
A Calculus of Trustworthy Ad Hoc Networks ?

Massimo Merro Eleonora Sibilio

Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract We propose a process calculus for mobile ad hoc networks which
embodies a behaviour-based multilevel decentralised trust model. Our trust
model supports both direct trust, by monitoring nodes behaviour, and indi-
rect trust, by collecting recommendations and spreading reputations. The
operational semantics of the calculus is given in terms of a labelled tran-
sition system, where actions are executed at a certain security level. We
define a labelled bisimilarity parameterised on security levels. Our bisim-
ilarity is a congruence and an efficient proof method for an appropriate
variant of barbed congruence, a standard contextually-defined program
equivalence. Communications are proved safe with respect to the security
levels of the involved parties. In particular, we ensure safety despite com-
promise: compromised nodes cannot affect the rest of the network. A non
interference result expressed in terms of information flow is also proved.

1 Introduction

Wireless technology spans from user applications such as personal area networks,
ambient intelligence, and wireless local area networks, to real-time applications,
such as cellular and ad hoc networks. A Mobile ad hoc network (MANET) is a self-
configuring network of mobile devices (also called nodes) communicating with each
other via radio transceivers without relying on any base station. Lack of a fixed
networking infrastructure, high mobility of the devices, shared wireless medium,
cooperative behaviour, and physical vulnerability are some of the features that
make challenging the design of a security scheme for mobile ad hoc networks.

Access control is a well-established technique for limiting access to the re-
sources of a system to authorised programs, processes, users or other systems.
Access control systems typically authenticate principles and then solicit access to
resources. They rely on the definition of specific permissions, called access policies,
which are recorded in some data structure such as Access Control Lists (ACLs).
ACLs work well when access policies are set in a centralised manners. However,
they are less suited to ubiquitous systems where the number of users may be very
large (think of sensor networks) and/or continuously changing. In these scenarios
users may be potentially unknown and, therefore, untrusted. In order to overcome
these limitations, Blaze et at. [1] have introduced the notion of Decentralised Trust
Management as an attempt to define a coherent framework in which safety critical
decisions are based on trust policies relying on partial knowledge.

Trust formalisation is the subject of several academic works. According to [2],
trust is the quantified belief by a trustor , the trusting party, with respect to the
? This work has been partially supported by the national MIUR Project SOFT.

competence, honesty, security and dependability of a trustee, the trusted party,
within a specified context. Trust information is usually represented as a collec-
tion of assertions on the reliability of the parties. The trust establishment process
includes specification of valid assertions, their generation, distribution, collection
and evaluation. Trust assertions may be uncertain, incomplete, stable and long
term. Trust evaluation is performed by applying specific policies to assertions; the
result is a trust relation between the trustor and the trustee. According to their
scope and kind of trust evidence, trust frameworks can be divided in two cate-
gories: certificate-based and behaviour-based. In the first ones, trust relations are
usually based on certificates, to be spread, maintained and managed either inde-
pendently or cooperatively. In behaviour-based frameworks, each node performs
trust evaluation based on continuous monitoring of misbehaviours of neighbours
(direct trust). Misbehaviours typically include dropping, modification, and mis-
routing of packets at network layer. However, trust evaluation may also depend on
node reputation. Node reputation usually comes from other nodes (indirect trust)
and does not reflect direct experience of the interested node. In history-based
trust models, node reputation may also depend on past behaviours.

The characteristics of mobile ad hoc networks pose a number of challenges
when designing an appropriate trust model for them. Due to the lack of a fixed net-
work infrastructure, trust models for MANETs must be decentralised and should
support cooperative evaluation, according to the diversity in roles and capabilities
of nodes. There are various threats to ad hoc networks, of which the most inter-
esting and important is node subversion. In this kind of attack, a node may be
reverse-engineered, and replaced by a malicious node. A bad node can communi-
cate with any other node, good or bad. Bad nodes may have access to the keys of
all other bad nodes, whom they can impersonate if they wish. They do not execute
the authorised software and thus do not necessarily follow protocols to identify
misbehaviour, revoke other bad nodes, vote honestly or delete keys shared with
revoked nodes. So, trust frameworks for ad hoc networks should support node
revocation to isolate malicious nodes.

Another key feature of MANETs is their support for node mobility : devices
move while remaining connected to the network, breaking links with old neigh-
bours and establishing fresh links with new devices. This makes security even
more challenging as the compromise of a legitimate node or the insertion of a
malicious node may go unnoticed in such a dynamic environment. Thus, a mo-
bile node should acquire trust information on new neighbours, and remove trust
information on old neighbours that cannot be monitored anymore.

