = 〈M〉η with η 6= ˆ̂, λ = 〈−〉ηR andP′ is structurally
equivalent toP | R{x := M}. The same move is also available to〈M〉η.Q, hence

one has〈M〉η λ
−−→ Q | R{x := M}. SincePS Q by hypothesis, and since and

S is closed by parallel composition, we concludeP | R{x := M}S Q | R{x :=
M}, as desired.

. The case whenπ = 〈M〉ˆ̂ is similar: it also requires the closure ofS by the
ambient constructor.

. P | RS Q | RbecauseP S Q. We proceed by a case analysis of whyP | R
λ

−−→ O,
with O a process (not a concretion). There thirteen cases in all to consider, plus their
symmetric cases. We start with the structural case, below.

. P | R
λ

−−→ P′ | R becauseP
λ

−−→ P′. SinceP S Q, by induction hypothesis

we find a weak transitionQ
λ==⇒ Q′ with P′ S Q′. Thus, we also have a weak

transitionQ | R
λ==⇒ Q′ | R, and sinceS is closed by parallel composition,

P′ | RS Q′ | Ras desired.

Then there are six cases ofτ-transitions, plus their symmetric cases.

. P |R τ−→O asP
enter〈m,k〉
−−−−−−→ (νp̃)〈n[P1]〉P2 andR

m enter(n,k)
−−−−−−−→ (νr̃)〈R1〉R2, with

O≡ (νr̃)(νp̃)(m[R1 | n[P1]] | P2 | R2), andR1≡Rx{x := n} for a suitableRx. We
must find a matching moveQ | R=⇒ O′ with O S O′.

By rule (ENTER HO) one hasP
enter〈m,k〉Rx

−−−−−−−−→ P′ ≡ (νp̃)(m[n[P1] | R1] | P2).
SinceP S Q, by induction hypothesis there existsQ′ such thatP′ S Q′, for

which Q
enter〈m,k〉Rx========⇒ Q′. ThusQ =⇒V

enter〈m,k〉Rx

−−−−−−−−→ Z =⇒ Q′ for appropri-
ateV andZ. An inspection of the transition rules shows thatZ must be of the
form (νq̃)(m[l [Q1] | Rx{x := l}] | Q2) for suitable namesl , q̃ and processesQ1

andQ2. Furthermore, the transitionV
enter〈m,k〉Rx

−−−−−−−−→ Z must have been derived

from V
enter〈m,k〉
−−−−−−→ (νq̃)〈l [Q1]〉Q2. FromR

m enter(n,k)
−−−−−−−→ (νr̃)〈R1〉R2, it follows

thatR
m enter(l ,k)
−−−−−−−→ (νr̃)〈Rx{x := l}〉R2. Hence by an application of the rule (τ

ENTER), we haveQ | R=⇒V | R
τ

−−→ (νr̃)(Z | R2) =⇒ (νr̃)(Q′ | R2). From
P′ S Q′, sinceS is closed by restriction and parallel composition, it follows
thatO≡ (νr̃)(P′ | R2) S (νr̃)(Q′ | R2)≡O′, as desired.

. P | R
τ−→ O becauseP

m enter(n,k)
−−−−−−−→ (νp̃)〈P1〉P2 andR

enter〈m,k〉−→ (νr̃)〈n[R1]〉R2,
with O ≡ (νr̃)(νp̃)(m[P1 | n[R1]] | R2 | P2). We must find a matching move
Q | R =⇒ O′ with O S O′. By an application of rule (CO-ENTER HO) one

hasP
m enter(n,k)R1

−−−−−−−−−→ P′ ≡ (νp̃)(m[n[R1] | P1] | P2), with p̃∩ fn(R1) = /0. Since

PS Q, there existsQ′ such thatQ=⇒V
m enter(n,k)R1

−−−−−−−−−→ Z =⇒Q′ with P′ S Q′.
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An inspection of the transition rules shows thatZ ≡ (νq̃)(m[n[R1] | Q1] | Q2)
for suitable names ˜q, and processesQ1 and Q2. In particular, the transition

V
m enter〈n,k〉R1

−−−−−−−−−→ Z must have been derived fromV
m enter(n,k)
−−−−−−−→ (νq̃)〈Q1〉Q2.

Thus, by an application of (τ ENTER)

Q | R =⇒ V | R
τ

−−→ (νr̃)(νq̃)(m[n[R1] | Q1] | R2 | Q2)
≡ (νr̃)(Z | R2)

=⇒ (νr̃)(Q′ | R2)

From P′ S Q′, sinceS is closed by restriction and parallel composition, it
follows thatO≡ (νr̃)(P′ | R2) S (νr̃)(Q′ | R2)≡O′, as desired.

. P | R
τ

−−→ O becauseP
pop〈k〉
−−−−→ (νp̃)〈m〉P′ and R

out(m,k)
−−−−−→ R′, whereO

structurally equivalent to(νp̃)(P′ | R′) andR′ is of the formRx{x := m} for
a suitableRx.

By the rule (POPHO), we deriveP
pop〈k〉Rx

−−−−−→ O. SincePS Q, by the induction

hypothesis we find a transitionQ =⇒V
pop〈k〉Rx

−−−−−→ Z =⇒ O′ with O S O′. An

inspection of the transition rules shows thatV
pop〈k〉Rx

−−−−−→ Z must derive from

V
pop〈k〉
−−−−→ (νr̃)〈l〉V ′ for suitableV ′ andl , with Z≡ (νr̃)(V ′ |Rx{x := l}). Also,

from R
out(m,k)
−−−−−→ R′, it follows thatR

out(l ,k)
−−−−→ Rx{x := l}. ThusV |R

τ
−−→ Z,

and we are done, sinceQ | R=⇒V | R
τ

−−→ Z =⇒ O′

. P | R
τ

−−→ O becauseP
out(m,k)
−−−−−→ P′ andR

pop〈k〉
−−−−→ (νr̃)〈m〉R′ with O struc-

turally equivalent to(νr̃)(R′ | P′). SinceP S Q, by induction hypothesis, we

know thatQ =⇒U
out(m,k)
−−−−−→ Z =⇒ Q′. Thus

Q | R=⇒U | R
out(m,k)
−−−−−→ (νr̃)(R′ | Z) =⇒ (νr̃)(R′ | Q′)≡O′.

Now, O S O′ derives fromP′ S Q′ becauseS is closed by parallel composi-
tion and restriction.

. P | R
τ

−−→ O becauseP
〈−〉
−−→ (νp̃)〈M〉P′, R

(M)
−−→ R′ andO is structurally

equivalent to(νp̃)(P′ | R′) andR′ is of the formRx{x := M}.

FromP
〈−〉
−−→ (νp̃)〈M〉P′, by (OUTPUT HO) we deriveP

〈−〉Rx

−−−→ O. By induc-

tion hypothesis, sincePS Q, we haveQ=⇒U
〈−〉Rx

−−−→ Z =⇒O′ with OS O′.

The previous higher-order transition must be derived fromU
〈−〉
−−→ (νq̃)〈N〉V

with Z of the form(νq̃)(V | Rx{x := N}). Thus, sinceR
(N)
−−→ Rx{x := N}, we

haveU | R
τ

−−→ Z and thenQ | R=⇒U | R
τ

−−→ Z =⇒ O′ as desired.
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. The dual case of the previous transition, (τ-EXCHANGE), and the two cases of
(τ-GET) and (τ-PUT) follow the same pattern outline in the previous cases.

Finally we have seven cases for the higher-order transitions: these need a special treat-
ment because, as we noted, there are no structural rules associated with the higher-
order transition. We give the case of (OUTPUT ˆ̂ HO), which is the most complex.

. P | R
〈−〉ˆ̂n[R1]R2

−−−−−−−→ O, becauseP | R
〈−〉ˆ̂
−−→ KS≡ (νs̃)〈M〉S, andO is structurally

equivalent to(νs̃)(n[S | R1] | R2{x := M}). We have two possible sub-cases,
depending on whetherP or Rmove. We consider the second case first.

If R
〈−〉ˆ̂
−−→ KR, then KS ≡ KR | P, which impliesKR ≡ (νs̃)〈M〉R′ and S≡

R′ | P. ThusO≡C[P] whereC[P]≡ (νs̃)(n[R′ | P | R1] | R2{x := M}). Clearly,

Q |R
〈−〉ˆ̂n[R1]R2

−−−−−−−→ C[Q]. By induction hypothesisPS Q, and sinceS is closed
by all the operators in the contextC[·], we haveC[P] S C[Q] as desired.

If insteadP moves, i.e.P
〈−〉ˆ̂
−−→ KP, thenKS ≡ KP | R, which impliesKP ≡

(νs̃)〈M〉P′ andS≡ P′ | R. ThusO≡ (νs̃)(n[P′ | R | R1] | R2{x := M}). Now

from P
〈−〉ˆ̂
−−→ KP, by (OUTPUT ˆ̂ HO), we deriveP

〈−〉ˆ̂n[R | R1]R2

−−−−−−−−−→ O. Since
PS Q, by the induction hypothesis there existO′ such thatOS O′ and a weak

transition of the form:Q =⇒U
〈−〉ˆ̂n[R | R1]R2

−−−−−−−−−→ Z =⇒ O′. By an inspection of
the transition rules,Z ≡ (νm̃)(n[Q′ | R | R1] | R2{x := N}). Furthermore, the

transition fromU must derive fromU
〈−〉
−−→ (νm̃)〈N〉Q′. Then by rule (PAR)

U | R
〈−〉
−−→ (νm̃)〈N〉Q′ | R, from whichU | R

〈−〉ˆ̂n[R1]R2

−−−−−−−→ Z. We are done,
sinceQ | R=⇒U | RandZ =⇒ O′.

. n[P] S n[Q] becauseP S Q. There are again several sub-cases to consider, one for
each possible transition. The first, and simplest, case is whenλ = τ, and the transition
n[P] τ−→ O derives by (AMB). Then, O is the processn[P′] and the transition is
derived byP

τ−→ P′. From the hypothesisP S Q, we know thatQ =⇒ Q′ with
P′ S Q′. Then the claim follows by the assumption thatS is closed by the ambient
constructor. The remaining cases are as follows.

. n[P]
n get M
−−−−→ O becauseP

(M)ˆ̂
−−→ P′ andO≡ n[P′]. SincePS Q, by the induc-

tion hypothesis, we know thatQ
(M)ˆ̂
==⇒ Q′ with P′ S Q′. From this, we have

n[Q]
n get M

=====⇒ n[Q′] ≡ O′, andO S O′ becauseS is closed by the ambient
constructor.

