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The language While

We provide the syntax of a simple imperative language by means of a BNF
grammar containing:

Booleans b ∈ B = {true, false}
Integers n ∈ N = {. . . ,−1, 0, 1, . . .}
Locations l ∈ L = {l, l0, l1, l2, . . .}
Operations op ::= +

∣∣ ≥

Expressions e ∈ Exp ::= n
∣∣ b

∣∣ e op e
∣∣ if e then e else e∣∣ l := e

∣∣ !l
∣∣ skip

∣∣ e; e∣∣ while e do e
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Please, note the following:

we consider abstract syntax; so our grammar defines syntactic trees

integers are unbounded

we have abstract locations; thus !l means “the integer currently
stored at location l” (for simplicity, we store only integers)

untyped language, so have nonsensical expressions like 2 ≥ true

don’t have expression/command distinctions

doesn’t really matter what basic operations we have

distinguish metavariables b, n, l , e, op from program locations l, l0, . . .
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Some intuition

assignment, “l := e” evaluates e and then stores the result in the
location l

conditional, taking a boolean and two expressions and yielding a
expression “if e then e1 else e2”

sequential composition, written “e1; e2”, takes two commands (the
semicolon here is an operator joining two commands into one and not
just a piece of punctuation at the end of a command)

do nothing, denoted by the constant “skip”

loop constructor, which takes a boolean and a command and yields a
command, written “while e do e1”.
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Example program

A program in our language is given by a non-empty sequential composition
of expressions e1; . . . ; en

l2 := 1;

l3 := 0;

while ¬(!l1 = !l2) do

l2 := !l2 + 1;

l3 := !l3 + 1;

l1 := !l3

How do we describe the behaviour of these programs?

How can we prescribe how these program should be executed?

Massimo Merro While language 5 / 38



Evaluating expressions

Value of expressions depend on current values in locations

!l1 + !l2 − 1

In this case, the value depends on current values at locations l1 and l2.

Values stored at locations changes as program are executed

So, our operational semantics should take into considerations those
changes!

How do we evalute an expression !l ?

or what about an assignment l := e ?

We need some more information about the state of the machine’s memory .
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Partial functions

f : A ⇀ B

Meaning:

f returns an element of B for some elements of A

Convention:

dom(f ) is the set of elements in the domain of f , formally
dom(f ) = {a ∈ A : ∃b ∈ B s.t. f (a) = b}
ran(f ) is the set of elements in in the range of f , formally
ran(f ) = {b ∈ B : ∃a ∈ A s.t. f (a) = b}

So, f (a) may not be defined for some a in A, that’s why it’s called partial!
Furthermore, f could be undefined for all elements in A, i.e. a partial
function can be empty, just {}.
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Store

In our language, Store is a set of finite partial functions from
locations to integers

s : L ⇀ Z

For example : {l1 7→ 3, l2 7→ 6, l3 7→ 7}
Updating: The store s[l 7→ n] is defined by

s[l 7→ n](l′) =

{
n if l = l′

s(l′) otherwise

Behaviour of our programs is relative to a store

The store changes as the execution of a program proceeds
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Transition systems

Operational semantics in terms of a transition system.
A transition system consists of

a set Config , of configurations, and

a binary relation _⊆ Config × Config .

In particular,

the elements of Config are often called configurations or states

the relation _ is called the transition or reduction relation

we adopt an infix notation, so c _ c ′ should be read as
“configuration c can make a transition to the configuration c ′

complete execution of a program transforms an initial state into a
terminal state.

A transition system is like an NFAε with an empty alphabet, except

it can have infinitely many states

we don’t specify a start state or accepting states.
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Operational semantics for our imperative language

Configurations are pairs 〈e, s〉 of an expression e and a store s. Our
transition relation will have the form:

Judgements:

〈e, s〉 _ 〈e ′, s ′〉

Meaning:

starting from store s

when evaluating expression e

one step of computation leads to

store s ′

with expression e ′ remaining to be evalueted.

What is a step?

It depends...
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What is a step?

