
Subtyping and Objects

Massimo Merro

20 November 2017

Massimo Merro Data and Mutable Store 1 / 22



Polymorphism

So far, our type systems are very rigid: there is little support to code reuse.

Polymorphism

Ability to use expressions at different places with different types.

Ad-hoc polymorphism (overloading).
e.g. in Moscow ML (but also in Java) the built in ’+’ can be used to
add two integers or to add two reals.

Parametric polymorphism - as in ML.
Can write, for instance, a function that can take as an argument of
type list α and computes its lenght (parmametric - uniformly in
whatever α is).

Subtype polymorphism - as in most Object-Oriented Languages.
Dating back to 1960s (Simula etc.) formalized in the 1980s. We will
focus on this kind of subtyping!

Massimo Merro Data and Mutable Store 2 / 22



Subtyping - Motivation

Let us recall the typing rules for the functional extension:

(fun)
Γ, x : T ` e : T ′

Γ ` (fn x : T ⇒ e) : T → T ′

(app)
Γ ` e1 : T → T ′ Γ ` e2 : T

Γ ` e1 e2 : T ′

According to our type system:

Γ ` (fn x : {left : int} ⇒ #left x) : {left : int} → int

Thus, we cannot type the following:

Γ 6` (fn x : {left : int} ⇒ #left x){left = 3, right = 5}

Even if we are giving the function a better argument, with more structure,
than it is required by the function itself!

Massimo Merro Data and Mutable Store 3 / 22



Subsumption

In which sense we are passing a better argument?

Any value of type {left : int, right : int} can be safely used whenever a
value of type {left : int} is expected!

Introduce a subtyping relation between types, written T <: T ′, read
as T is a subtype of T ′: an object of type T can always be used in a
context where an object of type T ′ is expected!

So, for instance:

{left : int, right : int} <: {left : int} <: {}

The subtype relation <: is then used by introducing a subsumption
rule

(sub)
Γ ` e : T T <: T ′

Γ ` e : T ′

Massimo Merro Data and Mutable Store 4 / 22



Example

By an application of rule (sub) we can deduce that

(sub)

Γ ` {left = 3, right = 5} : {left : int, right : int}
{left : int, right : int} <: {left : int}
Γ ` {left = 3, right = 5} : {left : int}

and type the previous expression:

(app)

{} ` (fn x : {left : int} ⇒ #left x) : {left : int} → int

{} ` {left = 3, right = 5} : {left : int}
{} ` (fn x : {left : int} ⇒ #left x){left = 3, right = 5} : int

Massimo Merro Data and Mutable Store 5 / 22



The Subtype relation T <: T ′

It is a reflexive and transitive relation:

(s-refl)
−

T <: T

(s-trans)
T <: T ′ T ′ <: T ′′

T <: T ′′

Let us define subtyping for the different data structures of our language.

Massimo Merro Data and Mutable Store 6 / 22



Subtyping - Records

Allowing reordering of fields:

(rec-perm)
π a permutation of 1, 2, . . . k

{p1:T1, . . . , pk :Tk} <: {pπ(1):Tπ(1), . . . , pπ(k):Tπ(k)}

The subtype relation is not anti-symmetric: a preorder, not a partial order.

Forgetting about fields on the right:

(rec-width)
−

{p1:T1, . . . , pk :Tk , pk+1:Tk+1, . . . pz :Tz} <: {p1:T1, . . . , pk :Tk}

If we do reordering first, we can forget about any field.

Allowing subtype within fields:

(rec-depth)
T1 <: T ′

1 . . . Tk <: T ′
k

{p1:T1, . . . , pk :Tk} <: {p1:T
′
1, . . . , pk :T ′

k}

Subtyping is said to be covariant on record types!
Massimo Merro Data and Mutable Store 7 / 22



Example: Combining rules

For instance, we can derive:

(rec-d)
(rec-w)

−
{p : int, q : int} <: {p : int} (rec-w)

−
{r : int} <: {}

{x : {p:int, q:int} , y : {r :int}} <: {x : {p:int} , y : {}}

Another possibility is:

(trans)
(w)

−
{x : {p:int, q:int} , y : {r :int}} <: {x : {p : int, q : int}}

a

{x : {p:int, q:int} , y : {r :int}} <: {x : {p:int}}

where
a

is:

(rec-depth)
(rec-width)

−
{p : int, q : int} <: {p : int}

{x : {p:int, q:int}} <: {x : {p:int}}

Massimo Merro Data and Mutable Store 8 / 22



Subtyping - Functions

The subtyping rule is the following:

(fun-sub)
T1 :> T ′

1 T2 <: T ′
2

T1 → T2 <: T ′
1 → T ′

2

We say that subtyping on functions is:

contravariant on the left of →
covariant on the right of → (like the rule (rec-depth)).

Massimo Merro Data and Mutable Store 9 / 22



Thus, if f : T1 → T2 then we can use f in any context where:

we give f any argument of type T ′
1, with T ′

1 <: T1

we use the result of f as it was of type T ′
2, with of T2 <: T ′

2.