. n[P]
exit〈m,k〉RS
−−−−−−−→ O becausen[P]

exit〈m,k〉
−−−−−→ (ν)〈n[P′]〉0, whereO is structurally

equivalent ton[P′] | m[R] | S{x := n}. The latter transition must have been

derived fromP
out〈m,k〉
−−−−−→ P′. SinceP S Q, by the induction hypothesis there



August 27, 2003 20

existsQ′ such that it follows by induction thatQ =⇒
out〈m,k〉
−−−−−→ =⇒ Q′ and

P′ S Q′. Then

n[Q]
exit〈m,k〉RS

=======⇒ n[Z] | m[R] | S{x := n}

That O S O′ follows again fromP′ S Q′ and fromS being closed under
parallel composition and ambient construction.

. n[P]
pop〈k〉R
−−−−−→ O becausen[P]

pop〈k〉
−−−−→ (νp̃)〈m〉(m[P1] | n[P2]), with O struc-

turally equivalent to(νp̃)(m[P1] | n[P2] | R{x := m}). The latter transition must

be derived fromP
exit〈n,k〉
−−−−−→ (νp̃)〈m[P1]〉P2, from whichP

exit〈n,k〉0R
−−−−−−→ O. Since

PS Q, by induction hypothesis there existsO′ s.t.Q=⇒
exit〈n,k〉0R
−−−−−−→ Z =⇒O′

whereZ ≡ (νq̃)(l [Q1] | n[Q2] | R{x := l}) andO S O′. By Lemma 3.3(1), we

then have the desiredn[Q]
pop〈k〉R

=====⇒ (νq̃)(l [Q1] | n[Q2] | R{x := l}) =⇒ O′.

. n[P]
n put 〈−〉R
−−−−−−−→ O becausen[P]

n put 〈−〉
−−−−−−→ (νp̃)〈M〉n[P′], whereO is struc-

turally equivalent to(νp̃)(n[P′] | R{x := M}). The last transition must de-

rive from P
〈−〉ˆ̂
−−→ (νp̃)〈M〉P′, from which P

〈−〉ˆ̂n[0]R
−−−−−→ (νp̃)(n[P′] | R{x :=

M}) derives by an application of (OUTPUT ˆ̂ HO). SinceP S Q, by induc-

tion hypothesis it follows that there existsO′ such thatQ
〈−〉ˆ̂n[0]R
=====⇒ O′ and

O S O′. An inspection of the transition rules shows thatO′ is of the form
(νq̃)(n[Q′] | R{x := N}) for suitableQ′,R andN. By Lemma 3.3(2), we then

haven[Q]
n put 〈−〉R

=======⇒ O′ as desired.

. The remaining cases, namely (ENTER HO) and (CO-ENTER HO) similar to and
simpler than the previous ones.

. (νn)P S (νn)Q becauseP S Q. Assume(νn)P S (νn)Q, and let(νn)P
λ

−−→ P′.
The move may either derived by (RES), or else by one of the higher-order transi-
tions. In the first case the proof follows directly by the induction hypothesis and the
assumption thatS is closed by the restriction operator. For the remaining cases, the
proof is by a case analysis of the higher-order transition involved in the move. We
give one of these cases below, as representative.

Assume(νn)P S (νn)Q, and(νn)P
pop〈k〉R
−−−−−→ O, and let this transition be derived

by (POP HO) from (νn)P
pop〈k〉
−−−−→ (νn, p̃)〈m〉P′, with O≡ (νn, p̃)(P′ | R{x := m})

and{n, p̃}∩ fn(R) = /0. We need to find a weak transition(νn)Q
pop〈k〉R

=====⇒ O′ with
O S O′.

The transition from(νn)P must derive by (RES) from P
pop〈k〉
−−−−→ (νp̃)〈m〉P′. From

this transition, we haveP
pop〈k〉R
−−−−−→ P∗ with P∗≡ (νp̃)(P′ |R{x := m}) (and thusO≡
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(νn)P∗). SincePS Qwe find a weak transition of the formQ=⇒V
pop〈k〉R
−−−−−→ Z =⇒

Q∗ with P∗ S Q∗. By examining the transitionV
pop〈k〉R
−−−−−→ Z, we see that it must de-

rive fromV
pop〈k〉
−−−−→ (νq̃)〈l〉V ′, for Z ≡ (νq̃)(V ′ | R{x := l}) and a suitablel . Now,

by (RES), (νn)V
pop〈k〉
−−−−→ (νn, q̃)〈l〉V ′, and then by (POP HO), (νn)V

pop〈k〉R
−−−−−→ ≡

(νn)Z. Since(νn)Q =⇒ (νn)V and(νn)Z =⇒ (νn)Q∗, we have found a weak tran-

sition (νn)Q
pop〈k〉R

=====⇒ (νn)Q∗. We are done since(νn)Q∗ S (νn)P∗ follows by
P∗ S Q∗ and the assumption thatS is closed by restriction.

. !P S !Q becauseP S Q. Assume !P S !Q, and let !P
λ

−−→ P′. The move may ei-

ther be of form !P
λ

−−→ !P | P′, derived fromP
λ

−−→ P′ by (REPL), or else derived
by one of the higher-order transitions. If it is derived by (REPL), give the assump-

tion P S Q, we may use induction to find a moveQ
λ==⇒ Q′ with P′ S Q′. Thus

!Q
λ==⇒ !Q | Q′ by an application of (REPL). Then we have !P S !Q andP′ S Q′.

SinceS is closed by parallel composition, this implies !P | P′ S !Q | Q′, as desired.
For the remaining cases, the proof is by a case analysis of the higher-order transition
involved in the move. This analysis is similar to that carried out in the previous cases
and thus omitted.

We conclude with the proof the≈c is contained in our relation of barbed congruence. An
alternative notion of labelled bisimilarity that completely captures barbed congruence will
be discussed in §9.

Theorem 3.5 (Soundness of full bisimilarity). If P ≈c Q then P∼= Q.

Proof. It is enough to show that≈c is a barbed bisimulation up to≡. AssumeP ≈c Q. If

P↓n then, by Lemma 2.4,P
n get M
−−−−→ , and we know thatQ

n get M
=====⇒ , from whichQ⇓n.

Now assume thatP−→ P′. By Theorem 2.3P
τ−→≡ P′. SinceP ≈c Q, there exitsQ′ such

thatQ =⇒ Q′ andP′ ≡ ≈c≡Q′, as desired.

4 Algebraic Laws

In this section we give some of the characterising algebraic laws for NBA. Some of these
laws are inherited from the companion calculi, notably SA(P) and BA, while others are
specific to the new calculus, and show the beneficial effects of the new primitives for com-
munication and mobility.

Mobility. The first set of laws are related to mobility and inherited from Safe Ambients
(with/out passwords). They show that there are two ways to equate a mobility redex and the
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result of reduction: either by relying on secret passwords, or by having the move happen
within a protected context (i.e. an ambient).

Theorem 4.1.

1. (νp)(m[in〈n, p〉.P] | n[ın(x, p).Q]) ∼= (νp)(n[Q{x := m} | m[P]])

2. l[m[in〈n, p〉.P] | n[ın(x, p).Q]] ∼= l [n[Q{x := m} | m[P]]]

3. (νp)(n[m[out〈n, p〉.P]] | out(x, p).Q) ∼= (νp)(m[P] | Q{x := m})
4. l[n[m[in〈n, p〉.P]] | out(x, p).Q] ∼= l [m[P] | Q{x := m}].

Proof. By exhibiting the appropriate bisimulation. In all cases, the bisimulation has the
form {(LHS,RHS)}∪I , whereLHSandRHSdenote, respectively, the left-hand side and
the right-hand side of the equation, andI is the identity.

Garbage Collection. The next set of laws provide useful ways to single out inert pro-
cesses that can be safely garbage collected.

Theorem 4.2. For any I,J,H finite:

1. l[ Πi∈I (x̃i)ni .Pi | Π j∈J(x̃ j).Pj | Πh∈H〈M̃h〉mh.Ph ] ∼= 0

2. l[ Πi∈I (x̃i)ni .Pi | Π j∈J〈M̃ j〉.Pj | Πh∈H〈M̃h〉mh.Ph ] ∼= 0

Proof. In both cases, the singleton set containing the pair of the two processes is a full
bisimulation: this follows by observing that none of the processes in the two laws has any
transition.

Taking I = J = H = /0 in the previous theorem, one also derivesl [ ] ∼= 0, a very useful
equation that allows empty ambients to be garbage collected. This equation holds in Safe
Ambients (with/out passwords) as well, while it is not valid for Mobile Ambients, nor for
the calculus BA studied in [3]. Notice, in particular, that in NBA the equation is the result
of both the presence of co-capabilitiesandof the new semantics of parent-child communi-
cation.

Buffer Laws. A further set of laws shows how outputs distribute over the ambient con-
structor.

Theorem 4.3. For any finite J:

1. l[ Π j∈J〈M̃ j〉.Pj ] ∼= Π j∈J l [〈M̃ j〉.Pj ].

2. l[ Π j∈J〈M̃ j〉ˆ̂ ] ∼= Π j∈J l [〈M̃ j〉ˆ̂ ].

Proof. The first equation follows directly by Theorem 4.2(1), as both sides are equivalent
to the null process. For (2), we reason by induction on the size ofJ. For the base case, when
J = /0, the equation follows by Theorem 4.2(1). For the inductive case, we first show that

l [ Π j∈J〈M̃ j〉ˆ̂ ] ≈c l [〈M̃k〉] | l [ Π j∈J\{k} 〈M̃ j〉ˆ̂ ] (1)
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We give a direct proof, showing that the derivatives of the two terms are bisimilar. Assume

l [ Π j∈J〈M̃ j〉ˆ̂ ]
λ

−−→ P′. An inspection of the transition rules shows thatλ = l put 〈−〉S,
and thatP′ ≡ l [ Π j∈J−{k}〈M̃ j〉ˆ̂ ] | S{x̃ := M̃k}, for some processS, andk∈ J. On the other

hand, first observe thatl [〈M̃k〉ˆ̂]
l put 〈−〉
−−−−−→ (ν)〈M̃k〉l [ ]. Then, an application of the (PAR)

rule derives

l [〈M̃k〉ˆ̂] | l [Π j∈J 〈M̃ j〉ˆ̂ ]
l put 〈−〉
−−−−−→ (ν)〈M̃k〉(l [ ] | Π j∈J−{k} l [〈M̃ j〉ˆ̂])

Then, by (OUTPUT HO) we derivel [〈M̃k〉ˆ̂] | l [Π j∈J 〈M̃ j〉ˆ̂ ]
λ

−−→ l [ ] | P′, which is what
we need, becausel [] ≈c 0. The reasoning for the symmetric case is essentially the same.

