
Behavioural Theory for Mobile Ambients

MASSIMO MERRO

Dipartimento di Informatica, Università di Verona, Italy

and

FRANCESCO ZAPPA NARDELLI

INRIA Rocquencourt, France

We study a behavioural theory of Mobile Ambients, a process calculus for modelling mobile agents
in wide-area networks, focussing on reduction barbed congruence. Our contribution is threefold.
(1) We prove a context lemma which shows that only parallel and nesting contexts need be exam-
ined to recover this congruence. (2) We characterise this congruence using a labelled bisimilarity:
this requires novel techniques to deal with asynchronous movements of agents and with the invisi-
bility of migrations of secret locations. (3) We develop refined proof methods involving up-to proof
techniques, which allow us to verify a set of algebraic laws and the correctness of more complex
examples.

Categories and Subject Descriptors: F.3.2 [Theory of Computation]: Logics and Meanings of
Programs—Operational semantics; Process models

General Terms: Languages, Theory

Additional Key Words and Phrases: Behavioural theories, bisimulation, concurrency, process
calculi, programming languages

Introduction

Programming wide-area networks is inherently different from programming dis-
tributed applications over local networks [Cardelli 1999], and requires novel and
specialised programming techniques. Wide-area networks are characterised by the
existence of separate locations, offering different services and having different prop-
erties. In particular, locations are protected by barriers (e.g. administrative do-
mains, firewalls, etc), which control access to the local resources. As different
locations have different properties, programs need to move between them and thus
cross those barriers. Mobility and barrier crossing seem inevitable requirements of
wide-area computing infrastructure.

Cardelli and Gordon designed the process calculus of Mobile Ambients [Cardelli
and Gordon 2000], abbreviated MA, as an abstract model of computation over
wide-area networks, by focussing on the concepts of barriers and barrier crossing.
An ambient process, denoted by n[P], represents a place, named n, delimited by
a boundary, which encloses the multi-threaded computation P . Ambients can be
nested within other ambients, forming a tree structure reminiscent of the hier-

c©ACM, 2005. This is the author’s version of the work. It is posted here by permis-
sion of ACM for your personal use. Not for redistribution. The definitive version is
in press.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0004-5411/2005/0100-100001 $5.00

Journal of the ACM, Vol. V, No. N, September 2005, Pages 1–0??.

2 · M. Merro and F. Zappa Nardelli

archical organisation of administrative domains. Mobility is then represented as
navigation across a hierarchy of ambients: in the term n[P], the computation P
can exercise a capability to instruct the enclosing ambient n to move. There are
three kinds of capabilities. The first, the in m capability, causes the enclosing
ambient to enter into a sibling ambient named m. An example of this activity is
formally rendered as follows:

n[in m.P] | m[Q] _ m[n[P] | Q]

where the construct “|” denotes parallel composition of processes, “.” denotes pre-
fixing (which here blocks the execution of P until the capability is consumed), and
“_” denotes the dynamics of the terms using a reduction relation showing the state
change. The second, out m, causes the enclosing ambient to exit from its parent
ambient, if the parent is named m:

m[n[out m.P] | Q] _ m[Q] | n[P] .

The third, open m, dissolves the boundaries of an ambient named m:

open m.P | m[Q] _ P | Q .

Ambient names, such as n and m, play a central role in the computational model
of MA, as they are used to control access to the ambient’s interior: a process must
refer to the ambient it wants to interact with by name. As in the π-calculus [Milner
et al. 1992], the construct (νn)P dynamically creates a new name whose scope is
initially limited to the process P .

Since their introduction in 1998, MA attracted strong interest from the con-
currency theory community. In particular, the development of effective semantics
theories for MA has been a long-standing open problem.

A central concern for process calculi is to establish when two processes have
the same observable behaviour, that is, they are indistinguishable in any environ-
ment. Behavioural equivalences are fundamental for relating implementations to
specifications, and for justifying program transformations performed either by pro-
grammers, during system development, or by the optimising phases of compilers.
While several notions of behavioural equivalences can be found in the literature,
they all share some key properties:

—two terms are equivalent only if they offer identical interactions to any environ-
ment, that is, they expose the same observables;

—the equivalence is preserved by some key constructs of the calculus: in this case,
proving the equivalence of two large processes can be reduced to proving the
equivalence of their components.

Other properties may vary, such as sensitivity to deadlock, the class of contexts
that preserve the equivalence, and the definition of observable.

In this paper we focus on (weak) reduction barbed congruence, a behavioural
equivalence defined as the largest equivalence that:

—is preserved by all the constructs of the language;
—is preserved (in a sense we will make precise later) by the reduction semantics of

the language;
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 3

—preserves barbs, which are simple observables of terms.