In this paper, we propose a process calculus for mobile ad hoc networks which
embodies a behaviour-based multilevel trust model. Our trust model supports both
direct trust, by monitoring nodes behaviour, and indirect trust, by collecting rec-
ommendations and spreading reputations. No information on past behaviours of
nodes is recorded. We model our networks as multilevel systems where each device
is associated to a security level depending on its role [3]. Thus, trust relations as-
sociate security levels to nodes. Process calculi have been recently used to model
different aspects of wireless systems [4,5,6,7,8,9,10]. However, none of these papers
address the notion of trust. In our calculus, each node is equipped with a local
trust store containing a set of assertions. These assertions supply trust informa-

2

tion about the other nodes, according to a local security policy. Our calculus is
not directly concerned with cryptographic underpinnings. However, we assume
the presence of a hierarchical key generation and distribution protocol [11]. Thus,
messages are transmitted at a certain security level relying on an appropriate set
of cryptographic keys. We provide the operational semantics of our calculus in
terms of a labelled transition system. Our transitions are of the form

M
λ−−→ρ N

indicating that the network M can perform the action λ, at security level ρ, evolv-
ing into the network N . For simplicity, our operational semantics does not directly
express mobility. However, we can easily adapt the approach proposed in [9] to
annotate our labelled transitions with the necessary information to represent node
mobility.

Our calculus enjoys two desirable security properties: safety up to a security
level and safety despite compromise. Intuitively, the first property means that only
trusted nodes, i.e. with an appropriate security level, may synchronise with other
nodes. The second property says that bad (compromised) nodes, once detected,
may not interact with good nodes.

A central concern in process calculi is to establish when two terms have the
same observable behaviour. Behavioural equivalences are fundamental for justify-
ing program transformations. Our program equivalence is a security variant of
(weak) reduction barbed congruence, a branching-time contextually-defined pro-
gram equivalence. Barbed equivalences [12] are simple and intuitive but difficult
to use due to the quantification on all contexts. Simpler proof techniques are based
on labelled bisimilarities [13], which are co-inductive relations that characterise
the behaviour of processes using a labelled transition system. We define a labelled
bisimilarity parameterised on security levels proving that it represents an efficient
proof method for our reduction barbed congruence.

We apply our notion of bisimilarity to prove a non-interference property for
our networks. Intuitively, a network is interference free if its low security level
behaviour is not affected by any activity at high security level.

2 A behaviour-based multilevel decentralised trust model

In our framework each node comes together with an extra component called trust
manager . A trust manager consists of two main modules: the monitoring module
and the reputation handling module. The first one monitors the behaviour of
neighbours, while the second one collects/spreads recommendations and evaluates
trust information about other nodes using a local security policy. The continuous
work of the trust manager results in a local trust store T containing the up-to-date
trust relations.

Trust information may change over time due to mobility, temporary discon-
nections, recommendations, etc. As a consequence, trust knowledge may be un-
certain and incomplete. The main objective of the model is to isolate bad nodes,
i.e. nodes which do not behave as expected. For this reason, we support node re-
vocation. This may happens when a node detects a misbehaviour of another node,

3

and spreads this information to its neighbours. Repudiable evidences enable bad
nodes to falsely accuse good nodes. Hence, it would be foolish to design a simple
decision mechanism that revokes any node accused of misbehaviour. Thus, rec-
ommendations are always evaluated using a local security policy implementing an
appropriate metric.

The basic elements of our model are nodes (or principals), security levels,
assertions, policies and trust stores. We use k, l,m, n, . . . to range over the set
Nodes of node names. We assume a complete lattice 〈S, <〉 of security levels:
bad < trust < low < high. We use the Greek letter ρ for security levels belonging
to S. The set of assertions is defined as Assertions = Nodes × Nodes × S. Thus,
an assertion 〈m,n, ρ〉 says that a node m trusts a node n at security level ρ.
A local trust store T contains a set of assertions, formally T ⊆ ℘(Assertions).
A node can receive new assertions from its neighbours. These assertions will be
opportunely stored in the local trust store by the trust manager, according to
a local security policy P. A security policy P is a function that evaluates the
current information collected by a node and returns a set of consistent assertions,
formally P : ℘(Assertions) → ℘(Assertions). For simplicity, we assume that all
nodes have the same security policy P. Notice that the outcome of the policy
function could differ from one node to another as the computation depends on
the local knowledge of nodes. Thus, when a node m (the trustor) wants to know
the security level of a node n (the trustee), it has to check its own trust store T .
For convenience, we often use T as a partial function of type Nodes → Nodes → S,
writing T (m,n) = ρ if m considers n as a node of security level ρ. If ρ = bad then
m considers n a bad (unreliable) node and stops any interaction with it.

Messages exchanged among nodes are assumed to be encrypted using a hi-
erarchical key generation and distribution protocol [14]. The trust manager may
determine a key redistribution when a security level is compromised. More gener-
ally, re-keying [15] allows to refresh a subset of keys when one or more nodes join
or leave the network; in this manner nodes are enable to decrypt past traffic, while
evicted nodes are unable to decrypt future traffic. As showed in [14] re-keying may
be relatively unexpensive if based on “low-cost” hashing operators.

3 The Calculus

In Table 1, we define the syntax of our calculus in a two-level structure, a lower
one for processes and a upper one for networks. We use letters k, l,m, n, . . . for
node names. The Greek symbol σ ranges over the security levels low and high,
the only ones which are directly used by programmers. We use letters x, y, z for
variables, u for values, and v and w for closed values, i.e. values that do not contain
free variables. We write ũ to denote a tuple u1, . . . , uk of values.