Transitions are single computation steps. For example we will have:

_ 〈l := 2 + !l, {l 7→ 3}〉
_ 〈l := 2 + 3, {l 7→ 3}〉
_ 〈l := 5, {l 7→ 3}〉
_ 〈skip, {l 7→ 5}〉
6_

Here, 6_ is a unary operator on Config defined by c 6_ iff ¬∃c ′.c _ c ′.
We want to keep on until we get to a value v , an expression in

V = B ∪ Z ∪ {skip}

Say 〈e, s〉 is stuck or in deadlock if e is not a value and 〈e, s〉 6_.
For example, 3 + false is stuck!
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Transition system: basic operations

(op +)
−

〈n1 + n2, s〉 _ 〈n, s〉 n = add(n1, n2)

(op ≥)
−

〈n1 ≥ n2, s〉 _ 〈b, s〉 b = geq(n1, n2)

(op1)
〈e1, s〉 _ 〈e ′

1, s ′〉
〈e1 op e2, s〉 _ 〈e′1 op e2, s′〉

(op2)
〈e2, s〉 _ 〈e ′

2, s ′〉
〈v op e2, 〉 _ 〈v op e ′

2, s ′〉

Observe that none of these transition rules introduces changes in the store.
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Example

Suppose we want to find the sequence of transitions starting from the
configuration 〈(3 + 4) + (7 + 8), ∅〉. Then,

(op1)
(op +)

−
〈3 + 4, ∅〉 _ 〈7, ∅〉

〈(3 + 4) + (7 + 8), ∅〉 _ 〈7 + (7 + 8), ∅〉

(op2)
(op +)

−
〈7 + 8, ∅〉 _ 〈15, ∅〉

〈7 + (7 + 8), ∅〉 _ 〈7 + 15, ∅〉

(op +)
−

〈7 + 15, ∅〉 _ 〈22, ∅〉

So, in three computation steps, 〈(3 + 4) + (7 + 8), ∅〉 _ _ _ 〈22, ∅〉.
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Transition system: Dereferencing

What is the result of the evaluation of an expression !l in a store s?

Inference rule:

(deref)
−

〈!l , s〉 _ 〈n, s〉 if l ∈ dom(s) and s(l) = n
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Transition rules: Assignment

How to execute one step of command l := e, relative to a store s?

Intuition:

Evaluate e relative to store s

Update store s with resulting value

Inference rules:

(assign1)
−

〈l := n, s〉 _ 〈skip, s[l 7→ n]〉 if l ∈ dom(s)

(assign2)
〈e, s〉 _ 〈e ′, s ′〉

〈l := e, s〉 _ 〈l := e ′, s ′〉
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Transitions system: Conditional

How to execute one step of (if e then e1 else e2) relative to a store s?
Intuition:

Evaluate e relative to store s

if true start evaluating e1

if false start evaluating e2

Inference rules:

(If tt)
−

〈if true then e1 else e2, s〉 _ 〈e1, s〉

(If ff)
−

〈if false then e1 else e2, s〉 _ 〈e2, s〉

(If)
〈e, s〉 _ 〈e ′, s ′〉

〈if e then e1 else e2, s〉 _ 〈if e ′ then e1 else e2, s ′〉
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Transition system: Sequential computation

How to execute one step of (e1; e2) relative to store s?

Intuition:

Execute one step of e1 relative to state s

If e1 has terminated start executing e2

skip indicates termination.

Inference rules:

(Seq)
〈e1, s〉 _ 〈e ′

1, s ′〉
〈e1; e2, s〉 _ 〈e ′

1; e2, s ′〉

(Seq.Skip)
−

〈skip; e2, s〉 _ 〈e2, s〉
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Transitions system: While

How to execute one step of while e do e1 relative to store s?

Intuition:

Evaluate e relative to s

If false then terminate

if true then execute one step of e1, etc...

Inference rule:

(While)
−

〈while e do e1, s〉 _ 〈if e then (e1; while e do e1) else skip, s〉

This is rewriting rule also called “unwinding”, as it unfolds the while loop
once: the semantics of while is given in terms of conditional and sequential
composition.
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Running programs

To run program P starting from a store s:

Find store s ′ such that
〈P, s〉 _∗ 〈v , s ′〉

for v ∈ V = B ∪ Z ∪ {skip}.
Configurations of the form 〈v , s〉 are said to be terminal.
Here, _∗ denotes the reflexive and transitive closure of the reduction
relation _.

Example:

See McGusker notes at section 4.1.1.
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Language properties

A number of interesting properties on the behaviour of programs:

Theorem 1 (Strong normalisation)

For every store s and every program P there exists some store s ′ such that
〈P, s〉 _∗ 〈v , s ′〉, with 〈v , s 〉

Theorem 2 (Determinacy)

If 〈e, s〉 _ 〈e1, s1〉 and 〈e, s〉 _ 〈e2, s2〉 then 〈e1, s1〉 = 〈e2, s2〉.

Do these properties hold in our language?
How can we prove them?
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The meaning/semantics of programs

Let us consider again the the fragment of code seen at the beginning of
this lecture:

l2 := 1;

l3 := 0;

while ¬(!l1 = !l2) do

l2 := !l2 + 1;

l3 := !l3 + 1;

l1 := !l3

What does this program really do?