By definition, reduction barbed congruence is both a branching-time equivalence
that preserves the observables of the language, and a congruence; we will point out
later the advantages of this formulation. Reduction barbed congruence was first
studied by Honda and Yoshida [1995] under the name of maximum sound theory,
and it is also known as open barbed bisimilarity [Sangiorgi and Walker 2001b].

The definition of reduction barbed equivalence is simple and intuitive. In practise,
however, it is difficult to use: the quantification on all contexts is a heavy proof
obligation. Simpler proof techniques are based on labelled bisimilarities [Park 1981;
Milner 1989], which are co-inductive relations that characterise the behaviour of
processes using a labelled transition system (abbreviated LTS). An LTS consists of
a collection of relations of the form

P
α−−→ Q .

The judgement above means that the process P can realise the action α, and
becomes Q: intuitively, the action α represents some small context with which the
process P can interact. The reduction semantics of a process is easily encoded
in an LTS because a reduction step can be seen as an interaction with an empty
context: this is traditionally called a τ -action. More generally, an LTS records the
fact that a process can interact with a context that makes some specific resource
available. In this case, the action codifies the minimal context needed to realise
such interaction.

We can define an equivalence for processes from the LTS, by requiring that the
observable actions of one process can be mimicked by the actions of the other.
Labelled bisimilarity is the co-inductively closed form of this equivalence. If the LTS
is sufficiently rich, the resulting bisimilarity will be contained in reduction barbed
congruence, and therefore the former becomes a proof technique for the latter. In
practise, this is useful because the quantification over all actions is easier to verify
than the quantification over all contexts. We can further simplify the verification,
by employing up-to proof techniques. These techniques allow us to abstract some
details of the processes being tested, for example by stripping off a common context
after which only the remaining parts need be compared. If the labelled bisimilarity
coincides with reduction barbed congruence, then the set of actions captures exactly
the observable interactions that processes can have with arbitrary contexts. In this
case, the LTS captures the fundamental properties of interactions between terms
and contexts, providing a deep understanding of equivalent processes.

Although the idea of labelled bisimilarity is very general and does not rely on the
specific syntax of the calculus, the definition of an appropriate LTS and associated
weak bisimilarity for Mobile Ambients turned out to be harder than expected. The
reasons can be summarised as follows:

— Ambient mobility is asynchronous: no synchronisation is required to migrate
into an ambient. As noticed by Sangiorgi [2001], this causes a stuttering phe-
nomenon originated by ambients that may repeatedly enter and exit another am-

Journal of the ACM, Vol. V, No. N, September 2005.

4 · M. Merro and F. Zappa Nardelli

bient. As an example, the two processes

P
def= in n.out n.in n.R

Q
def= in n.out n.in n.R + in n.R

where “+” denotes nondeterministic guarded choice1 à la CCS [Milner 1989], cannot
be distinguished by reduction barbed congruence. Process Q can obviously mimic
the behaviour of P . Perhaps surprisingly, P can simulate Q too: for instance, P
can mimic the reduction k[Q] | n[] _ n[k[R]] by performing three consecutive
reductions: k[P] | n[] ___ n[k[R]]. If we think in terms of labelled transitions,
we see that when P undergoes the action in n, then Q can match this exactly,
with one in n action; while if Q undergoes the right in n action, P can only
match it with a sequence of three actions in n.out n.in n. This is challenging
to accommodate with bisimilarity. However, since stuttering cannot be observed
by reduction barbed congruence, a complete labelled characterisation of reduction
barbed congruence is obliged to be insensitive to stuttering as well.

— The movement of private ambients cannot be observed : consider the perfect
firewall equation [Cardelli and Gordon 2000], a well-known algebraic law of MA:

(νn)n[P] = 0 for n not in P.

This law states that a private ambient n whose internal code does not refer to the
name of the ambient itself is equivalent to the inactive process. The idea is that a
context cannot know the name of the private ambient, and, consequently, it cannot
interact with it, while the condition “n does not appear in P” ensures that the
computation P cannot move outside the ambient n. The subtle point is that the
ambient n can freely move around the network without being observed. Again,
as the law above is captured by reduction barbed congruence, a complete labelled
characterisation of reduction barbed congruence must not observe the movements
of private ambients.

Merro and Hennessy [2002; 2005] introduced a weak labelled bisimilarity for a
simpler variant of MA, called SAP, equipped with (i) synchronous mobility, as in
Levi and Sangiorgi’s Safe Ambients [Levi and Sangiorgi 2000], and (ii) passwords
to exercise control over, and differentiate between, different ambients that wish to
exercise a capability. Synchronous mobility ensures that stuttering cannot happen
and prevents private ambients from moving: the two difficulties highlighted above
are ruled out by changing the syntax and the reduction semantics of MA. Their main
result is a sound and complete characterisation of reduction barbed congruence in
terms of a labelled bisimilarity. The result does not apply to MA because it relies
crucially on features (i) and (ii) mentioned above.

