
Semantics of Programming Languages Hilary term 2010

Worksheet: Arithmetic Expressions – Some Answers
(1) Using the rules from the lectures:

(-)
4 ⇓ 4

(-)
1 ⇓ 1

(-)
(4 + 1) ⇓ 5

(-)
2 ⇓ 2

(-)
2 ⇓ 2

(-)
(2 + 2) ⇓ 4

(-)
((4 + 1) + (2 + 2)) ⇓ 9

(2) To handle multiplication, we simply add a single rule to our existing system. In
addition to the axiom and the rule for + we have the rule

(-)
E1 ⇓ n1 E2 ⇓ n2

n3 = mult(n1, n2)
(E1 × E2) ⇓ n3

(3) The proof consists of four uses of the axiom, two uses of the rule for + and one use
of the new rule for ×:

(-)
3 ⇓ 3

(-)
2 ⇓ 2

(-)
3 + 2 ⇓ 5

(-)
1 ⇓ 1

(-)
4 ⇓ 4

(-)
1 + 4 ⇓ 5

(-)
((3 + 2) × (1 + 4)) ⇓ 25

(4) The obvious rule to add for subtraction is

(-)
E1 ⇓ n1 E2 ⇓ n2

n3 = minus(n1, n2)
(E1 − E2) ⇓ n3

However, in general this won’t work, because if n1 is 3 and n2 is 7, then n3 = −4,
and we do not have a corresponding numeral n3.
One solution is to say that subtraction “gets stuck” when a negative value is needed.
You can do this bymaking no rule available in the nasty case; this is done by adding
a side condition.

(-)
E1 ⇓ n1 E2 ⇓ n2

n3 = minus(n1, n2) and n1 ≥ n2
(E1 − E2) ⇓ n3

With this approach, there is no numeral n for which (3 − 7) ⇓ n, so this expression
has no final answer at all.
Other solutions are possible: one could extend the semantics to allow expressions
to signal errors, and then a “bad” subtraction would signal an error. If you choose
this route, every rule of the semantics needs to be reconsidered in case errors might
make a difference.
You might also decide that such subtractions default to returning 0, but then you
have of beware of strange things like

(3 − 7) + 4 ⇓ 4

Answers



Semantics of Programming Languages Hilary term 2010

while
(3 + 4) − 7 ⇓ 0.

This is probably not a good idea.

(5) One possible E is 3 + (4 + 3). The axiom (-A) for the small-step semantics gives
us

1 + 2→lr 3

and the rule (-) lets us use this on the left hand side of the expression in question,
so the full derivation is

(-)
1 + 2→lr 3

(-)
((1 + 2) + (4 + 3))→lr (3 + (4 + 3))

Question: Are there any other expression E diffferent from 3 + (4 + 3) for which
a left-to-right derivation can be found ?

(6) The full evaluation sequence is

((1 + 2) + (4 + 3)) →lr (3 + (4 + 3))
→lr (3 + 7)
→lr 10.

We have already seen the derivation of the first step. The axiom for the small step
semantics (-) allows us to derive

4 + 3→lr 7

Since 3 is a numeral this can be used in an application of the second rule, (-.)
to give the following derivation of the second step:

(-)
4 + 3→lr 7

(-.)
3 + (4 + 3)→lr (3 + 7)

The derivation of the final step is simpler. It is an application of the axiom:

(-)
3 + 7→lr 10

(7) Every derivation in the left-to-right semantics is also a derivation in the standard
semantics. So from Question (5) we know

((1 + 2) + (4 + 3))→ 3 + (4 + 3)

But using the more general rule (-) we can also derive

((1 + 2) + (4 + 3))→ (1 + 2) + 7

Answers



Semantics of Programming Languages Hilary term 2010

Here is the derivation:

(-)
4 + 3→ 7

(-)
((1 + 2) + (4 + 3))→ (1 + 2) + 7

It turns out that these are the only two possible E, namely (1+2)+7 and 3+(4+3).

(8) The left-to-right small step semantics uses only three rules, (-), (-.) and
(-). Therefore if an expression is to evaluate to ((1+ 2)+ 7) in one step, the step
must be derived from an instance of the first rule, (-), since the axiom (-) only
lets us derive steps that end in a numeral, and the second rule (-.) only lets us
derive steps that lead to expressions of the form n + E.
Therefore we know that any such expression must have the form (E1 + 7), where
E1→lr (1 + 2).
So we need to find such an E1. Using the first rule (-) we can derive

((0 + 1) + 2)→ (1 + 2)

So one possible E is (0 + 1) + 2) + 7. The full derivation consists of one use of the
axiom followed by two applications of the first rule:

(-)
0 + 1→ 1

(-)
(0 + 1) + 2→lr 1 + 2

(-)
((0 + 1) + 2) + 7→lr (1 + 2) + 7

(9) From the reasoning in the previous answer we know that they all have the form
(E1 + 7), where E1 → (1 + 2). So we need to know all the possible E1 such that
E1→ (1 + 2).
This step can be derived using either the first rule (-) or the second rule (-).
Here are all the suitable expressions E1:

• ((0 + 1) + 2), using (-)
• ((1 + 0) + 2), using (-)
• (1 + (0 + 2)), using (-.)
• (1 + (1 + 1)), using (-.)
• (1 + (2 + 0)), using (-.)

So the only expressions that can evaluate to ((1 + 2) + 7) in one step are

• (((0 + 1) + 2) + 7)
• (((1 + 0) + 2) + 7)
• ((1 + (0 + 2)) + 7)
• ((1 + (1 + 1)) + 7)

Answers



Semantics of Programming Languages Hilary term 2010

• ((1 + (2 + 0)) + 7).

(10) If E→ ((1+2)+7) but E!lr ((1+2)+7) then the more general rule (-) must be
used in the derivation of the first judgement. So one possible E is ((1+2)+ (2+5)).
Here is a derivation:

(-)
2 + 5→ 7

(-)
((1 + 2) + (2 + 5))→ (1 + 2) + 7

(11) ((1+1)+1) takes two steps to get to the final answer 3. The full evaluation sequence
is

((1 + 1) + 1)→lr (2 + 1)→lr 3.

If we add another 1 to get (((1 + 1) + 1) + 1) then three steps are needed.
In general, the number of steps needed is the same as the number of + symbols
since each step reduces the number of + symbols in an expression by one. You
will be asked to prove this fact in a later exercise class.

Answers


