Subtyping and Objects

Massimo Merro

20 November 2017

Massimo Merro

Data and Mutable Store

1 / 22

So far, our type systems are very rigid: there is little support to code reuse.

Polymorphism

Ability to use expressions at different places with different types.

• Ad-hoc polymorphism (overloading).

e.g. in Moscow ML (but also in Java) the built in '+' can be used to add two integers or to add two reals.

• Parametric polymorphism - as in ML.

Can write, for instance, a function that can take as an argument of type list α and computes its lenght (parmametric - uniformly in whatever α is).

• Subtype polymorphism - as in most Object-Oriented Languages. Dating back to 1960s (Simula etc.) formalized in the 1980s. We will focus on this kind of subtyping!

2 / 22

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Subtyping - Motivation

Let us recall the typing rules for the functional extension:

(fun)
$$\frac{\Gamma, x : T \vdash e : T'}{\Gamma \vdash (\text{fn } x : T \Rightarrow e) : T \rightarrow T'}$$
$$(\text{app}) \frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 e_2 : T'}$$

According to our type system:

$$\Gamma \vdash (\mathsf{fn} \ x : \{\mathit{left} : \mathsf{int}\} \Rightarrow \#\mathit{left} \ x) : \{\mathit{left} : \mathsf{int}\} \rightarrow \mathsf{int}$$

Thus, we cannot type the following:

$$\Gamma \not\vdash (\text{fn } x : \{ \text{left} : \text{int} \} \Rightarrow \#\text{left} x) \{ \text{left} = 3, \text{right} = 5 \}$$

Even if we are giving the function a better argument, with more structure, than it is required by the function itself!

Massimo Merro

Data and Mutable Store

3 / 22

Subsumption

- In which sense we are passing a better argument?
 Any value of type {*left* : int, *right* : int} can be safely used whenever a value of type {*left* : int} is expected!
- Introduce a subtyping relation between types, written T <: T', read as T is a subtype of T': an object of type T can always be used in a context where an object of type T' is expected!
- So, for instance:

```
\{left: int, right: int\} <: \{left: int\} <: \}
```

• The subtype relation <: is then used by introducing a *subsumption rule*

(sub)
$$\frac{\Gamma \vdash e: T \quad T <: T'}{\Gamma \vdash e: T'}$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Example

By an application of rule (sub) we can deduce that

$$\begin{array}{l} \Gamma \vdash \{left = 3, right = 5\} : \{left : int, right : int\} \\ (sub) & \underline{\{left : int, right : int\}} <: \{left : int\} \\ \hline \Gamma \vdash \{left = 3, right = 5\} : \{left : int\} \end{array}$$

and type the previous expression:

$$\{\} \vdash (\text{fn } x : \{\text{left} : \text{int}\} \Rightarrow \#\text{left} x) : \{\text{left} : \text{int}\} \rightarrow \text{int}$$

$$(\text{app}) \qquad \{\} \vdash \{\text{left} = 3, \text{right} = 5\} : \{\text{left} : \text{int}\}$$

$$\{\} \vdash (\text{fn } x : \{\text{left} : \text{int}\} \Rightarrow \#\text{left} x) \{\text{left} = 3, \text{right} = 5\} : \text{int}$$

Massimo Merro

5 / 22

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の < @

The Subtype relation T <: T'

It is a reflexive and transitive relation:

(s-refl)
$$\frac{-}{T <: T}$$

(s-trans) $\frac{T <: T' \quad T' <: T''}{T <: T''}$

Let us define subtyping for the different data structures of our language.

Mass	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Subtyping - Records

Allowing reordering of fields:

(rec-perm)
$$\frac{\pi \text{ a permutation of } 1, 2, \dots k}{\{p_1: T_1, \dots, p_k: T_k\} <: \{p_{\pi(1)}: T_{\pi(1)}, \dots, p_{\pi(k)}: T_{\pi(k)}\}}$$

The *subtype relation* is not anti-symmetric: a preorder, not a partial order. Forgetting about fields on the right:

$$(\text{rec-width}) \quad \overline{\{p_1: T_1, \dots, p_k: T_k, p_{k+1}: T_{k+1}, \dots, p_z: T_z\}} <: \{p_1: T_1, \dots, p_k: T_k\}$$

If we do reordering first, we can forget about any field. Allowing subtype within fields:

(rec-depth)
$$\frac{T_1 <: T'_1 \dots T_k <: T'_k}{\{p_1: T_1, \dots, p_k: T_k\} <: \{p_1: T'_1, \dots, p_k: T'_k\}}$$

Subtyping is said to be covariant on record types!