Networks are collections of nodes (which represent devices) running in parallel
and using channels at different security levels to communicate with each other.
We use the symbol 0 to denote an empty network. We write M | N for the parallel
composition of two sub-networks M and N . We write n[P]T for a node named
n (denoting its network address) executing the sequential process P , with a local
trust store T . Processes are sequential and live within the nodes. We write nil

4

Table 1 The Syntax
Values

u ::= v closed value˛̨
x variable

Networks:
M, N ::= 0 empty network˛̨

M | N parallel composition˛̨
n[P]T node

Processes:

P, Q ::= nil termination˛̨
σ!〈ũ〉.P broadcast˛̨
σ?(x̃).P receiver˛̨
[ũ = ũ′]P, Q matching˛̨
H〈ũ〉 recursion

to denote the skip process. The sender process σ!〈ṽ〉.P can broadcast the value
ṽ at security level σ, continuing as P . A message transmitted at security level ρ
can be decrypted only by nodes at security level ρ or greater, according to the
trust store of both sender and receiver. Moreover, we assume that messages are
always signed by transmitters. The receiver process σ?(x̃).P listens on the channel
for incoming communications at security level σ. Upon reception, the receiver
process evolves into P , where the variables of x̃ are replaced with the message ṽ.
We write {ṽ/̃x}P for the substitution of variables x̃ with values ṽ in P . Process
[ṽ = w̃]P,Q is the standard “if then else” construct: it behaves as P if ṽ = w̃,
and as Q otherwise. We write H〈ṽ〉 to denote a process defined via a definition
H(x̃) def= P , with | x̃ |=| ṽ |, where x̃ contains all variables that appear free in P .
Defining equations provide guarded recursion, since P may contain only guarded
occurrences of process identifiers. In process σ?(x̃).P variables x̃ are bound in
P . This gives rise to the standard notion of α-conversion and free and bound
variables. We assume there are no free variables in our networks. The absence of
free variables in networks is trivially maintained as the network evolves. Given a
network M , nds(M) returns the set of the names of those nodes which constitute
the network M . Notice that, as networks addresses are unique, we assume that
there cannot be two nodes with the same name in the same network. We write∏

i Mi to denote the parallel composition of all sub-networks Mi. Finally, we
define structural congruence, written ≡, as the smallest congruence which is a
commutative monoid with respect to the parallel operator.

3.1 The Operational Semantics

We give the operational semantics of our calculus in terms of a Labelled Transition
System (LTS). We have divided our LTS in two sets of rules. Table 2 contains
the rules to model the synchronisation between sender and receivers. Table 3

5

Table 2 LTS - Synchronisation

(Snd)
D := {n : T (m, n) ≥ σ}

m[σ!〈ṽ〉.P]T
m!ṽ.D−−−−−−→σ m[P]T

(Rcv)
T (n, m) ≥ σ | x̃ |=| ṽ |

n[σ?(x̃).P]T
m?ṽ.n−−−−−−→σ n[{ṽ/̃x}P]T

(RcvPar)
M

m?ṽ.D−−−−−−→ρ M ′ N
m?ṽ.D′
−−−−−−−→ρ N ′ bD := D ∪D′

M | N m?ṽ. bD−−−−−−→ρ M ′ | N ′

(Sync)
M

m!ṽ.D−−−−−−→ρ M ′ N
m?ṽ.D′
−−−−−−−→ρ N ′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ M ′ | N ′

(Par)
M

λ−−→ρ M ′ sender(λ) /∈ nds(N)

M | N λ−−→ρ M ′ | N

contains the rules to model trust management, i.e. the actions of the trust manager
components.

Our transitions are of the form M
λ−−→ρ M ′, indicating that the network

M can perform the action λ, at security level ρ, evolving into the network M ′.
By construction, in such a transition, ρ will be always different from bad. More
precisely, ρ will be equal to low for low-level-security transmissions, and equal
to high for high-level-security transmissions. If ρ = trust then the transition
models some aspects of trust management and involves all trusted nodes. The
label λ ranges over the actions m!ṽ.D, m?ṽ .D, and τ . The action m!ṽ.D models
the transmission of message ṽ, originating from node m, and addressed to the
set of nodes in D. The action m?ṽ . D represents the reception of a message
ṽ, sent by m, and received by the nodes in D. We sometimes write m?ṽ . n
as an abbreviation for m?ṽ . {n}. The action τ models silent actions, as usual.
The function sender(·) applied to an action returns the name of the sender, thus
sender(m!ṽ.D) = sender(m?ṽ .D) = m, whereas sender(τ) =⊥.

Let us comment on the rules of Table 2. Rule (Snd) models a node m which
broadcasts a message ṽ at security level σ; the set D contains the nodes at security
level at least σ, according to the trust store of m. Rule (Rcv) models a node n
receiving a message ṽ, sent by node m, at security level σ. Node n receives the
message from m only if it trusts m at security level σ. Rule (RcvPar) serves
to put together parallel nodes receiving from the same sender. If sender and
receiver(s) trust each other there will be a synchronisation.1 Rule (Sync) serves
to synchronise the components of a network with a broadcast communication;
the condition D′ ⊆ D ensures that only authorised recipients can receive the
transmitted value. Rule (Par) is standard in process calculi. Notice that using
rule (Par) we can model situations where potential receivers do not necessarily
receive the message, either because they are not in the transmission range of the
1 Here, we abstract on the actual behaviour of receivers as they verify the identity of

the sender and discard unauthorised messages.