From (1), by Theorem 3.4, we havel [ Π j∈J〈M̃ j〉ˆ̂ ]∼= l [〈M̃k〉] | l [ Π j∈J\{k} 〈M̃ j〉ˆ̂ ]. Now
we may use the induction hypothesis and conclude

l [ Π j∈J〈M̃ j〉ˆ̂ ]∼= l [〈M̃k〉] | l [ Π j∈J\{k} 〈M̃ j〉ˆ̂ ]∼= l [〈M̃k〉] | Π j∈J\{k} l [〈M̃ j〉ˆ̂ ]≡ Π j∈J l [〈M̃ j〉ˆ̂ ]

as desired.

The first equation is a consequence of the semantics of communication of NBA, which
makes local communication not observable. This this is not true of the semantics of com-
munication in BA. To see that, takeP = l [〈M1〉 | 〈M2〉] andQ = l [〈M1〉] | l [〈M2〉]. Then the
contextC[·] = [·] | n[in〈l〉.(x)↑.(x)↑.out〈l〉.〈〉↑] distinguishes them, asC[P]⇓n whileC[Q] 6⇓n,
according to the semantics of BA (cf. Introduction, page 3).

The second equation, instead, holds with either semantics. In neither case it generalises
to output prefixes with non-null continuation, as in generaln[P1 | P2] 6∼= n[P1] | n[P2]. As a
simple example, takeP1 = ().ın(x,n).0andP2 = 〈〉. Then,n[P1] | n[P2]∼= 0, by Theorem 4.2,
while n[P1 | P2] =⇒ n[ın(x,n)] which is active and observable.

Communication. The next block of equations gives further insight into the semantics of
communication.

Theorem 4.4. If | x̃|=|M̃ | then:

1. l[(x̃).P | 〈M̃〉.Q] ∼= l [P{x̃ := M̃} | Q]

2. (νl)((x̃)l .P | l [〈M̃〉ˆ̂.Q] ) ∼= (νl)(P{x̃ := M̃} | l [Q] )

3. m[(x̃)l .P | l [〈M̃〉ˆ̂.Q]] ∼= m[P{x̃ := M̃} | l [Q]]

The dual laws of 2 and 3 (resulting from exchanging input with output prefixes) hold as well.

Proof. Again, by exhibiting the appropriate bisimulation. In all cases, the bisimulation
has the form{(LHS,RHS)}∪I , whereLHS andRHSdenote the left-hand side and the
right-hand side of the equation, respectively.

The first equation, 4.4(1) shows again that NBA does not suffer from interferences on local
communications: this law holds in Safe Ambients but not in Mobile Ambients, due toopen,
nor in Boxed Ambients. The remaining equations are distinctive of NBA.
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Firewalls. As a further illustration of the algebraic properties of NBA, consider theperfect
firewall equation from [6]:(νn)n[P]∼= 0, for n 6∈ fn(P). This equation is not valid in NBA,
nor in BA. In BA, ambients with secret names may exchange values with their parent. In
NBA they can move, and reveal their name. For example, letP= out〈m,m〉, for m 6= n, and
consider the contextC[·] = (νm)(m[[·]] | out(x,m).Q), wherem 6∈ fn(Q) andQ 6∼= 0. Then
C[0]∼= 0, whileC[(νn)n[P]]−→∼= (νn)(Q{x := n} | n[P]).

Indeed, the law(νn)n[P]∼= 0 (n 6∈ fn(P)) is not valid in SA or SA(P) either, because the
movement of secret ambients is observable in such calculi like in NBA (due to the presence
of co-capabilities). In SAP, the equation is re-stated as(νm)(νn)m[n[P]] ∼= 0, which holds
thanks to the format of theout capability used in [12], which mentions the name of the
moving ambient (m in this case). The different syntax forout we adopted in NBA yields
yet another variant of the firewall equation.

Theorem 4.5 (Perfect Firewall). m[n[P]]∼= 0, for all m and P such that m6∈ fn(P).

Proof. The setS = { (m[n[P]],0) | m 6∈ fn(P) } is a bisimulation. To see that observe
that the only visible transitions fromm[n[P]] must have a labelpop〈k〉 (or its higher-order
counterpart) for somek, derived from a transition with labelexit〈m,k〉. But this is not
possible, ifm 6∈ fn(P).

5 The Type System

We already remarked the effects of revised semantics of communication on the typing sys-
tem. In this section we elaborate on those ideas, and show that the combination of such
semantics with the movement co-capabilities distinctive of NBA can be accounted for at a
low complexity cost in the type system, while allowing a degree of flexibility comparable
with that of the moded types of [3].

We start our discussion by introducing the structure of types.

Message Types W ::= N[E] ambient/password
 C[E] capability

Exchange Types E,F ::= shh no exchange
 W1×·· ·×Wk tuples (k≥ 0)

Process Types T ::= [E,F ] composite exchange

The types of ambients trace the upward exchanges of ambients with this type. In addition,
in the present system the types of the formN[E] also serve as the types of passwords: hence,
N[E] is indeed the class ofnametypes. When used as a password type,N[E] informs on
the typeE of the upward exchanges of any ambient whose movement is probed by aN[E]
password. There is no type confusion in this double role of name types, as different uses of
a name have different, and orthogonal, imports in the typing rules. An alternative, perhaps
more easily understood solution would be to use two different constructors for ambient and
password names: however, this would also have the undesired effect of disallowing the
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same name to be used in the two roles, a feature that is harmless, and rather convenient in
many examples.

As for capability types,C[E] is the type of capabilities exercised within ambients with
upward exchange of typeE. Perhaps unexpectedly, tracing the typeE is necessary to pro-
vide static guarantees of type safety, even with the new semantics of communication. This
is due to the dynamic binding of names that takes place upon ambient mobility. On one side,
the target context relies on the type of the password presented by the incoming ambients to
make assumptions on the upward exchange types of these ambients. Correspondingly, on
the side of the moving ambients, the capability types guarantee the consistency between the
upward exchanges of that ambient and the type of the passwords used to move.

Exchange and process types also have the same structure as in previous type systems for
Ambient Calculi. Typeshh, however, besides indicating the absence of exchanges, provides
here for asilentmode for mobility similar to, but substantially simpler than, themoded types
of [3]. Specifically, the typing rules guarantee that the name of an ambient, sayn, crossing
a boundary with a password of typeN[shh] will not be used by the receiving environment.
Thus, unless the target ambient knows the namen, the use of aN[shh] password guarantees
safe mobility for regardless of the ambients’ upward exchanges.

We proceed with the presentation of the typing rules. The rules for valid type environments
are standard.

(ENV EMPTY)

∅ ` �

(ENV NAME )
Γ ` � a /∈ Dom(Γ)

Γ,a : W ` �

Table 7 gives the typing rules for messages. The notationF 6 G, with F andG exchange
types, is short forF ∈ {shh,G}; operatort is the (partial) lub operator associated with6.
Rule (PROJECTION) is standard. Rules (IN) and (OUT) define the types of capabilities in
terms of the type of the component passwords: together with the typing rules for the process
constructs for ambients in Table 9, they construe the types of passwords asinterfacesfor
mobility. In particular, if the typeF associated with the passwordN is a message typeW
(equivalently, a tuple), thenN requires any ambient relying uponN for mobility to have
upward exchanges of typeW (cf. rules (PREFIX) and (AMB) in Table 9). If, instead,F =
shh, then the typeG of the upward exchanges can be any type: this is sound, because a move
based on anN[shh] password is guarantee to not reveal the name of the incoming ambient
to the target context (cf. rules (CO-IN/OUT-SILENT) in Table 9. Rule (PATH) follows the
same intuition: it is applicable only whenE1tE2 is defined.

Tables 8 to 10 define the typing of processes. The rules in Table 8 are standard. The
rules in Table 9 complement those in Table 7 in governing mobility. Rule (AMB) is standard,
and construes the typeN[E] as the interface of the ambientM for any process that knows the
nameM: any such process may have soundE exchanges withM, as the process enclosed
within M has upward exchanges of this type. The rules for the mobility co-actions provide
similar guarantees for the exchanges a process may have with ambients whose name the
process gets to know by exercising the co-capability. In this case, it is the type of the
passwordM that acts as interface: ifM has a typeN[W̃] as in rules (CO-IN) and (CO-OUT),
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(PROJECTION)

Γ,a : W,Γ′ ` �

Γ,a : W,Γ′ ` a : W

(PATH)
Γ ` M1 : C[E1] Γ ` M2 : C[E2]

Γ ` M1.M2 : C[E1tE2]

(IN)
Γ ` M : N[E] Γ ` N : N[F ] (F 6 G)

Γ ` in〈M,N〉 : C[G]

(OUT)
Γ ` M : N[E] Γ ` N : N[F ] (F 6 G)

Γ ` out〈M,N〉 : C[G]

Table 7: Good Messages:Γ ` M : W

(PAR)
Γ ` P : [E,F ] Γ ` Q : [E,F ]

Γ ` P | Q : [E,F ]

(REPL)
Γ ` P : [E,F ]

Γ ` !P : [E,F ]

(DEAD)
Γ ` �

Γ ` 0 : [E,F ]

(NEW)
Γ,n : N[G] ` P : [E,F ]

Γ ` (νn:N[G])P : [E,F ]

Table 8: Good processes I:Γ ` P : [E,F ]

we are guaranteed that̃W is indeed the type of the exchanges of the incoming ambient.
If instead the password type isN[shh], no such guarantee can be made, as easily verified
inspecting (PREFIX) and the communication rules in Table 10). Accordingly, rules (CO-
IN-SILENT) and (CO-OUT-SILENT) require that the continuation processP makes no use
of the variablex and, hence, of the name of the incoming ambient (unless that is already
known to P). An alternative, and still sound solution, would be to generalise the (CO-
IN) and (CO-OUT) rules by (systematically) replacing the typeW̃ with a generic exchange
type G. Following this, rules (CO-IN-SILENT) and (CO-OUT-SILENT) could be dispensed
with. On the other hand, the resulting system would be less general than the present one,
in that any ambient using a silent password for mobility would be required to be upward
silent. The current solution, instead, has no such constraint: the typing rules only prevent
upward exchanges with the processes enclosed into ambients reached by the use of a silent
password. The last set of rules, in Table 10, are those for input output and contain no
surprise. In rules for output the judgementΓ ` M̃ : W̃ stands for the judgementsΓ `Mi : Wi

for i = 1, . . . ,n whenW̃ = W1×·· ·×Wn.