5 9 Q Q

Example: Combining rules

For instance, we can derive:

$$\frac{(\text{rec-w}) \quad \frac{-}{\{p: \text{int}, q: \text{int}\} <: \{p: \text{int}\}} \quad (\text{rec-w}) \quad \frac{-}{\{r: \text{int}\} <: \{\}}}{\{x: \{p: \text{int}, q: \text{int}\}, y: \{r: \text{int}\}\}} \quad <: \{x: \{p: \text{int}\}, y: \{\}\}}$$

Another possibility is:

$$\frac{(\text{trans})}{\{x : \{p:\text{int}, q:\text{int}\}, y : \{r:\text{int}\}\} <: \{x : \{p:\text{int}, q:\text{int}\}\}}{\{x : \{p:\text{int}, q:\text{int}\}, y : \{r:\text{int}\}\}} \leq \{x : \{p:\text{int}\}\}}$$

where \triangle is:

$$(\text{rec-depth}) \quad \frac{(\text{rec-width})}{\{p: \text{int}, q: \text{int}\} <: \{p: \text{int}\}} \\ \{x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\} \\ (x: \{p: \text{int}, q: \text{int}\}\} <: \{x: \{p: \text{int}\}\}$$

Massimo Merro

Data and Mutable Store

8 / 22

The subtyping rule is the following:

$$(\mathsf{fun-sub}) \quad \frac{T_1 :> T_1' \quad T_2 <: T_2'}{T_1 \to T_2 <: T_1' \to T_2'}$$

We say that subtyping on functions is:

- contravariant on the left of \rightarrow
- covariant on the right of \rightarrow (like the rule (rec-depth)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Thus, if $f : T_1 \rightarrow T_2$ then we can use f in any context where:

• we give f any argument of type T'_1 , with $T'_1 <: T_1$

• we use the result of f as it was of type T'_2 , with of $T_2 <: T'_2$. For instance, if we define f in a let construct:

let
$$f : T = \text{fn } x : \{p : \text{int}\} \Rightarrow \{a = \#p x, b = 28\}$$
 in e

then when typing e we must use a type environment Γ such that $\Gamma(f) = T = \{p : int\} \rightarrow \{a : int, b : int\}.$ By subtyping we can use f in e as it had one of the following types:

$$\{p: \mathsf{int}\} \to \{a: \mathsf{int}\}$$

$$\{p: \mathsf{int}, q: \mathsf{int}\} \to \{a: \mathsf{int}, b: \mathsf{int}\}$$

$$\{p: \mathsf{int}, q: \mathsf{int}\} \to \{a: \mathsf{int}\}$$

basically, because

$$\{p: \mathsf{int}\} :> \{p: \mathsf{int}, q: \mathsf{int}\} \\ \{a: \mathsf{int}, b: \mathsf{int}\} <: \{a: \mathsf{int}\}$$

Data and Mutable Store

On the other hand, in the program

let $f: \hat{T} = \text{fn } x: \{p: \text{int}, q: \text{int}\} \Rightarrow \{a = (\#p x) + (\#q x)\}$ in e

when typing e we must use a type environment Γ such that: $\Gamma(f) = \hat{T} = \{p : \text{int}, q : \text{int}\} \rightarrow \{a : \text{int}\}.$ By subtyping, we can use f in e as it had, for instance, type:

$$\{p: int, q: int, r: int\} \rightarrow \{a: int\}$$

However, by no means we can use f in e as it had one of the following types:

•
$$\{p: int\} \rightarrow T$$
, for any Γ and T

•
$$T \rightarrow \{a : int, b : int\}, \text{ for any } \Gamma \text{ and } T$$

Massimo Merro

11 / 22

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Subtyping is covariant on both components of products:

(prod-sub)
$$\frac{T_1 <: T'_1 \quad T_2 <: T'_2}{T_1 * T_2 <: T'_1 * T'_2}$$

Again, covariant on both components of summations

(sum-sub)
$$\frac{T_1 <: T'_1 \quad T_2 <: T'_2}{T_1 + T_2 <: T'_1 + T'_2}$$

Massimo Merro

12 / 22

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

We don't introduce subtyping rules for references to avoid inconsistencies while typing. See exercises.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

What else does it change?

Semantics

No change (note that we have not changed the grammar for expressions)

Properties

Of course, we still have Type Preservation and Progress.

Implementation

Type inference is now more subtle, as the typing rules are not syntax-directed. Getting a good runtime implementation is also tricky, especially with field reordering.