6

Table 3 LTS - Trust Management

(Susp)

T (m, n) > bad ṽ := n, bad
T ′ := P(T ∪ 〈m, ṽ〉) D := {n : T (m, n) > bad}

m[P]T
m!ṽ.D−−−−−−→trust m[P]T ′

(SndRcm)
T (m, n) = ρ ṽ := n, ρ D := {n : T (m, n) > bad}

m[P]T
m!ṽ.D−−−−−−→trust m[P]T

(RcvRcm)
T (n, m) > bad ṽ := l, ρ T ′ := P(T ∪ 〈m, ṽ〉)

n[P]T
m?ṽ.n−−−−−−→trust n[P]T ′

(Loss)
T ′ ⊆ T T ′′ := P(T ′)

n[P]T
τ−−→trust n[P]T ′′

transmitter or simply because they loose the message. Rules (Sync), (RcvPar) and
(Par) have their symmetric counterparts.

Example 1. Let us consider the network:

M
def= k[σ?(x̃).Pk]Tk

| l[σ?(x̃).Pl]Tl
| m[σ!〈ṽ〉.Pm]Tm

| n[σ?(x̃).Pn]Tn

where Tk(k, m) ≥ σ, Tl(l,m) < σ, Tm(m,n) = Tm(m, l) ≥ σ, Tm(m, k) < σ and
Tn(n, m) ≥ σ. In this configuration, node m broadcasts message ṽ at security
level σ, knowing that the nodes allowed to receive the message at that security
level are n and l. However, node l does not trust m at security level σ. Thus, n
is the only node that may receive the message. By an application of rules (Snd),
(Rcv), (Par), and (Sync) we have:

M
m!ṽ.D−−−−−−→σ k[σ?(x̃).Pk]Tk

| l[σ?(x̃).Pl]Tl
| m[Pm]Tm

| n[{ṽ/̃x}Pn]Tn
.

Now, let us comment on the rules of Table 3 modelling trust management.
Rule (Susp) models direct trust . This happens when the monitoring module of a
node m, while monitoring the activity of a trusted node n, detects a misbehaviour
of n. In this case, node m executes two operations: (i) it implements node revo-
cation updating its trust store, according to its local policy; (ii) it broadcasts the
corresponding information to inform all trusted nodes about the misbehaviour of
n. Notice that this transmission is not under the control of the code of m but it
rather depends on the reputation handling module. Notice also that the transmis-
sion is addressed to all trusted nodes, that’s why the transmission fires at security
level trust. Rule (SndRcm) models indirect trust by sending a recommendation.
This may happen, for example, when a node moves and asks for recommendations
on new neighbours. Again, recommendations are addressed to all trusted nodes,
according to the trust knowledge of the recommender. Rule (RcvRcm) models the
reception of a recommendation from a trusted node: a new trust table T ′ is cal-
culated, applying the local policy to T ∪ 〈m, ṽ〉. Rule (Loss) models loss of trust

7

Table 4 LTS - Matching and recursion

(Then)
n[P]T

λ−−→ρ n[P ′]T ′

n[[ṽ = ṽ]P, Q]T
λ−−→ρ n[P ′]T ′

(Else)
n[Q]T

λ−−→ρ n[Q′]T ′ ṽ1 6= ṽ2

n[[ṽ1 = ṽ2]P, Q]T
λ−−→ρ n[Q′]T ′

(Rec)
n[{ṽ/̃x}P]T

λ−−→ρ n[P ′]T ′ H(x̃)
def
= P

n[H〈ṽ〉]T
λ−−→ρ n[P ′]T ′

information. This happens, for instance, when a node moves, changing its neigh-
bourhood. In this case, assertions concerning old neighbours must be deleted as
they cannot be directly verified. The consistency of the remaining assertions must
be maintained by applying the security policy.

Example 2. Let us show how direct and indirect trust work. Let us consider the
network:

M
def= k[Pk]Tk

| l[Pl]Tl
| m[Pm]Tm

| n[Pn]Tn

where Tk(k, m) ≥ trust, Tl(l,m) = bad, Tm(m,n) = Tm(m, l) = Tm(m, k) ≥
trust, and Tn(n, m) ≥ trust. Now, if node m observes that node k is misbe-
having, then (i) it adds an assertion 〈m, k, bad〉 to its local knowledge; (ii) it
broadcasts the information to its neighbours. Thus, by an application of rules
(Susp), (RcvRcm), (Par), and (Sync) we have

M
m!ṽ.D−−−−−−→trust k[Pk]T ′

k
| l[Pl]Tl

| m[Pm]T ′
m
| n[Pn]T ′

n
.