Proposition 5.1 (Subject Reduction).If Γ ` P : T, and P−→ Q, thenΓ ` Q : T.

Proof. A rather standard proof. The only novelties are the presence of substitutions in the
reductions for mobility, and the use of passwords. For the latter, the essence of the proof
is in the following observation: ifn[in〈m,k〉.P1 | P2] (similarly n[out〈m,k〉.P1 | P2]) is well
typed forn : N[E], thenk : N[F ] for F 6 E, andP1 | P2 : [G,E]. Perhaps interestingly, it
need not be the case thatF = E. In particular, it could be thatF = shh, in which case the
context probingn with k must know the namen, hence its typeN[E], to have exchanges
with n[P1 | P2].
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(AMB)
Γ ` M : N[E] Γ ` P : [F,E]

Γ ` M[P] : [G,H]

(PREFIX)
Γ ` M : C[F ] Γ ` P : [E,G] (F 6 G)

Γ ` M.P : [E,G]

(CO-IN)

Γ ` M : N[W̃] Γ,x : N[W̃] ` P : [E,F ]

Γ ` ın(x,M).P : [E,F ]

(CO-OUT)

Γ ` M : N[W̃] Γ,x : N[W̃] ` P : [E,F ]

Γ ` out(x,M).P : [E,F ]

(CO-IN-SILENT)
Γ ` M : N[shh] Γ ` P : [E,F ] (x 6∈ fv(P))

Γ ` ın(x,M).P : [E,F ]

(CO-OUT-SILENT)
Γ ` M : N[shh] Γ ` P : [E,F ] (x 6∈ fv(P))

Γ ` out(x,M).P : [E,F ]

Table 9: Good Processes II (mobility)

6 Encoding theπ calculus

As a standard test of expressive power for NBA, we give an encoding of the following,
choice-free fragment of the synchronousπ-calculus [15].

P∈ π ::= a〈b̃〉.P | a(x̃).P | P|P | (νa)P

There are several choices for the encoding. One solution is obtained directly from the
channel encoding of [3] now tailored to the new semantics of communication.

{| ā〈b̃〉.P|} = (νr)a[〈b̃, r〉] | (r[()ˆ̂.〈〉ˆ̂] | ()r .{|P|}) r 6∈ fn(P)

{|a(x̃).Q|} = (x̃,y)a〈〉y.{|Q|} y 6∈ fv(Q)

A different, somewhat more compact encoding, illustrates the power of the binding mech-
anisms associated with NBA’s co-actions. We only show the encoding of channels, the
remaining clauses are defined compositionally.

〈〈a〈b̃〉.P〉〉 , (νp)( a[〈b̃〉ˆ̂.a[out〈a, p〉]] | out( , p).〈〈P〉〉 ) (p 6∈ fn(P))

〈〈a(x̃).P〉〉 , (x̃)a.〈〈P〉〉

Given the direct nature of the encoding, its operational correctness is simple to prove. We do
need, however, some preliminary definitions. First, we rely on the commitment semantics
of theπ calculus given in Table 11. The definition is adapted from [14]: it uses concretions
of the form(νp̃)〈q̃〉P with {p̃} ⊆ {q̃}, and relies on the same conventions for the notation
(νn)O andO | Q defined in §2 (on page 7).

Then we introduce anexpansionrelation [1] for NBA, which is the standard asymmetric
variant of the reduction barbed congruence∼=. The formal definition is as follows, where
indicatesoneor more reduction steps .
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(INPUT)

Γ, x̃:W̃ ` P : [W̃,E]

Γ ` (x̃:W̃).P : [W̃,E]

(OUTPUT)

Γ ` M̃ : W̃ Γ ` P : [W̃,E]

Γ ` 〈M̃〉.P : [W̃,E]

(INPUT ˆ̂)

Γ, x̃:W̃ ` P : [E,W̃]

Γ ` (x̃:W̃)ˆ̂.P : [E,W̃]

(OUTPUT ˆ̂)

Γ ` M̃ : W̃ Γ ` P : [E,W̃]

Γ ` 〈M̃〉ˆ̂.P : [E,W̃]

(INPUT M)

Γ ` M : N[W̃] Γ, x̃:W̃ ` P : [G,H]

Γ ` (x̃:W̃)M.P : [G,H]

(OUTPUT N)

Γ ` N : N[W̃] Γ ` M̃ : W̃ Γ ` P : [G,H]

Γ ` 〈M̃〉N.P : [G,H]

Table 10: Good Processes III (input/output)

Definition 6.1 (Expansion [20]). A relationR is anexpansionif wheneverP R Q,

i) for each namen, P↓n impliesQ⇓n, andQ↓n impliesP↓n.

ii) P−→ P′ impliesQ =⇒−→=⇒ Q′ with P′ R Q′

iii) Q−→ Q′ impliesP R Q′ or P−→ P′ with P′ R Q′

We note by<∼ the largest expansion relation preserved by contexts, and say thatQ expands
P if P <∼ Q, that is ifP R Q for some expansionR.

We give a simple, but useful version of one of the algebraic laws given in the previous
section, now stated in terms of the expansion relation. We writeQ >∼ P wheneverP <∼ Q.

Lemma 6.2. (νp)(n[m[out〈n, p〉.P]] | out(x, p).Q) >∼ (νp)(m[P] | Q{x := m})

Proof. Let LHS and RHSdenote the left-hand and right-hand sides, respectively. First
observe thatn[0] >∼ 0. Also, it is easy to see thatLHS−→ RHS| n[0] is the only reduction
for LHS. Now assumeLHS >∼ RHS. Clearly, if RHS↓l thenLHS⇓l ; furthermore,LHS
exhibits no barbs, hence the second part of condition (i) holds trivially. For the remaining
conditions, ifRHSmoves, as inRHS−→ P, we haveLHS−→RHS| n[0]−→ P | n[0], and
P | n[0] >∼ P because>∼ is closed by parallel composition. IfLHSmoves, as inLHS−→ P,
thenP≡ RHS| n[0], and we know thatRHS| n[0] >∼ RHS. This line of reasoning applies
unchanged when we close by contexts, asC[LHS] −→ R implies thatR≡ C′[LHS], with
C[0]−→C′[0], or R≡C[RHS].

As an immediate corollary, we have(νp)(n[m[out〈n, p〉]] | out(x, p).Q) >∼ (νp)Q{x := m}.
We will use this latter relation in the proof of the following result.

Lemma 6.3 (Operational Correspondence).Let P∈ π.

1. Assume P
α

−−→ O. Then the following cases arise:
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(INPUT)

a(x̃).P
a(b̃)
−−→ P{x̃ := b̃}

(OUTPUT)

a〈b̃〉.P
a

−−→ (ν)〈b̃〉P

(COMM)

P
a

−−→ (νc̃)〈b̃〉P′ Q
a(b̃)
−−→ Q′ fn(Q)∩{c̃}= /0

P | Q
τ

−−→ (νc̃)(P′ | Q′)

(RES)

P
α

−−→ O a 6∈ fn(α)

(νa)P
α

−−→ (νa)O

(PAR)

P
α

−−→ O

P | Q
α

−−→ O | Q

Table 11: Commitments for the pi-calculus

(a) α = a(b̃), O is a process and〈〈P〉〉
(b̃)a

−−→ >∼ 〈〈O〉〉

(b) α = a, O≡ (νc̃)〈b̃〉P′ and 〈〈P〉〉
a put 〈−〉
−−−−−−→ (νc̃)〈b̃〉P∗ with P∗ >∼ 〈〈P′ 〉〉

(c) α = τ, O is a process and〈〈P〉〉
τ

−−→ >∼ 〈〈O〉〉

2. Assume〈〈P〉〉
α

−−→ O. Then the following cases arise:

(a) α = (b̃)a, O is a process and∃ P′ ∈ π such that P
a(b̃)
−−→ P′ with O>∼ 〈〈P′ 〉〉 .

(b) α = a put 〈−〉, O≡ (νc̃)〈b̃〉P1 and∃ P′ ∈ π s.t. P
a−→ (νc̃)〈b̃〉P′ and P1 >∼ 〈〈P′ 〉〉

(c) α = τ, O is a process, and∃ P′ ∈ π such that P
τ

−−→ P′ and O>∼ 〈〈P′ 〉〉

Proof. Part 1 is proved by transition induction. We distinguish the following cases.

. P
α

−−→ O is a(x̃).P1

a(b̃)
−−→ P1{x̃ := b̃}. By definition, 〈〈P〉〉 = (x)a.〈〈P1〉〉 , and then

〈〈P〉〉
(b̃)a

−−→ 〈〈P1〉〉{x̃ := b̃}. We are done since〈〈P1〉〉{x̃ := b̃}= 〈〈P1{x̃ := b̃}〉〉 .

. P
α

−−→ O is a〈b̃〉.P1
a

−−→ (ν)〈b̃〉P1. By definition,

〈〈P〉〉 = (νp)(a[〈b̃〉ˆ̂.a[out〈a, p〉]] | out(x, p).〈〈P1〉〉)
a put 〈−〉
−−−−−−→ 〈〈P〉〉(ν)〈b̃〉P∗

for p /∈ (fn(P1)∪{b̃}), andP∗ ≡ (νp)(a[a[out〈a, p〉]] | out(x, p).〈〈P1〉〉). Sincex 6∈
fv(P1), by Lemma 6.2,P >∼ 〈〈P1〉〉 as desired.
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. P
α

−−→ O is P1 | P2
τ

−−→ (νc̃)(P′1 | P′2), derived fromP1
a

−−→ (νc̃)〈b̃〉P′1, and

from P2

a(b̃)
−−→ P′2, with fn(P2)∩ {c̃} = /0. By induction hypothesis, there existP∗1

and P∗2 such that〈〈P1〉〉
a put −
−−−−→ (νc̃)〈b̃〉P∗1 and 〈〈P2〉〉

(b̃)a

−−→ P∗2 , with P∗1 >∼ 〈〈P′1〉〉
andP∗2 >∼ 〈〈P′2〉〉 . An inspection of the translation shows that fn(P2)∩{c̃}= /0 implies

fn(〈〈P2〉〉)∩{c̃}= /0. Then〈〈P1 | P2〉〉
τ

−−→ (νc̃)(P∗1 |P∗2). Since>∼ is closed by con-
text, fromP∗1 >∼ 〈〈P′1〉〉 andP∗2 >∼ 〈〈P′2〉〉 we have(νc̃)(P∗1 | P∗2) >∼ (νc̃)(〈〈P′1〉〉 | 〈〈P′2〉〉).
We are done since(νc̃)(〈〈P′1〉〉 | 〈〈P′2〉〉) = 〈〈(νc̃)(P′1 | P′2)〉〉 .