Subtyping - Down-casts

The subsumption rule (sub) permits up-casting at any moment: If T <: T', any expression *e* of type *T* can be used in any context where an expression of type *T'* is expected!

How about down-casting? Suppose to add in the grammar a construct:

e ::= ... | (T)e

with the typing rule

(down-cast)
$$\frac{\Gamma \vdash e: T' \quad T <: T'}{\Gamma \vdash (T)e: T}$$

Can we statically type-check an expression (T)e?

No! This can be done only dynamically because the correctness of the down-casting depends on the "real type", at runtime, of *e*.

15 / 22

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへぐ

Example on down-casting

Recall that

```
\{left : int, right : int\} <: \{left : int\} <: \{\}
```

Let us suppose to have a fragment of code of the form

l := !m; e

where, at runtime, at location m, there will be in the store an expression of one of the three types above.

Now, can we statically type-check in e the following expression

({*left* : int})!1 ?

No! Because at runtime !l could return an object of type {*left* : int, *right* : int} but {*left* : int} $\not\lt$: {*left* : int, *right* : int}.

Thus, down-casting can only be dynamically type-checked.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ シスペ

(Very simple) Objects

let cnt : {get : unit \rightarrow int , inc : unit \rightarrow unit} = let val : ref int = ref 0 in {get = fn y:unit \Rightarrow !val, inc = fn y:unit \Rightarrow val := !val + 1} in (#inc cnt)(); (#get cnt)()

cnt models a simple object of type

 $\mathsf{Counter} = \{ get : \mathsf{unit} \to \mathsf{int} , inc : \mathsf{unit} \to \mathsf{unit} \}$

with two methods: get() and $inc()^1$;

• val records the state (ie the value) of the counter which can be accessed only be means of the two methods.

¹For simplicity we write e() instead of e(skip).

Using Subtyping

```
let cnt : {get : unit \rightarrow int , inc : unit \rightarrow unit , reset : unit \rightarrow unit} =
let val : ref int = ref 0
in
    {get = fn y:unit \Rightarrow !val,
    inc = fn y:unit \Rightarrow val := !val + 1}
    reset = y:unit \Rightarrow val := 0}
in
```

```
(\# inc \operatorname{cnt})(); (\# get \operatorname{cnt})()
```

The use of the new variable cnt is perfectly safe because now it has type

 $\mathsf{ResetCounter} = \{get : \mathsf{unit} \to \mathsf{int}, \mathit{inc} : \mathsf{unit} \to \mathsf{unit}, \mathit{reset} : \mathsf{unit} \to \mathsf{unit}\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

What about a function to generate new objects each time we wish so?

```
let newCnt : unit \rightarrow {get : unit \rightarrow int , inc : unit \rightarrow unit} =
fn z : unit \Rightarrow
let val : ref int = ref 0
in
{get = fn y : unit \Rightarrow !val,
inc = fn y : unit \Rightarrow val := !val + 1}
in
(#inc (newCnt()))()
```

With our simple data structures we can start programming in a object-oriented style!

By the way, what about classes? Can we represent them?

ロト (日) (日) (日) (日) (日) (日)

Classes in Java (small example)

Consider the following Java class:

```
class Counter
{ protected int p;
    Counter() { this.p=0; }
    int get() { return this.p; }
    void inc() { this.p++; }
    };
```

Can we model something similar?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Reusing Method Code (Simple Classes)

Recall the type Counter = {get : unit \rightarrow int, inc : unit \rightarrow unit}. First, make the internal state into a record:

```
CounterRep = \{p : ref int\}
```

```
let cntClass : CounterRep \rightarrow Counter =
    fn val : CounterRep \Rightarrow
        \{get = fn y:unit \Rightarrow !(\#p val),\}
         inc = \text{fn y:unit} \Rightarrow (\#p \text{ val}) := !(\#p \text{ val}) + 1
in
     let newCnt : unit \rightarrow Counter =
         fn z : unit \Rightarrow
             let x : CounterRep = {p = ref 0} in
                 cntClass x
    in ...
```

Reusing Method Code (Simple Classes)

Can we represent the following subclass in Java?

```
class ResetCounter extends Counter
  { void reset() { this.p=0; }
       };
            let resetCntClass : CounterRep \rightarrow ResetCounter =
               fn val : CounterRep \Rightarrow
                  let super : Counter = cntClass val in
                     \{get = #get super\}
                      inc = #inc super
                      reset = fn y:unit \Rightarrow (#p val) := 0}
            in
```

and ResetCounter <: Counter entails CounterRep \rightarrow ResetCounter <: CounterRep \rightarrow Counter!

Massimo Merro

22 / 22