Notice that since l does not trust m, only node n (but also the bad node k)
will receive m’s recommendation. Moreover the local knowledge of m and n will
change, accordingly to the local policy. This is a case of direct trust for m, and
indirect trust for n. The security level that n will assign to k will actually depend
the local policy of n.

Finally, Table 4 contains the standard rules for matching and recursion.

4 Node mobility

In wireless networks node mobility is associated with the ability of a node to ac-
cess telecommunication services at different locations from different nodes. Node
mobility in ad hoc networks introduces new security issues related to user creden-
tial management, indirect trust establishment and mutual authentication between
previously unknown and hence untrusted nodes. Thus, mobile ad hoc networks
has turned to be a challenge for automated verification and analysis techniques.
After the first works on model checking of (stationary) ad hoc networks [16],
Nanz and Hankin [5] have proposed a process calculus where topology changes
are abstracted into a fixed representation. This representation, called network

8

Table 5 LTS - Synchronisation with network restrictions

(SndR)
D := {n : T (m, n) ≥ σ}

m[σ!〈ṽ〉.P]T
m!ṽ.D−−−−−−→σ,∅ m[P]T

(RcvR)
T (n, m)≥σ |x̃|=|ṽ| P ′:={ṽ/̃x}P

n[σ?(x̃).P]T
m?ṽ.n−−−−−−→σ,(n,m) n[P ′]T

(RcvParR)
M

m?ṽ.D−−−−−−→ρ,C1 M ′ N
m?ṽ.D′
−−−−−−−→ρ,C2 N ′ bD := D ∪D′

M | N m?ṽ. bD−−−−−−→ρ,C1∪C2 M ′ | N ′

(SyncR)
M

m!ṽ.D−−−−−−→ρ,C1 M ′ N
m?ṽ.D′
−−−−−−−→ρ,C2 N ′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ,C1∪C2 M ′ | N ′

(ParR)
M

λ−−→ρ,C M ′ sender(λ) /∈ nds(N)

M | N λ−−→ρ,C M ′ | N

topology, is essentially a set of connectivity graphs denoting the possible connec-
tivities within the nodes of the network.

As the reader may have noticed, our calculus does not directly model the
network topology neither in the syntax nor in the semantics. However, it is very
easy to add topology changes at semantics level, so that each state represents a
set of valid topologies, and a network can be at any of those topologies at any
time [9]. In Table 5 we rewrite the rules of Table 2 in the style of [9]. Rules are of

the form M
λ−−→ρ,C M ′, indicating that the network M can perform the action λ,

at security level ρ, under the network restriction C, evolving into the network M ′.
Thus, a network restriction C keeps track of the connections which are necessary
for the transition to fire. The rules in Table 3 can be rewritten in a similar manner,
except for rule (Loss) in which the network restriction is empty i.e. C = ∅.
Example 3. Consider the same network given in the Example 1. Then by applying
rules (SndR), (RcvR), (ParR), and (SyncR) we have

M
m!ṽ.D−−−−−−→σ,{(n,m)} k[σ?(x̃).Pk]Tk

| l[σ?(x̃).Pl]Tl
| m[Pm]Tm

| n[{ṽ/̃x}Pn]Tn
.

The transition is tagged with the network restriction {(n, m)}, as only node n has
synchronised with node m.

Notice that the rule (Loss) in Table 3 may indirectly affect future communica-
tions. In fact, if a trust information is lost then certain nodes may not be able of
communicating anymore.

The reader may have noticed that the rules of Table 5 do not use network re-
strictions in the premises. As a consequence, there is a straightforward operational
correspondence between a transition

λ−−→ρ and one of the form
λ−−→ρ,C .

Proposition 1.

1. M
λ−−→ρ M ′ with λ ∈ {m!ṽ.D,m?ṽ . D} iff there exists a restriction C such

that M
λ−−→ρ,C M ′ and C ⊆ {(m,n) for all n ∈ D}.

9

2. M
τ−−→ρ M ′ iff M

τ−−→ρ,∅ M ′.
Proof By transition induction. �

5 Safety properties

In this section, we show how to guarantee in our setting that only authorised
nodes receive sensible information. We define a notion of safety up to a security
level to describe when a communication is safe up to a certain security level.

Definition 1 (Safety up to a security level). A node m transmitting at level
ρ may only synchronise with a node n receiving at level ρ or above, according to
the local knowledge of m and n, respectively.

Intuitively, Definition 1 says that a synchronisation at a certain security level ρ
is safe if the involved parties trust each other at that security level.

The safety property is then preserved at run time.

Theorem 1 (Safety preservation). Let M
m!ṽ.D−−−−−−→ρ M ′ with

M ≡ m[P]T |
∏

i ni[Pi]Ti
and M ′ ≡ m[P ′]T ′ |

∏
i ni[P ′

i]T ′
i

.

1. If P ′
i 6= Pi, for some i, then T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.

2. If T ′
i 6= Ti, for some i, then T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.

Proof By induction on the transition M
m!ṽ.D−−−−−−→ρ M ′. �

A consequence of Theorem 1, is that (trusted) nodes never synchronise with
untrusted nodes. In this manner, bad nodes (recognised as such) are isolated from
the rest of the network.