. The remaining cases, of the two structural transitions (RES) and (PAR) follow easily
by the induction hypothesis and the fact>∼ is closed under restriction and parallel
composition, respectively.

Part 2 is proved by induction on the structure ofP. The caseP = 0 is immediate.

. P = a(x̃).P1. By definition, 〈〈P〉〉 = (x̃)a.〈〈P1〉〉 , thusα = (b̃)a andO = 〈〈P1〉〉{x̃ :=

b̃}. On the other hand, inπ one hasP
a(b̃)
−−→ P1{x̃ := b̃}, and we are done since

〈〈P1{x̃ := b̃}〉〉 = 〈〈P1〉〉{x̃ := b̃}.

. P = a〈b̃〉.P1. By definition, 〈〈P〉〉 = (νp)(a[〈b̃〉ˆ̂.a[out〈a, p〉]] | out(x, p).〈〈P1〉〉), with
p /∈ (fn(P1)∪{b̃}). ThusO = (ν)〈b̃〉P∗1 , derived withα = a put −, and withP∗1 ≡

(νp)(a[a[out〈a, p〉]] | out(x, p).〈〈P1〉〉), On the other hand, inπ, P
a

−−→ (ν)〈b̃〉P1.
Now P∗1 >∼ 〈〈P1〉〉 follows by Lemma 6.2.

. P = P1 | P2. By definition 〈〈P1 | P2〉〉 = 〈〈P1〉〉 | 〈〈P2〉〉 . If 〈〈P1〉〉 | 〈〈P2〉〉
α−→ O de-

rives by (PAR) the proof follows directly by the induction hypothesis. Otherwise, the
transition must be of the form〈〈P1〉〉 | 〈〈P2〉〉

τ−→ (νc̃)(P∗1 | P∗2), derived by (COMM)

from 〈〈P1〉〉
(b̃)a

−−→ P∗1 and from 〈〈P2〉〉
a put −
−−−−→ (νc̃)〈b̃〉P∗2 , for fn(〈〈P1〉〉)∩{c̃} = /0.

The proof follows now routinely.

. P = (νn)P1. This case follows by the induction hypothesis and the fact that>∼ is a
congruence.

Lemma 6.3, extends readily to weak reductions. The proof of the following proposition
derives directly from [2] (cf.loc. cit., Proposition 3.6, pg 216).

Proposition 6.4. Let P∈ π:

1. if P=⇒ P′ then 〈〈P〉〉 =⇒ >∼ 〈〈P′ 〉〉
2. if 〈〈P〉〉 =⇒ Q, then there exists P′ such that P=⇒ P′ and Q>∼ 〈〈P′ 〉〉
3. P⇓n if and only if 〈〈P〉〉 ⇓n.

Proof. Items 1 and 2 are both proved by induction on the number of reduction steps. Item
3 follows from 1 and 2.
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1. The base case is trivial. For the inductive case, assumeP =⇒n−1 P∗ −→ P′. By
induction hypothesis〈〈P〉〉 =⇒ R >∼ 〈〈P∗ 〉〉 . FromP∗ −→ P′, by Lemma 6.3(1) we
know that〈〈P∗ 〉〉 −→ >∼ 〈〈P′ 〉〉 . FromR>∼ 〈〈P∗ 〉〉 and 〈〈P∗ 〉〉 −→ >∼ 〈〈P′ 〉〉 , we know
thatR=⇒ >∼ 〈〈P′ 〉〉 . Thus〈〈P〉〉 =⇒ R=⇒ >∼ 〈〈P′ 〉〉 as desired.

2. The base case is again trivial. For the inductive step, assume〈〈P〉〉 =⇒ Q′ −→ Q.
By induction hypothesis there existsP′ ∈ π such thatP =⇒ P′ with Q′ >∼ 〈〈P′ 〉〉 .
From this, and fromQ′ −→ Q we have two possible cases: eitherQ >∼ 〈〈P′ 〉〉 , or
〈〈P′ 〉〉 −→P′′ >∼Q. In the first case we are done. In the second, by Lemma 6.3(2) there
is P∗ such thatP′−→P∗ with P′′ >∼ 〈〈P∗ 〉〉 . Thus, there isP∗ such thatP=⇒P′−→P∗

with Q >∼ P′′ >∼ 〈〈P∗ 〉〉 , as desired.

3. From the definition of the encoding and Theorem 2.7, it is verified thatP↓n if and
only if 〈〈P〉〉 ↓n.

Then, for the (only if) part of the claim, assumeP =⇒ P′ ↓n. By (1) we have that
〈〈P〉〉 =⇒ R>∼ 〈〈P′ 〉〉 . ThusR⇓n and hence also〈〈P〉〉 ⇓n.

For the (if) part, assume〈〈P〉〉 =⇒Q↓n. By (2) there existsP′ such thatP =⇒ P′ and
Q >∼ 〈〈P′ 〉〉 . Thus〈〈P′ 〉〉 ↓n which impliesP′ ↓n and thenP⇓n.

Exploiting this proposition together with the compositionality of〈〈 · 〉〉 , we can show that the
encoding is sound, in the sense below. Let∼= on π terms denote the reduction barbed con-
gruence induced by the following definition of barb:P↓n just in caseP≡ (νp̃)(n〈−〉.Q |R),
for n 6∈ {p̃}.

Theorem 6.5 (Equational Soundness).If 〈〈P〉〉 ∼= 〈〈Q〉〉 in NBA then P∼= Q in π.

Proof. LetS = {(P,Q) | 〈〈P〉〉 ∼= 〈〈Q〉〉}: we show thatS is a reduction barbed congruence.
S is easily shown to be a congruence. By the compositionality of the encoding, given

any processP and contextC[·], there exists a contextD such that〈〈C[P]〉〉 = D[〈〈P〉〉 ]. Let
thenPS Q, and letC[·] be any context: we need to show thatC[P]S C[Q], that is〈〈C[P]〉〉 ∼=
〈〈C[Q]〉〉 . By compositionality, we know that〈〈C[P]〉〉 = D[〈〈P〉〉 ] and 〈〈C[Q]〉〉 = D[〈〈Q〉〉 ].
Then the proof follows directly, because∼= (on NBA terms) is a congruence.

Next, we need to show thatS is barb preserving and reduction closed. AssumePS Q.

. If P↓n, then by an inspection of the encoding we see that〈〈P〉〉 ↓n, which in turn
implies 〈〈Q〉〉 ⇓n and henceQ⇓n, as desired, by Proposition 6.4(3).

. Now assumeP−→ P′. By Lemma 6.3(1) we know that〈〈P〉〉 −→ R >∼ 〈〈P′ 〉〉 . Since
〈〈P〉〉 ∼= 〈〈Q〉〉 , we findSsuch that〈〈Q〉〉 =⇒ S∼= R. Then, by Proposition 6.4(2), there
existsQ′ such thatQ =⇒ Q′ andS>∼ 〈〈Q′ 〉〉 . Then we have〈〈P′ 〉〉 <∼ R∼= S>∼ 〈〈Q′ 〉〉 ,
thus 〈〈P′ 〉〉 ∼= 〈〈Q′ 〉〉 , that isP′ S Q′ as desired.

. The proofs of the symmetric cases are exactly the same.
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7 NBA versus BA

In order to relate BA and NBA formally and to characterise the differences between the
respective semantics of communication, we present an encoding of BA into an extended
version of NBA. Precisely, we enrich NBA with a limited, focused form of nondeterminism
that we use in the encoding to circumscribe the communication interferences typical of BA
(cf. page 3). This approach has the advantage of localising the gap between the two calculi
in a single construct. Formally, we use below a sum operator with a semanticsà la CCS,
that isP+Q−→ R if eitherP−→ Ror Q−→ R.

The encoding is defined parametrically over four namesn,mv,pr,pw: n is the name of
the ambient (if any) that encloses the process that we are encoding, while the remaining
three names are used as passwords. To ease the notation, we use the following shorthands:
cross = !ın(x,mv) | !out(x,mv), in〈n〉 = in〈n,mv〉, andout〈n〉 = out〈n,mv〉. We define
two mutually recursive translations,〈〈 · 〉〉n and{| · |}n. The interesting cases are below.

〈〈P〉〉n = cross | {|P|}n

{|m[P] |}n = m[〈〈P〉〉m]
{|(x)a.P|}n = (x)a.{|P|}n

{|(x).P|}n = (x).{|P|}n +(x)ˆ̂.{|P|}n + out(y,pw).(x)y.{|P|}n y /∈ fn(P)
{|(x)↑.P|}n = (νp)p[out〈n,pr〉.(x)ˆ̂.in〈n, p〉.〈x〉ˆ̂ ] | ın(y, p).(x)y.{|P|}n p,y /∈ fn(P)
{|〈M〉a.P|}n = 〈M〉a.{|P|}n

{|〈M〉.P|}n = 〈M〉.{|P|}n + 〈M〉ˆ̂.{|P|}n + out(y,pr).〈M〉y.{|P|}n y /∈ fn(P)
{|〈M〉↑.P|}n = (νp)p[out〈n,pw〉.〈M〉ˆ̂.in〈n, p〉.〈〉ˆ̂ ] | ın(y, p).()y.{|P|}n p,y /∈ fn(P)

The remaining cases are defined compositionally. The translation〈〈 · 〉〉n provides unbound-
edly many co-capabilities, at all nesting levels, so that ambient mobility in BA is rendered
faithfully. As for the translation of the communication primitives, the intuition is the fol-
lowing. The upward exchanges of a BA term are dealt with by the taxi ambients that exit
the enclosing ambientn to deliver output (or collect input) and then return ton to unlock the
continuationP. The use of restricted names as passwords is essential here for the continu-
ationP to be able to identify its helper taxi ambient without risk of confusion. As for the
translation of a local input/output, the three branches of the choice reflect the three possible
synchronisations: local, from upward, from a nested ambient. Note in particular that the
right-most branch of these choices may only match upward requests that encode upward
requests from BA terms: this is guaranteed by the use of the two passwordspr andpw that
regulate the moves of the read/write taxi ambients. The use of two different passwords en-
sure that they do not interfere with each other, nor they interfere with other BA ambients’
moves (the latter usemv).