Any program should transform an initial state into a terminal state

But, for some initial states there may be no terminal state.
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A semantic interpretation function

We can use our operational semantics to provide a formal semantics to the
above program. Let

[[− ]] : Exp → (Store ⇀ Store)

where, given an arbitrary expression e, [[ e ]] is a partial function
transforming an initial store s into a terminal store s ′

Definition:

[[ e ]](s) =

{
s ′ if 〈e, s〉 _∗ 〈v , s ′〉
undefined otherwise

Determinacy ensures that the function [[− ]] is properly defined.
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Application

So, if P is the program mentioned before:

l2 := 1;

l3 := 0;

while ¬(!l1 = !l2) do

l2 := !l2 + 1;

l3 := !l3 + 1;

l1 := !l3

We can fully describe its behavior as follows:

[[ P ]](s)(l) =


s(l1)− 1 if l ∈ {l1, l3} and s(l1) > 0

s(l1) if l = l2 and s(l1) > 0

s(l) if l 6∈ {l1, l2, l3} and s(l1) > 0
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Language design 1. Order of evaluation

For (e1 op e2) the rules of our operational semantics say that e1 must be
fully reduced to a value before we start reducing e2. This evaluation
strategy is called left-to-right. For example,

〈(l := 1; 0) + (l := 2; 0), {l 7→ 0}〉 _5 〈0, {l 7→ 2}〉

Another possibility is to follow a right-to-left strategy by replacing rules
(op1) and (op2) by

(op1b)
〈e2, s〉 _ 〈e ′

2, s ′〉
〈e1 + e2, s〉 _ 〈e1 + e ′

2, s ′〉 (op2b)
〈e1, s〉 _ 〈e ′

1, s ′〉
〈e1 + v , 〉 _ 〈e ′

1 + v , s ′〉

In a right-to-left evaluation strategy:

〈(l := 1; 0) + (l := 2; 0), {l 7→ 0}〉 _5 〈0, {l 7→ 1}〉

If you allow both strategies in your semantics you loose Determinacy!
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Language design 2. Assignment results

(assign1)
−

〈l := n, s〉 _ 〈skip, s[l 7→ n]〉 if l ∈ dom(s)

(Seq.Skip)
−

〈skip; e2, s〉 _ 〈e2, s〉
So

〈(l := 1; l := 2), {l 7→ 0}〉 _∗ 〈skip, {l 7→ 2}〉

However, in certain languages assignments result in expressions:

(assign1b)
−

〈l := n, s〉 _ 〈n, s[l 7→ n]〉 if l ∈ dom(s)

(Seq.Skipb)
−

〈v ; e2, s〉 _ 〈e2, s〉

And
〈(l := 1; l := 2), {l 7→ 0}〉 _∗ 〈2, {l 7→ 2}〉.
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Language design 3. Store initialisation

Recall that

(deref)
−

〈!l , s〉 _ 〈n, s〉 if l ∈ dom(s) and s(l) = n

(assign1)
−

〈l := n, s〉 _ 〈skip, s[l 7→ n]〉 if l ∈ dom(s)

Both require l ∈ dom(s), otherwise the expressions are stuck.
Instead, we could

1 implicitly initialise all locations to 0, or

2 allow assignment to an l 6∈ dom(s) to initialise that l .
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Language design 4. Storable values

Recall stores s are finite partial functions from L to Z, with rules:

(deref)
−

〈!l , s〉 _ 〈n, s〉 if l ∈ dom(s) and s(l) = n

(assign1)
−

〈l := n, s〉 _ 〈skip, s[l 7→ n]〉 if l ∈ dom(s)

We can store only integers: 〈l := true, s〉 is stuck! (we will introduce
a type system to rule out programs that could reach a stuck
expression)

Why not allow storage af any value? of locations? of programs?

Notice also that store is statically defined

Later on we will consider programs that can create new locations.
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Expressiveness

Is our language expressive enough to write interesting programs?

yes: it’s Turing-powerful (try coding an arbitrary register machine in
it)

no: there is no support for features like functions, branching, objects,
etc...

Is our language too expressive (i.e. can we write too many program in it)?

yes: We would like to forbid programs like “3 + true” as early as
possible, rather than let the program get stuck or give a runtime
error. We’ll do that by means of a type system.
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Type systems

used for

describing when programs make sense

preventing certain kinds of errors

structuring programs

guiding language design

providing information to compiler optimisers

enforcing security properties

etc etc...