Corollary 1 (Safety despite compromise). Let M
m!ṽ.D−−−−−−→ρ M ′ such that

M ≡ m[P]T |
∏

i

ni[Pi]Ti
and M ′ ≡ m[P ′]T ′ |

∏
i

ni[P ′
i]T ′

i
.

If T (m,ni)=bad or Ti(ni,m)=bad, for some i, then P ′
i=Pi and T ′

i=Ti.

6 Behavioural Semantics

Our main behavioural equivalence is σ-reduction barbed congruence, a variant of
Milner and Sangiorgi’s (weak) barbed congruence [12] which takes into account
security levels. Basically, two terms are barbed congruent if they have the same
observables (called barbs) in all possible contexts, under all possible evolutions.
For the definition of barbed congruence we need two crucial concepts: a reduction
semantics to describe how a system evolves, and a notion of observable which says
what the environment can observe in a system.

From the LTS given in Section 3.1 it is easy to see that a network may evolves
either because there is a transmission at a certain security level or because a

10

node looses some trust information. Thus, we can define the reduction relation _
between networks using the following inference rules:

(Red1) M
m!ṽ.D−−−−−−→ρ M ′

M _ M ′ (Red2)
M

τ−−→trust M ′

M _ M ′

We write _∗ to denote the reflexive and transitive closure of _.
In our calculus, we have both transmission and reception of messages although

only transmissions may be observed. In fact, in a broadcasting calculus an observer
cannot see whether a given process actually receives a broadcast synchronisation.
In particular, if the node m[σ!〈ṽ〉.P]T evolves into m[P]T we do not know whether
some potential recipient has synchronised with m. On the other hand, if a node
n[σ?(x̃).P]T evolves into n[{ṽ/̃x}P]T , then we can be sure that some trusted node
has transmitted a message ṽ to n at security level σ.

Definition 2 (σ-Barb). We write M ↓σ
n if M ≡ m[σ!〈ṽ〉.P]T | N , for some

m,N, ṽ, P, T such that n /∈ nds(M), and T (m,n) ≥ σ. We write M ⇓σ
n if M _∗

M ′ ↓σ
n for some network M ′.

The barb M ⇓σ
n says that there is a potential transmission at security level σ,

originating from M , and that may reach the node n in the environment. In the
sequel, we write R to denote binary relations over networks.

Definition 3 (σ-Barb preserving). A relation R is said to be σ-barb preserv-
ing if whenever M R N it holds that M ↓σ

n implies N ⇓σ
n.

Definition 4 (Reduction closure). A relation R is said to be reduction closed
if M R N and M _ M ′ imply there is N ′ such that N _∗ N ′ and M ′ R N ′.

As we are interested in weak behavioural equivalences, the definition of reduction
closure is given in terms of weak reductions.

Definition 5 (Contextuality). A relation R is said to be contextual if M R N
implies that M | O R N | O, for all networks O.

Finally, everything is in place to define our σ-reduction barbed congruence.

Definition 6 (σ-Reduction barbed congruence). The σ-reduction barbed
congruence, written ∼=σ, is the largest symmetric relation over networks which is
σ-barb preserving, reduction closed and contextual.

7 Bisimulation proof method

The definition of σ-reduction barbed congruence is simple and intuitive. However,
due to the universal quantification on parallel contexts, it may be quite difficult to
prove that two terms are barbed congruent. Simpler proof techniques are based on
labelled bisimilarities. In the sequel we define an appropriate notion of bisimula-
tion. As a main result, we prove that our labelled bisimilarity is a proof-technique
for our σ-reduction barbed congruence.

11

In general, a bisimulation describes how two terms (in our case networks) can
mimic each other actions. First of all we have to distinguish between transmissions
which may be observed and transmissions which may not be observed by the
environment.

(Shh)
M

m!ṽ.D−−−−−−→ρ M ′ D⊆nds(M) ρ′ 6=bad

M
τ−−→ρ′ M ′

(Obs)
M

m!ṽ.D−−−−−−→ρ M ′ bD:=D\nds(M) 6=∅

M
m!ṽI bD−−−−−−→ρ M ′

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers are in the environment. Notice that security levels of τ -action
are not related to the transmissions they originate from. Rule (Obs) models a
transmission, at security level ρ, of a message ṽ, from a sender m, that may be
received by the nodes of the environment contained in D̂. Notice that the rule
(Obs) can only be applied at top-level of a derivation tree. In fact, we cannot use
this rule together with rule (Par) of Table 2, because λ does not range on the new
action.

In the sequel, we use the metavariable α to range over the following actions:
τ , m?ṽ .D, and m!ṽID. Since we are interested in weak behavioural equivalences,
that abstract over τ -actions, we introduce a standard notion of weak action: we
write =⇒ρ to denote the reflexive and transitive closure of

τ−−→ρ; we also write
α==⇒ρ to denote =⇒ρ

α−−→ρ =⇒ρ;
α̂==⇒ρ denotes =⇒ρ if α = τ and α==⇒ρ otherwise.