Using the algebraic laws in §4 we can show that the encoding is operationally correct
(and equationally sound) forsingle-threadedterms. Here, the notion of single-threadedness,
although morally identical to SA’s, needs to be adapted to NBAto record that engaging
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in inter-ambient communications is an activity across ambient boundaries that may cre-
ate grave interferences. For instance,a[〈x〉ˆ̂ | out〈n,k〉.P] cannot be considered single-
threaded, as illustrated by, say, the contextout(x,k).R | n[ (x)a.Q | − ]. To ease the presen-
tation, we work with a direct syntactic characterisation of single-threadedness, rather than
providing a type system as in [11]. We say thatP is single threaded if it does not contain
any subprocess of the formS | S, whereS is built according to the following productions:

S::= (νp̃) π1 . . .πk.M.S | (νp̃) π1 . . .πk.〈M〉ˆ̂.S | (νp̃) π1 . . .πk.(x)ˆ̂.P (k≥ 0)

Theorem 7.1. If P and Q are single-threaded , then〈〈P〉〉n
∼= 〈〈Q〉〉n implies P∼= Q.

Proof. Follows the same pattern as the one given for theπ calculus. with∼= on BA terms
denoting the reduction barbed congruence arising in BA from the following definition of
barb:P↓n just in caseP≡ (νm̃)(n[〈−〉↑.Q | R] | S), for {n} 6∈ {m̃}.

The single-threadedness hypothesis on the two source termsP andQ is needed to guar-
antee the atomicity of the protocol that implements an upward exchange (once the taxi
ambient leavesn, we need to make sure that no process insiden causesn to move).

Typed Encoding. The encoding extends smoothly to the typed case. The definition is
given inductively on the structure of terms, and relative a type environment that records
the types of the free names and variables in such terms. The encoding of terms presup-
poses a corresponding encoding of types, which is indeed the most interesting aspect of the
definition.

The structure of types in BA is similar to that of types in NBA, but somewhat more
complex. Specifically, BA-ambient types are formed asamb[E,F ], whereE is the type of
local exchanges, andF the type of the upward exchanges. Capabilities types, in turn, have
the formcap[E], denoting capabilities exercised in ambients with upward exchanges of type
E. Finally, process types have exactly the same structure (and interpretation) as the process
types of NBA.

The different structure of ambient and capability types in the two calculi reflects the
different semantics of communication, and in particular, the fact that in BA the upward
exchanges of a migrating ambient may interfere with the local exchanges of the ambients
traversed by the ambient on the move. The translation of types is given below:

{|amb[E,F ] |}= N[{|E |}], {|cap[E] |}= C[shh], {|shh |}= shh, {| [E,F ] |}= [{|E |},{|E |}].

Observe that the type traced in{|amb[E,F ] |} is (the encoding of) the type of the local
exchanges: this is because the upward exchanges of in BA are implemented by the helper
taxi ambients, whose type will trace the (encoding of) the typeF . The local exchanges
(again of the source term) are used for typing the upward and local exchanges generated
by the translation. The translation of the capability and process types follows the same
intuitions, and are direct consequence of the fact that the upward exchanges in the source
ambient types are disregarded in the translation (for the reasons we just explained).

The encoding of terms is given in Table 12. The main difference from the untyped case
is in the use of a family of passwordsprW andpwW, indexed on types, with the implicit
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〈〈Γ.P〉〉n = cross | {|Γ.P|}n

{|Γ.0|}n = 0

{|Γ.M.P|}n = M.{|Γ.P|}n

{|Γ. (νa : W)P|}n = (νa : {|W |}){|Γ,a : W .P|}n

{|Γ.P | Q|}n = {|Γ.P|}n | {|Γ.Q|}n

{|Γ. !P|}n = !{|Γ.P|}n

{|Γ.m[P] |}n = m[〈〈Γ.P〉〉m]

{|Γ. (x:W)↑.P|}n = (νp : N[{|W |}]) p[out〈n,pr{|W |}〉.(x:{|W |})ˆ̂.in〈n, p〉.〈x〉ˆ̂ ] |

ın(y, p)(x:{|W |})p.{|Γ,x:W .P|}n

whereΓ(n) = amb[E,W] andy /∈ fn(P)

{|Γ. (x:W)aP|}n = (x:{|W |})a{|Γ,x:W .P|}n whereΓ(a) = amb[W,E]

{|Γ. 〈M〉↑P|}n = (νp : N[{|W |}]) p[out〈n,pw{|W |}〉.〈M〉ˆ̂.in〈n, p〉.〈M〉ˆ̂ ] |

ın(y, p)(x:{|W |})p{|Γ,x:W .P|}n

wherex,y 6∈ fn(P) andΓ(n) = amb[E,W]

{|Γ. 〈M〉aP|}n = 〈M〉a{|Γ.P|}n

{|Γ. (x:W)P|}n = (x:{|W |}){|Γ,x:W .P|}n +(x:{|W |})ˆ̂{|Γ,x:W .P|}n+

+ out(y,pw{|W |})(x:{|W |})y{|Γ,x:W .P|}n

whereΓ(n) = amb[W,E]) andy /∈ fn(P)

{|Γ. 〈M〉P|}n = 〈M〉{|Γ.P|}n + 〈M〉ˆ̂{|Γ.P|}n + out(y,pr{|W |})〈M〉y{|Γ.P|}n

whereΓ(n) = amb[W,E]) andy /∈ fn(P)

Table 12: Typed Encoding of BA into NBA with guarded choice

assumption thatprW,pwW : N[W] for all (NBA) typesW. This indexing is required in the
typed case, for each of these passwords enables exchanges of the corresponding type. The
same would seem needed for themv password. However, since the co-capabilities that
the translation introduces to enable mobilityà la BA do not have any continuation, we can
safely keep with the solemv, provided that we stipulatemv : N[shh].

Theorem 7.2 (Soundness of Typing).If Γ`P : [E,F ] is derivable in the simple type system
for BA (cf. [3], pg.46) andΓ(n) = N[E,F ], then〈〈Γ〉〉 ` 〈〈Γ.P〉〉n : {| [E,F ] |} is derivable in
NBA.

Proof. By induction on the derivation ofΓ ` P : [E,F ].
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8 Examples

We discuss two further examples that illustrate the power of the new constructs for commu-
nication and mobility of NBA in programming non-trivial protocols for distributed systems.

8.1 A point-to-point communication server

Our first example is a system that represents a server for point-to-point communication.

w(k) = k[ ın(x,k).ın(y,k).(!(z)x.〈z〉y | !(z)y.〈z〉x) ]

Ambient w(k) is a bidirectional forwarder for any pair of incoming ambients. An agent
willing to participate in a point-to-point communication must know the passwordk and
should be implemented as the processA(a,k,P,Q) = a[in〈k,k〉.P | out〈k,k〉.Q], whereP
performs the expected (upward) exchanges. A complete implementation for the point-to-
point server can be then defined as shown below.

p2p(k) = (νr) ( r[〈〉ˆ̂ ] | ! ()r .(w(k) | out( ,k).out( ,k).r[〈〉ˆ̂ ]) )

The processp2p(k) accepts a pair of ambients within the forwarder, provides them with the
necessary support of the point-to-point exchange and then lets them out before preparing a
new instance ofw(k) for a new protocol session. Given the configuration

p2p(k) | A(k,a1,P1,Q1) | · · · | A(k,an,Pn,Qn),

we are guaranteed that at most one pair of agents can be active withink at any given time (k
is locked until the two ambients are insidek). In particular, one has:

(νk)( p2p(k) | A(k,a1,〈M〉ˆ̂.P1,Q1) | A(k,a2,(x)ˆ̂.P2{x},Q2) | Πi∈I A(K,ai ,Ri ,Si) )
=⇒∼= (νk)( p2p(k) | a1[P1 | Q1] | a2[P1{x := M} | Q2] | Πi∈I A(K,ai ,Ri ,Si) )

This says that once (and if) the two agents have reached the forwarder, no other agent
knowing the keyk can interfere and prevent them from completing their exchange. The
equivalence above follows by the mobility laws of Theorem 4.1 and the laws of Theorem
4.2. In particular, once the two ambients are back at top level, the currently active instance
of the forwarderk has the formk[!(z)a1.〈z〉a2|!(z)a2.〈z〉a1]∼= 0.

The use of the forwarder to implement a point-to-point communication protocol may
at first appear artificial, for it would seem that two ambients wishing to communicate are
likely to know their partner’s name, and could then interact via a simpler medium. Indeed,
in NBA the example can be simplified with this assumption. In BA, instead, the knowledge
of names still leaves a number of problems to be solved, due to possible communication
interferences. Consider implementing the protocol without using a forwarder, as shown
below.

a[in〈b〉.in〈k〉.P] | b[k[!(x).〈x〉a | !(x)a.〈x〉] | Q]

ProcessQ can read from/write tok to exchange values withP insidea, but it is not obvious
whatP should do. Withk as given above,P should use local communication to talk with
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k (hence withQ): but then, to avoid interference with its own local exchanges,P would
need to redirect all the latter to a private ambient. There are similar problems with other
possible implementations fork. A first solution isk[!(x).〈x〉]: this, however, is problem-
atic becausea (or b) may end up re-reading their own messages. A second solution is
k[!(x).〈x〉 | (x)↑.〈x〉a]. Here, the problem is that the upward read byk may mistakenly syn-
chronise with local output inb that was not intended to be fora. The local exchanges in
b would again need to be protected from this kind of interference. Similarly for the local
exchanges ina.

8.2 A print server

Our next example implements a print server to print jobs arriving off the network in the
order of arrival. We give the implementation in steps. First consider the following process
that assigns a progressive number to each incoming job. With abuse of notation we use here
natural numbers as passwords.

enqueue(k) = (νc) ( c[〈1〉ˆ̂ ] | !(n)c.ın(x,k).〈n〉x.c[〈n+1〉ˆ̂ ])

The (private) ambientc holds the current value of the counter. The process accepts a job
and delivers it the current number. Then, it updates the counter and prepares for the next
round. This can be turned into a print server mechanism:

prtsrv(k) = k[ enqueue(k) | print ]
print = (νc) ( c[〈1〉ˆ̂ ] | !(n)c.out(x,n).(data)x.(P{data} | c[〈n+1〉ˆ̂ ])

job(M,k) = (νp)p[ in〈k,k〉.(n)ˆ̂.(νq)q[out〈p,n〉.〈M〉ˆ̂ ] ]

The processjob(M,k) enters the serverprtsrv(k), it is assigned a number to be used as a
password for carrying the jobM to the printer processP. (Note that the use of passwords is
critical here).

This situation appears hard to implement naturally with SA(P) or BA. In SA(P) because
one would need to know the names of the incoming jobs to be able to assign them their
numbers. In BA because dequeuing the jobs (according to the intended FIFO policy) re-
quires a test of the number a job has been assigned, and an atomic implementation of such
test is problematic, if possible at all.