For instance, if we define f in a let construct:

let f : T = fn x : {p : int} ⇒ {a = #p x , b = 28} in e

then when typing e we must use a type environment Γ such that
Γ(f ) = T = {p : int} → {a : int , b : int}.
By subtyping we can use f in e as it had one of the following types:

{p : int} → {a : int}

{p : int , q : int} → {a : int , b : int}

{p : int , q : int} → {a : int}

basically, because

{p : int} :> {p : int , q : int}
{a : int , b : int} <: {a : int}

Massimo Merro Data and Mutable Store 10 / 22



On the other hand, in the program

let f : T̂ = fn x : {p : int, q : int} ⇒ {a = (#p x) + (#q x)} in e

when typing e we must use a type environment Γ such that:
Γ(f ) = T̂ = {p : int, q : int} → {a : int }.
By subtyping, we can use f in e as it had, for instance, type:

{p : int, q : int, r : int} → {a : int}

However, by no means we can use f in e as it had one of the following
types:

{p : int} → T , for any Γ and T

T → {a : int, b : int}, for any Γ and T

Massimo Merro Data and Mutable Store 11 / 22



Subtyping - Products and Sums

Subtyping is covariant on both components of products:

(prod-sub)
T1 <: T ′

1 T2 <: T ′
2

T1 ∗ T2 <: T ′
1 ∗ T ′

2

Again, covariant on both components of summations

(sum-sub)
T1 <: T ′

1 T2 <: T ′
2

T1 + T2 <: T ′
1 + T ′

2

Massimo Merro Data and Mutable Store 12 / 22



Subtyping - References

We don’t introduce subtyping rules for references to avoid inconsistencies
while typing. See exercises.

Massimo Merro Data and Mutable Store 13 / 22



What else does it change?

Semantics

No change (note that we have not changed the grammar for expressions)

Properties

Of course, we still have Type Preservation and Progress.

Implementation

Type inference is now more subtle, as the typing rules are not
syntax-directed. Getting a good runtime implementation is also tricky,
especially with field reordering.

Massimo Merro Data and Mutable Store 14 / 22



Subtyping - Down-casts

The subsumption rule (sub) permits up-casting at any moment: If
T <: T ′, any expression e of type T can be used in any context where an
expression of type T ′ is expected!

How about down-casting? Suppose to add in the grammar a construct:

e ::= . . .
∣∣ (T )e

with the typing rule

(down-cast)
Γ ` e : T ′ T <: T ′

Γ ` (T )e : T

Can we statically type-check an expression (T )e?

No! This can be done only dynamically because the correctness of the
down-casting depends on the “real type”, at runtime, of e.

Massimo Merro Data and Mutable Store 15 / 22



Example on down-casting

Recall that
{left : int, right : int} <: {left : int} <: {}

Let us suppose to have a fragment of code of the form

l := !m; e

where, at runtime, at location m, there will be in the store an expression
of one of the three types above.
Now, can we statically type-check in e the following expression

({left : int})!l ?

No! Because at runtime !l could return an object of type
{left : int, right : int} but {left : int} 6<: {left : int, right : int}.
Thus, down-casting can only be dynamically type-checked.

Massimo Merro Data and Mutable Store 16 / 22



(Very simple) Objects

let cnt : {get : unit → int , inc : unit → unit} =

let val : ref int = ref 0

in

{get = fn y:unit ⇒ !val,
inc = fn y:unit ⇒ val := !val + 1}

in

(#inc cnt)(); (#get cnt)()

cnt models a simple object of type

Counter = {get : unit → int , inc : unit → unit}

with two methods: get() and inc()1;

val records the state (ie the value) of the counter which can be
accessed only be means of the two methods.

1For simplicity we write e() instead of e(skip).
Massimo Merro Data and Mutable Store 17 / 22



Using Subtyping

let cnt : {get : unit → int , inc : unit → unit , reset : unit → unit} =

let val : ref int = ref 0

in

{get = fn y:unit ⇒ !val,
inc = fn y:unit ⇒ val := !val + 1}
reset = y:unit ⇒ val := 0}

in

(#inc cnt)(); (#get cnt)()

The use of the new variable cnt is perfectly safe because now it has type

ResetCounter = {get : unit → int , inc : unit → unit , reset : unit → unit}

with ResetCounter <: Counter.
Massimo Merro Data and Mutable Store 18 / 22



Object Generators

What about a function to generate new objects each time we wish so?

let newCnt : unit → {get : unit → int , inc : unit → unit} =

fn z : unit ⇒
let val : ref int = ref 0

in

{get = fn y : unit ⇒ !val,
inc = fn y : unit ⇒ val := !val + 1}

in

(#inc (newCnt()))()

With our simple data structures we can start programming in a
object-oriented style!

By the way, what about classes? Can we represent them?

Massimo Merro Data and Mutable Store 19 / 22



Classes in Java (small example)

Consider the following Java class:

class Counter
{ protected int p;

Counter() { this.p=0; }
int get() { return this.p; }
void inc() { this.p++; }
};

Can we model something similar?

Massimo Merro Data and Mutable Store 20 / 22



Reusing Method Code (Simple Classes)

Recall the type Counter = {get : unit → int , inc : unit → unit}.
First, make the internal state into a record:

CounterRep = {p : ref int}

let cntClass : CounterRep → Counter =

fn val : CounterRep ⇒
{get = fn y:unit ⇒ !(#p val),
inc = fn y:unit ⇒ (#p val) := !(#p val) + 1}

in

let newCnt : unit → Counter =

fn z : unit ⇒
let x : CounterRep = {p = ref 0} in

cntClass x
in . . .

Massimo Merro Data and Mutable Store 21 / 22



Reusing Method Code (Simple Classes)

Can we represent the following subclass in Java?

class ResetCounter extends Counter
{ void reset() { this.p=0; }

};

let resetCntClass : CounterRep → ResetCounter =

fn val : CounterRep ⇒
let super : Counter = cntClass val in

{get = #get super
inc = #inc super
reset = fn y:unit ⇒ (#p val) := 0}

in . . .

and ResetCounter <: Counter entails
CounterRep → ResetCounter <: CounterRep → Counter!

Massimo Merro Data and Mutable Store 22 / 22