Definition 7 (δ-Bisimilarity). The δ-bisimilarity, written ≈δ, is the largest
symmetric relation over networks such that whenever M ≈δ N if M

α−−→ρ M ′,

with ρ ≤ δ, then there exists a network N ′ such that N
α̂==⇒ρ N ′ and M ′ ≈δ N ′.

This definition is inspired by that proposed in [17]. Intuitively, two networks
are δ-bisimilar if they cannot be distinguished by any observers that cannot per-
form actions at security level greater than δ.

Theorem 2 (≈δ is contextual). Let M and N be two networks such that M ≈δ

N . Then M | O ≈δ N | O for all networks O.

Proof We prove that the relation

S def= {
(
M | O , N | O

)
for all O such that M ≈δ N}

is a δ-bisimulation. �

Theorem 3 (Soundness). Let M and N be two networks such that M ≈δ N .
Then M ∼=σ N , for σ ≤ δ.

Proof It is easy to verify that δ-bisimilarity is σ-barb preserving and reduction
closed, by definition. Contextuality follows by Theorem 2. �

Remark 1. For the sake of analysis, we can define the δ-bisimilarity using the la-
belled transition system with network restrictions of Table 5. However, by Propo-
sition 1 the resulting bisimilarity would not change.

12

8 Non-interference

The seminal idea of non interference [18] aims at assuring that “variety in a secret
input should not be conveyed to public output”. In a multilevel computer system [3]
this property says that information can only flow from low levels to higher ones.
The first taxonomy of non-interference-like properties has been uniformly defined
in a CCS-like process calculus with high-level and low-level processes, according
to the level of actions that can be performed [19]. To detect whether an incor-
rect information flow (i.e. from high-level to low-level) has occurred, a particular
non-interference-like property has been defined, the so-called Non Deducibility on
Composition (NDC). This property basically says that a process is secure with
respect to wrong information flows if its low-level behaviour is independent of
changes to its high-level behaviour.

Here, we prove a non-interference result using as process equivalence the no-
tion of δ-bisimilarity previously defined. Formally, high-level behaviours can be
arbitrarily changed without affecting low-level equivalences.

Definition 8 describes what high-level behaviour means in our setting. We
recall that we assumed the presence of a trust manager component for each node
to manage trust information. As a consequence, actions at security level trust do
not depend on the syntax of the processes as they depend on the trust manager.
These actions can fire at any step of the computation and cannot be predicted in
advance.

Definition 8 (δ-high level network). A network H is a δ-high level network,

written H ∈ Hδ, if whenever H
λ−−→δ′ H ′ then either δ′ = trust or δ′ > δ.

Moreover, H ′ ∈ Hδ.

The non-interference result can be stated as follows.

Theorem 4 (Non-interference). Let M and N be two networks such that
M ≈δ N . Let H and K be two networks such that: (i) H,K ∈ Hδ, (ii) H ≈trust K,
and (iii) nds(H) = nds(K). Then, M | H ≈δ N | K.
Proof We prove that the relation

{
(
M | H , N | K

)
: H,K ∈ Hδ, M ≈δ N, H ≈trust K and nds(H)=nds(K)}

is a δ-bisimulation. �

9 Related work

Formal methods have been successfully applied for the analysis of network security
(see, for instance, [20,21,22,23,24]).

Komarova and Riguidel [25] have proposed a centralised trust-based access
control mechanism for ubiquitous environments. The goal is to allow a service
provider for the evaluation of the trustworthiness of each potential client. Crafa
and Rossi [17] have introduced a notion of controlled information release for a
typed version of the π-calculus extended with declassified actions. The controlled

13

information release property scales to non interference when downgrading is not
allowed. They provide various characterisations of controlled release, based on
typed behavioural equivalence, parameterised on security levels, to model ob-
servers at a certain security level. Hennessy [26] has proposed a typed version of
the asynchronous π-calculus in which I-O types are associated to security levels.
Typed equivalences are then used to prove a non interference result.

As regards process calculi for wireless systems, Mezzetti and Sangiorgi [4]
have proposed calculus to describe interferences in wireless systems. Nanz and
Hankin [5] have introduced a calculus for mobile wireless networks for specifica-
tion and security analysis of communication protocols. Merro [7] has proposed a
behavioural theory for MANETs. Godskesen [8] has proposed a calculus for mobile
ad hoc networks with a formalisation of an attack on the cryptographic routing
protocol ARAN. Singh et al. [6] have proposed the ω-calculus for modelling the
AODV routing protocol. Ghassemi et al. [9] have proposed a process algebra where
topology changes are implicitly modelled in the semantics. Merro and Sibilio [27]
have proposed a timed calculus for wireless systems focusing on the notion of
communication collision. In trust models for ad hoc networks, the timing factor is
important because more recent trust informations should have more influence on
the trust establishment process. More generally, a notion of time would allow to
record past behaviours. Finally, Godskesen and Nanz [10] have proposed a simple
timed calculus for wireless systems to express a wide range of mobility models.