.... even to allow only polynomial-time computations.

In our small language, ideally, well-typed programs don’t get stuck!
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Type systems more formally

We will define a ternary relation

Γ ` e : T

read as “expression e has type T under assumptions Γ on the types of
locations that may occur in e”.
For example, according to the definition (coming up...):

{} ` if true then 2 else 3 + 4 : int

l1 : intref ` if !l1 ≥ 3 then !l1 else 3 : int

{} 6` 3 + false : T for any T

{} 6` if true then 3 else false : T for any T

Note that the last program is ill-typed despite the fact that when you
execute it you’ll always get an int: type systems define approximations to
the behaviour of programs, often quite crude!
However, it has to be so! We generally would like them to be decidable, so
that compilation is guaranteed to terminate!!!
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Types for the language While

Types of expressions:

T ::= int
∣∣ bool

∣∣ unit

Types of locations:
Tloc ::= intref

Write T and Tloc for the set of all terms of these grammars , ie
T = {int, bool, unit} and Tloc = {intref}
Let Γ range over TypeEnv, the set of partial functions from L to Tloc

Notations: write a Γ as l1 : intref, . . . , lk : intref, instead of
{l1 7→ intref, . . . , lk 7→ intref}
For now, there is only one type in Tloc, so a Γ can be thought of as
just a set of locations (later, Tloc will be more interesting).
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Defining the type judgement “Γ ` e : T” (1 of 3)

(int)
−

Γ ` n :int
for n ∈ Z

(bool)
−

Γ ` b :bool
for b ∈ {true, false}

(op +)
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(op ≥)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ≥ e2 : bool

(if)
Γ : e1 : bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 then e2 else e3 : T
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How to use it!

To show that
{} ` if false then 2 else 3 + 4 : int

we can give a type derivation like this:

(if)
(bool)

−
{} ` false : bool

(int)
−

{} ` 2 : int

`

{} ` if false then 2 else 3 + 4 : int

where
`

is

(op +)
(int)

−
{} ` 3 : int

(int)
−

{} ` 4 : int

{} ` 3 + 4 : int
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Defining the type judgement “Γ ` e : T” (2 of 3)

(assign)
Γ ` e : int

Γ ` l :=e : unit
if Γ(l) = intref

(deref)
−

Γ ` !l : int
if Γ(l) = intref
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Defining the type judgement “Γ ` e : T” (3 of 3)

(skip)
−

Γ ` skip : unit

(seq)
Γ ` e1 : unit Γ ` e2 : T

Γ ` e1; e2 : T

Here, we are making an implicit, precise choice about the semantics of
e1; e2. Can you see it?

(while)
Γ ` e1 : bool Γ ` e2 : unit

Γ ` while e1 do e2 : unit

Typing rules are syntax-directed: for each clause of the abstract syntax for
expressions there is exactly one rule with a conclusion of that form.
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Properties

Theorem 3 (Progress)

If Γ ` e : T and dom(Γ) ⊆ dom(s) then either e is a value or there exist
e ′, s ′ such that 〈e, s〉 _ 〈e ′, s ′〉.

Theorem 4 (Type preservation)

If Γ ` e : T and dom(Γ) ⊆ dom(s) and 〈e, s〉 _ 〈e ′, s ′〉 then Γ ` e ′ : T
and dom(Γ) ⊆ dom(s ′).

Merging them together we can assert that well-typed programs don’t get
stuck:

Theorem 5 (Safety)

If Γ ` e : T , dom(Γ) ⊆ dom(s), and 〈e, s〉 _∗ 〈e ′, s ′〉 then either e ′ is a
value or there exist e ′′, s ′′ such that 〈e ′, s ′〉 _ 〈e ′′, s ′′〉.
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Type checking, typeability, and type inference

Type checking problem

Given a type system, a type environment Γ, an expression e and a type T ,
is Γ ` e : T derivable?

Type inference problem

Given a type system, a type environment Γ and an expression e, find a
type T such that the type judgement Γ ` e : T is derivable, or show there
is none.

The second problem is usually harder than the first one. Solving it usually
results in providing a type inference algorithm: computing a type T for an
expression e, given a type environment Γ (or failing, if there is none).

However, for our type system both problems are quite easy to solve.
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More properties

Theorem 6 (Type inference)

Given Γ, e, one can find T such that Γ ` e : T , or show that there is none.

Theorem 7 (Decidability of type checking)

Given Γ, e, T , one can decide Γ ` e : T .

Theorem 8 (Uniqueness of typing)

If Γ ` e : T and Γ ` e : T ′ then T = T ′.
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