9 A Characterization of Barbed Congruence

We conclude the analysis of NBA by studying an alternative labelled transition system
whose associated notion of bisimilarity fully characterises barbed congruence.

We have not found a counter-example to the incompleteness of≈c. There is however
some indication that this relation might be strictly contained in barbed congruence. The
problem is the first-order transitions that enable ambient transitions. To exemplify, consider

the case of the input prefix(x)ˆ̂, and the associated transitionP
(M)ˆ̂−→ P′. To show that≈c

fully characterises∼=, one needs to find a distinguishing context for the label(M)ˆ̂. This
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context is typically defined asC[·] = m[[·]] | 〈M〉m.R, with R exhibiting some fresh barb so
as to probe the label. The problem is that this context tests the continuationP within the
ambientn, whereas≈c testsP “at top level”. Andn[P]∼= n[Q] does not imply thatP∼= Q,
sincen[[·]] blocks a number of actions forP andQ that could distinguish them.

A first attempt to solve the problem is to use transition of the formP
(M)ˆ̂m−→ m[P′]. These

are not quite right, however, because the resulting relation of bisimilarity is not a congru-
ence. To make bisimilarity a congruence, we generalise this idea, and replace the transition

P
(M)ˆ̂−→P′ with the higher-order transitionP

(M)ˆ̂m[R]
−−−−−→ m[P′ | R]. As we prove in this section,

the labelled bisimilarity arising from transitions of this form is indeed closed by context. In
addition, it also coincides with barbed congruence.

9.1 A refined labelled transition system

The set of (first-order) labels are defined as in Table 2. We introduce a new class of concre-
tions of the form〈•〉P, with P a process, meant to tag our first order transitions. The usual
conventions for composition and restrictions apply, namely:

. 〈•〉P | P′ , 〈•〉(P | P′)

. (νp̃)〈•〉P , 〈•〉(νp̃)P

Visible transitions. The transitions (OUTPUT), (PUT) and (EXIT ) are as in Table 3, and
so are the transitions (INPUT) and (CO-CAP) whenη 6= ˆ̂, and whenπ(x) = out(x,k), re-
spectively. The remaining transitions are given below.

(CAP)

M ∈ {in〈n,k〉,out〈n,k〉}

M.P
M

−−→ 〈•〉P

(CO-CAP)

π(x) ∈ {ın(x,k),out(x,k)}

π(x).P
π(n)
−−→ 〈•〉P{x := n}

(PATH)

M1.(M2.P)
α

−−→ O

(M1.M2).P
α

−−→ O

(INPUT̂̂ )

(x)ˆ̂.P
(M)ˆ̂
−−→ 〈•〉P{x := M}

(GET)

P
(M)ˆ̂
−−→ 〈•〉P′

m[P]
m get M
−−−−−→ m[P′]

(ENTER)

P
in〈n,k〉
−−−−→ 〈•〉P′

m[P]
enter〈n,k〉
−−−−−−→ (ν)〈m[P′]〉0

(CO-ENTER)

P
ın(n,k)
−−−−→ 〈•〉P′

m[P]
m enter(n,k)
−−−−−−−−→ (ν)〈P′〉0

(EXIT )

P
out〈n,k〉
−−−−−→ 〈•〉P′

m[P]
exit〈n,k〉
−−−−−→ (ν)〈m[P′]〉0

Structural and τ transitions. As in Table 5 and Table 4, respectively.

Higher-order transitions. Those in Table 6, plus the following one:
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(PREFIX HO)

P
α

−−→ 〈•〉P′ α ∈ {(M)ˆ̂,cap 〈n,k〉, ın(n,k),out(n,k)}

P
αm[R]
−−−→ m[P′ | R]

Let now≈ f a denote the labelled bisimulation associated with the new transition system:
formally, ≈ f a is defined exactly as≈c in Definition 3.1. In particular, like≈c, also≈ f a

tests only transitions from processes to processes.

9.2 Full abstraction

The next two results establish the expected properties of≈ f a, namely that it contains≈c,
and is closed by contexts.

Theorem 9.1. ≈c ⊆ ≈ f a.

Proof. Follows from Theorem 3.5 (on page 21), and from Theorem 9.6, proved later in this
section.

Theorem 9.2.≈ f a is a congruence.

Proof. Similar to Theorem 3.4. Given the new structure of the transitions for the input
prefixes, the inductive proof must be conducted simultaneously on all operators, including
input prefixes. We only give the cases that are new or different from those in the proof of
Theorem 3.4. LetS be the least equivalence that contains≈ f a, is closed by substitution
and preserved by all operators. We show thatS is a bisimulation (with respect to the new
LTS).

. π.P S π.Q becauseP S Q. Assumeπ.P
λ−→ P′. Whenπ = M, with M a capability,

λ = Mm[R] for suitablem andR, and the transition derives fromM.P
M−→ 〈•〉P with

P′ ≡ m[P | R]. But then, by the same reasoning one hasM.Q
Mm[R]
−−−→ m[Q | R] and

thatm[P | R] S m[Q | R] follows by the induction hypothesis (asP S Q andS is a
congruence).

Whenπ(x)∈ {(x)ˆ̂, ın(x,k)}, λ = π(n)m[R] and the transition derives fromπ(x).P
π(n)−→

〈•〉P{x := n}, with P′ ≡m[P{x := n} | R]. The the proof follows by the induction hy-
pothesis, sinceS is closed under substitution and preserved by parallel composition
and ambient constructor.

. P | RS Q | RbecauseP S Q. The only new cases are those relative to the transi-
tions (PREFIX HO), whose labels are of the formαm[R1]. We take the case when
α = (M)ˆ̂ as representative. An inspection of the LTS shows that the transition in

question must have the formP | R
(M)ˆ̂m[R1]
−−−−−−→ m[S | R1], derived fromP | R

(M)ˆ̂−→ 〈•〉S.
We have two possible sub-cases, depending on whetherP or Rmoved.
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The first case is whenS≡ SP | R andP
(M)ˆ̂−→ 〈•〉SP. From this transition, we derive

P
(M)ˆ̂m[R | R1]
−−−−−−−−→ m[SP | R | R1] by (PREFIX HO). Then, by induction hypothesis, there

exists a weak transitionQ =⇒U
(M)ˆ̂m[R | R1]
−−−−−−−−→ V =⇒ Q′ with m[SP | R | R1] S Q′.

By examining the transition fromU we know that there existsZ such thatV ≡

m[Z | R | R1], andU
(M)ˆ̂−→ 〈•〉Z. Then one derivesU | R

(M)ˆ̂−→ 〈•〉(Z | R) by (PAR).

Thus we have:Q | R=⇒U | R
(M)ˆ̂m[R1]
−−−−−−→ m[Z | R | R1] =⇒ Q′, as desired.

The other case is whenS≡ P | SR, andR
(M)ˆ̂−→ 〈•〉SR. From this transition we derive

Q | R
(M)ˆ̂
−−→ 〈•〉(Q | SR) by (PAR). Then by an application of (PREFIX HO), we have

Q |R
(M)ˆ̂m[R1]
−−−−−−→ m[Q | SR | R1]. Summarising, forλ = (M)ˆ̂m[R1], we haveP |R λ−→

m[P | SR | R1], and we have found a weak transitionQ | R
λ=⇒ m[Q | SR | R1]. Then

the proof follows from the induction hypothesis and the fact thatS is closed by
context.

. The cases for the remaining constructs, namely ambient, restriction and parallel com-
positions are proved similarly.

Next we show that≈ f a and barbed congruence coincide. We start by defining the following
operator of internal choice, as in [12].

P⊕Q = (νn)(n[〈〉ˆ̂] | ()n.P | ()n.Q) (n 6∈ fn(P,Q))

Observe that the only possible activity inP⊕Q is a reduction to eitherP or Q. Until
that choice is made, the process cannot engage in any interaction. We can then define two
contexts that allow us to detect whether a generic process performs any action at all.

SPYin〈h1,h2, ·〉 = (νr)(ın(x,h1) | r[〈〉ˆ̂])⊕ (ın(x,h2) | r[〈〉ˆ̂]) | ()r .[·]

SPYout〈n,h1,h2, ·〉 = (νr)(out〈n,h1〉 | r[〈〉ˆ̂])⊕ (out〈n,h2〉 | r[〈〉ˆ̂]) | ()r .[·]

The ability to spy comes about whenh1 andh2 are fresh. Then, a spy context exhibits both
of barbs as long as the process plugged inside it has not moved. This is formalised by the
following lemmas. With abuse of notation we writeP↓n if P

α−→, whereα is a (first order)
label in Table 2, andn ∈ fn(α). Also, we say that a context isstatic if the hole does not
appear under a prefix or a replication.

The first lemma characterises those transitions that only involve the spy contexts and do
not touch the process that filled the hole.

Lemma 9.3. Let C[·] be a static context, R a process, n a name, and h1,h2 fresh names.

1. If C[SPYin〈h1,h2,R〉]
τ−→ P and P⇓h1,h2, then there exists a static context C′[·] such

that P= C′[SPYin〈h1,h2,R〉], and C[R] τ−→C′[R].
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2. If C[m[SPYout〈n,h1,h2,R〉]]
τ−→ P and P⇓h1,h2, then there exists a static context C′[·]

such that P= C′[m[SPYout〈n,h1,h2,R〉]], and C[m[R]] τ−→C′[m[R]].

Proof. By transition induction.

A further lemma allows the spy contexts to be removed.

Lemma 9.4. Let C1[·] and C2[·] be static contexts, R1 and R2 be (closed) processes, and
h1,h2 be fresh names. Then

1. C1[SPYin〈h1,h2,R1〉] ∼= C2[SPYin〈h1,h2,R2〉] implies C1[R1]∼= C2[R2]

2. If C1[m[SPYout〈n,h1,h2,R1〉]] ∼= C2[m[SPYout〈n,h1,h2,R2〉]] then
C1[m[R1]]∼= C2[m[R2]]

Proof. The proof is a generalisation of the corresponding lemma in [12]. For part 1, since
∼= is closed under restriction,

(νh1,h2)(C1[SPYin〈h1,h2,R1〉]) ∼= (νh1,h2)(C2[SPYin〈h1,h2,R2〉]).

Sinceh1 andh2 are fresh and theCi [·] are static contexts,

(νh1,h2)(Ci [SPYin〈h1,h2,Ri〉]) ≡ Ci [(νh1,h2)SPYin〈h1,h2,Ri〉],

for i ∈ {1,2}. Now, one shows by exhibiting the appropriate≈ f a-bisimulation that

(νh1,h2)SPYin〈h1,h2,R〉 ≈ f a R,

for all R. Since≈ f a implies∼=, we haveC1[R1]∼= C2[R2] as desired.