None of the calculi mentioned above deal with trust. Carbone et al. [28] have
introduced ctm, a process calculus which embodies the notion of trust for ubiqui-
tous systems. In ctm each principal is equipped with a policy, which determines its
legal behaviour, formalised using a Datalog-like logic, and with a protocol, in the
process algebra style, which allows interactions between principals and the flow
of information from principals to policies. In [29] Martinelli uses a cryptographic
variant of CCS to describe and analyse different access control policies.

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Sympo-
sium on Security and Privacy, IEEE Computer Society (1996) 164–173

2. Grandison, T.W.A.: Trust Management for Internet Applications. PhD thesis,
Department of Computing, University of London (2003)

3. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and Multics
Interpretation. Technical Report MTR-2997, MITRE Corporation (1975)

4. Mezzetti, N., Sangiorgi, D.: Towards a Calculus For Wireless Systems. Electronic
Notes in Theoretical Computer Science 158 (2006) 331–353

5. Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless Net-
works. Theoretical Computer Science 367(1-2) (2006) 203–227

6. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mobile Ad
Hoc Networks. In Lea, D., Zavattaro, G., eds.: COORDINATION 2008. Volume
5052 of LNCS., Springer (2008) 296–314

7. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks (full paper).
Information and Computation 207(2) (2009) 194–208

8. Godskesen, J.: A Calculus for Mobile Ad Hoc Networks. In Murphy, A.L., Vitek,
J., eds.: COORDINATION 2007. Volume 4467 of LNCS., Springer (2007) 132–150

14

9. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational Reasoning on Ad Hoc Net-
works. In Arbab, F., Sirjani, M., eds.: FSEN 2009. Volume 5961 of LNCS., Springer
(2010)

10. Godskesen, J.C., Nanz, S.: Mobility Models and Behavioural Equivalence for Wire-
less Networks. In Field, J., Vasconcelos, V.T., eds.: COORDINATION 2009. Volume
5521 of LNCS., Springer (2009) 106–122

11. Huang, D., Medhi, D.: A Secure Group Key Management Scheme for Hierarchical
Mobile Ad Hoc Networks. Ad Hoc Networks 6(4) (2008) 560–577

12. Milner, R., Sangiorgi, D.: Barbed Bisimulation. In Kuich, W., ed.: ICALP 1992.
Volume 623 of LNCS., Springer (1992) 685–695

13. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
14. Shehab, M., Bertino, E., Ghafoor, A.: Efficient Hierarchical Key Generation and

Key Diffusion for Sensor Networks. In: SECON, IEEE Communications Society
(2005) 76–84

15. Di Pietro, R., Mancini, L.V., Law, Y.W., Etalle, S., Havinga, P.J.M.: LKHW: A
Directed Diffusion-Based Secure Multicast Scheme for Wireless Sensor Networks.
In: ICPP Workshops 2003, IEEE Computer Society (2003) 397–413

16. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal Verification of Standards for
Distance Vector Routing Protocols. Journal of the ACM 49(4) (2002) 538–576

17. Crafa, S., Rossi, S.: Controlling Information Release in the π-calculus. Information
and Computation 205(8) (2007) 1235–1273

18. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: IEEE Sym-
posium on Security and Privacy. (1982) 11–20

19. Focardi, R., Gorrieri, R.: A Classification of Security Properties for Process Algebras.
Journal of Computer Security 3(1) (1995) 5–33

20. Reitman, R., Andrews, G.: An Axiomatic Approach to Information Flow in Pro-
grams. ACM Transactions on Programming Languages and Systems 2(1) (1980)
56–76

21. Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Imperative
Language. In: Proc. 25th POPL, ACM Press (1998) 355–364

22. Heintz, N., Riecke, J.G.: The SLam Calculus: Programming with Secrecy and In-
tegrity. In: Proc. 25th POPL, ACM Press (1998) 365–377

23. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static Analysis for the pi-Calculus
with Applications to Security. Information and Computation 168(1) (2001) 68–92

24. Boudol, G., Castellani, I.: Noninterference for Concurrent Programs and Thread
Systems. Theoretical Computer Science 281(1-2) (2002) 109–130

25. Komarova, M., Riguidel, M.: Adjustable Trust Model for Access Control. In Rong,
C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J., eds.: ATC 2008. Volume 5060
of LNCS., Springer (2008) 429–443

26. Hennessy, M.: The Security pi-calculus and Non-Interference. Journal of Logic and
Algebraic Programming 63(1) (2005) 3–34

27. Merro, M., Sibilio, E.: A Timed Calculus for Wireless Systems. In Arbab, F., Sirjani,
M., eds.: FSEN 2009. Volume 5961 of LNCS., Springer (2010)

28. Carbone, M., Nielsen, M., Sassone, V.: A Calculus for Trust Management. In
Lodaya, K., Mahajan, M., eds.: FSTTCS 2004. Volume 3328 of LNCS., Springer
(2004) 161–173

29. Martinelli, F.: Towards an Integrated Formal Analysis for Security and Trust. In
Steffen, M., Zavattaro, G., eds.: FMOODS 2005. Volume 3535 of LNCS., Springer
(2005) 115–130

15