We also need a last simple property.

Lemma 9.5. P | R∼= Q | R andfn(R)∩ fn(P,Q) = /0 implies P∼= Q.

Proof. Let r̃ = fn(R) and observe that(νr̃)R∼= 0. Thus,P∼= P | (νr̃)R≡ (νr̃)(P | R) ∼=
(νr̃)(Q | R)≡Q | (νr̃)R∼= Q.

Theorem 9.6. If P∼= Q then P≈ f a Q.

Proof. We show that∼= is a≈ f a-bisimulation up to≡. TakeP∼= Q, and assumeP
λ−→ P∗.

We need to find aQ∗ such thatQ
λ=⇒ Q∗ andP∗ S Q∗ (equivalently,P∗ ∼= Q∗). We reason

by cases, depending onλ. We will often use the shorthandh = f [ın(x,h)], where f will
always be assumed fresh.

. λ = in〈n,k〉m[R]. Then the transition in question isP
λ

−−→ ≡m[P′ | R]. Define:

C[·] = m[ · | out〈n,h0〉 | SPYin〈h1,h2,R〉] | n[ın(x,k)] | out( ,h0).(h3⊕h4)
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with h0–h4 fresh. We haveC[P] τ−→ τ−→ τ−→m[P′ | SPYin〈h1,h2,R〉] | n[ ] | h3. Since,
P∼= Q we know thatC[Q] =⇒ Z ∼= m[P′ | SPYin〈h1,h2,R〉] | h3. Therefore,Z⇓h1,h2

andZ 6⇓h4. This implies that the transitions fromC[Q] have consumed the two co-
capabilities. In particular, we have:

C[Q] = m[Q | out〈n,h0〉 | SPYin〈h1,h2,R〉] | n[ın(x,k)] | out( ,h0).(h3⊕h4)

=⇒ τ−→ n[m[Q1 | out〈n,h0〉 | SPYin〈h1,h2,R〉]] | out( ,h0).(h3⊕h4)

=⇒ τ−→ m[Q2 | SPYin〈h1,h2,R〉] | n[ ] | (h3⊕h4)

=⇒ τ−→ m[Q3 | SPYin〈h1,h2,R〉] | n[ ] | h3

=⇒ m[Q4 | SPYin〈h1,h2,R〉] | n[ ] | h3

= Z

∼= m[Q4 | SPYin〈h1,h2,R〉] | h3

Thus, we know that

m[P′ | SPYin〈h1,h2,R〉] | h3
∼= m[Q4 | SPYin〈h1,h2,R〉] | h3

Sinceh3 is fresh by hypothesis, by Lemma 9.5

m[P′ | SPYin〈h1,h2,R〉]∼= m[Q4 | SPYin〈h1,h2,R〉]

Then, lettingC1[·] = m[P′ | ·], andC2[·] = m[Q4 | ·], by Lemma 9.4,

m[P′ | R]∼= m[Q4 | R]

To conclude, we show thatQ
in〈n,k〉m[R]
======⇒ m[Q4 | R]. To see that, note that the reduc-

tion steps inC[Q] =⇒ Z above implies thatQ =⇒
in〈n,k〉
−−−→ 〈•〉Q1 andQ1 =⇒ Q4.

Thus,Q =⇒
in〈n,k〉m[R]
−−−−−−→ m[Q1 | R] =⇒ m[Q4 | R], as desired.

. The other cases of (PREFIX HO) are proved in a similar way, choosing appropriate
contexts. In particular,

− whenλ = out〈n,k〉m[R], choose

C[·] = n[m[ · | SPYin〈h1,h2,R〉]] | out(x,k).(h3⊕h4)

− whenλ = (M)ˆ̂m[R], choose

C[·] = m[ · | SPYin〈h1,h2,R〉] | 〈M〉m.(h3⊕h4)

− whenλ = ın(n,k)ˆ̂m[R] choose

C[·] = m[ · | SPYin〈h1,h2,R〉] | n[in〈m,k〉.out〈n,h0〉] | out(x,h0).(h3⊕h4)
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where thehi ’s are assumed fresh.

. λ = enter〈n,k〉R. The transition in question isP
λ−→ (νp̃)(n[m[P1] | R{x := m}] | P2).

Let C1[·] = (νp̃)(n[m[P1] | [·]] | P2), and define:

C[·] = [·] | n[ın(x,k).(SPYin〈h1,h2,R{x := m}〉⊕ r[out〈n,h3〉])]

with r, h1–h3 fresh. We haveC[P] τ−→ τ−→ C1[SPYin〈h1,h2,R{x := m}〉]. Since
P∼= Q, there exists a processZ such thatC[Q] =⇒ Z∼= C1[SPYin〈h1,h2,R{x := m}〉].
Thus, in particular,Z⇓h1,h2 andZ 6⇓h3, which implies that the co-capabilityın(x,k)
must have been consumed in this derivation. Furthermore, by Lemma 9.3, the deriva-
tion must have the form:

C[Q] = Q | n[ın(x,k).(SPYin〈h1,h2,R{x := l}〉⊕ r[out〈n,h3〉])]

=⇒ τ−→ C′[SPYin〈h1,h2,R{x := l}〉⊕ r[out〈n,h3〉]]

=⇒ τ−→ C′′[SPYin〈h1,h2,R{x := l}〉]

=⇒ C2[SPYin〈h1,h2,R{x := l}〉] = Z

with C′[·],C′′[·] andC2[·] static contexts. FromC1[SPYin〈h1,h2,R{x := m}〉]∼= Z, by
Lemma 9.4, we know thatC1[R{x := m}] ∼= C2[R{x := l}]. To conclude, it remains

to show thatQ
λ==⇒ C2[R{x := l}]. Examining the above sequence of reductions

from C[Q] we see thatQ =⇒
enter〈n,k〉R
−−−−−−−→ C′[R]. Similarly, it is easily verified that

C′[SPYin〈h1,h2,R{x := l}〉] =⇒C2[SPYin〈h1,h2,R{x := l}〉]. Then, by Lemma 9.3,
we know thatC′[R{x := l}] =⇒C2[R{x := l}], as desired.

. The remaining cases are similar. Only they require an appropriate choice of the con-
textC[·]. In particular

− whenλ = menter(n,k)R, choose

C[·] = [·] | n[in〈m,k〉.(SPYout〈n,h1,h2,R〉⊕out〈n,h3〉)]

− whenλ = exit〈n,k〉RS, choose

C[·] = n[ · | SPYin〈h1,h2,R〉] | out(x,k).(SPYin〈h3,h4,S〉 | (h5⊕h6))

This case requires extending Lemmas 9.3 and 9.4 and to contexts with two holes.
There is no difficulty in this extension, as the hypotheses of the lemma imply
that the processes enclosed in the spy cages do not move, hence they do not
interact.

− whenλ = 〈−〉ˆ̂n[R]S, choose

C[·] = n[ · | SPYin〈h1,h2,R〉] | (x)n.(SPYin〈h3,h4,S〉 | (h5⊕h6))

This case also requires the extension to Lemmas 9.3 and 9.4 discussed above.
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− whenλ = pop〈k〉R, choose

C[·] = [·] | out(x,k).(SPYin〈h1,h2,R〉⊕ r[ın(x,h3)])

− whenλ = mput 〈−〉R, choose

C[·] = [·] | (x)m.(SPYin〈h1,h2,R〉⊕ r[ın(x,h3)])

. To conclude, there are only two first-order cases.

− whenλ = (M), chooseC[·] = [·] | 〈M〉.(h1⊕h2).

− whenλ = (M)n, chooseC[·] = [·] | n[〈M〉ˆ̂.r[out〈n,h1〉]] | out(x,h1).(h2⊕h3).

Theorem 9.7.≈ f a and∼= are the same relation

Proof. By Theorem 9.2, reasoning as in the proof of Theorem 3.5 we show that≈ f a ⊆ ∼=.
The opposite inclusion follows by Theorem 9.6.

10 Conclusions

We have developed new semantic foundations for the calculus of Boxed Ambients. In the
original calculus [3] the model of communication bears similarities with MA’s model of
mobility. Much in the same way as a mobile ambient undergoes the move actions of its
siblings and children, a boxed ambient is subject to the access to its local communication
space by its parent and children. These similarities are also reflected in the complications
that this one-sided form of interaction brings into the algebraic theory of the two calculi, in
the form of grave interferences.

NBA removes grave interferences be resorting to co-capabilities and by providing each
boxed ambient with two distinct channels. A local channel enables the interaction of pro-
cesses local to the ambient. An upward channel allows communications with the enclosing
context. The protocol for value exchange across boundaries is similar in spirit to that of
mobility in Safe Ambients, and requires that explicit (mutual) actions be taken by the two
parties involved in the interaction. In addition, NBA promotes movement co-capabilities to
the role of binding constructs that inform ambients of the incoming ambient’s name. To-
gether with a system of password control which verifies the visitor’s credentials, this yields
an interesting way to learn names dynamically, and provides NBA with essentially the same
expressive power as BA.

From the theoretical viewpoint, NBA enjoys a rich algebraic theory, and its barbed con-
gruence admits a fully abstract coinductive characterisation built on a labelled transition
semantics. Like companion characterisations in the literature on related calculi [12, 8, 7],
our characterisation is rather complex, as it is achieved at the expense labelled transitions
which effectively bring back quantification over contexts in terms of the process terms oc-
curring in the higher-order labels.
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The benefits of the new semantics of communication are also reflected in the simplicity
of the typing system, whose generality again relies on passwords. While some of the typed
analyses for Boxed Ambients have been carried out for original model of BA, those results
can be re-established in NBA, with no difficulty. This is true not only of the type system
developed in this paper, but also of type systems for BA developed by others, notably by
Merro and Sassone in [13].

If we look at the expressive power of NBA, and contrast it with MA, the latter is cer-
tainly superior. The ability to dissolve boundaries conferred byopen provides MA with
powerful mechanisms for transferring control, for ambient renaming, and for representing
systems with dynamic topology that are not available withoutopen. However, even when
disciplined by the control of co-capabilities, the expressive power ofopen appears to make
programming with MA and analysing MA programs more difficult. These difficulties arise
principally fromopen being very general, but also very basic as a programming construct.
As we have argued, this makes the encoding of various protocols and systems, whose cor-
rectness depends on non-trivial forms of ‘atomicity’, rather complex, and sometimes hardly
possible. With NBA this is rectified by resorting to a different, and higher-level set of core
primitives that, while not as expressive as their MA counterparts, prove very effective as
programming abstractions in the design and specification of such protocols and systems.
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