This paper is the natural continuation of Merro and Hennessy investigations,
where we tackle the original problem: to provide bisimulation proof methods for
Mobile Ambients.

1The guarded choice construct is not part of the syntax of MA; however, a similar, but more
complex, example can be exhibited using only the operators of MA.

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 5

Contribution. The aim of this work is to provide a labelled characterisation of
weak reduction barbed congruence. This is achieved by a careful study of the be-
havioural theory of a class of processes, called systems. We outline the main con-
tributions of this paper, highlighting how they fit together.

Section 1. First, we divide MA terms into two categories: processes and systems.
Systems are the subclass of processes consisting of parallel compositions of ambi-
ents (which may share the knowledge of ambient names). A system thus exposes
the units of mobility to an observer, but does not expose directly the threads of
computation. As we will see, this allows us to derive a simple LTS, while retaining
enough observational power to extend our characterisation easily to all processes.

Section 2. We define an LTS for systems, which captures precisely and concisely
the mobility interactions that a system can perform with a context. For instance,
the term m[in n.P] can reduce in a context which provides an ambient named n,
for example − | n[R], where “−” denotes the hole in the context. The reduction

m[in n.P] | n[R] _ n[m[P] | R]

is then captured in the LTS by the transition

m[in n.P]
m.enter n−−−−−−−−→ n[m[P] | R] .

Similarly, the other labels capture the all possible interactions:
— a system m[out n.P] can reduce in the context n[− | R], yielding respectively

the reduction and the transition

n[m[out n.P]] _ m[P] | n[R] and m[out n.P]
m.exit n−−−−−−−−→ m[P] | n[R] ;

— a system m[P] can interact with a context that opens it, as n[− | open m.R],
yielding

n[m[P] | open m.R] _ n[P | R] and m[P]
n.open m−−−−−−−−→ n[P | R] ;

— a system m[P] can interact with a context that provides an ambient that
enters into it, as − | n[in m.R], yielding

m[P] | n[in m.R] _ m[P | n[R]] and m[P]
m.enter n−−−−−−−−→ m[P | n[R]] .

In all the examples above, the process R inside the ambient n is an arbitrary process
provided by the context. The LTS leaves it unspecified, and it will be instantiated
later, in the bisimulation.

Section 3. From the LTS, we define a weak labelled bisimilarity over systems.
The bisimilarity relation ensures that equivalent systems can mimic their observable
actions. While doing so, it is also responsible for specifying the arbitrary process
provided by the context; in this respect, it resembles the formulation of Sangiorgi’s
context bisimulation for HOπ [Sangiorgi 1996a]. However, as highlighted above, the
contexts used in the co-inductive step are very simple, unlike in Sangiorgi’s con-
text bisimulation. Depending on the position of the quantification of processes in
the definition of bisimulation, we can define both late and early bisimilarity [San-
giorgi and Walker 2001a]. As in HOπ [Sangiorgi 1996a], we show that the two
formulations coincide; thereafter we concentrate on the late version, ≈, which is

Journal of the ACM, Vol. V, No. N, September 2005.

6 · M. Merro and F. Zappa Nardelli

easier to manipulate. The definition of our labelled bisimilarity is similar to the
asynchronous bisimilarity of Amadio, Castellani and Sangiorgi for asynchronous π-
calculus [Amadio et al. 1998]. More precisely, our bisimilarity does not observe the
movements of secret ambients, in the same way as asynchronous bisimilarity does
not observe input actions. We prove that the relation ≈ completely characterises
reduction barbed congruence over systems, ∼=s, that is, for all systems M and N it
holds that

M ≈ N iff M ∼=s N .

Section 4. We provide two up-to proof techniques, along the lines of [Milner and
Sangiorgi 1992; Sangiorgi 1998; Sangiorgi and Walker 2001a]. More precisely, we
develop both up-to expansion and up-to context proof techniques for ≈, and prove
their soundness. These techniques are useful to reduce the size of the candidate
bisimulation and turn the labelled bisimilarity into a very effective proof method.
In particular, the up-to context proof technique is fundamental for factoring out
the universally quantified processes provided by the environment. As far as we
know, this is the first application of up-to proof techniques to higher-order process
languages.

Section 5. We then use the theory developed for systems to characterise reduction
barbed congruence over processes, ∼=p, in terms of ≈. More precisely, we show that:

∼=p = {(P, Q) : k[P | R] ≈ k[Q | R] for all k, R}
where P and Q range over processes. This result relies crucially on a context lemma
for ∼=p, which allows us to consider only contexts for concurrency and locality.

When restricting our attention to systems, a stronger results holds: for all systems
M and N we have that

M ≈ N iff M ∼=p N .

Section 6. We extend our results to the full calculus of Mobile Ambients pro-
cesses equipped with asynchronous communication of capabilities. A consequence
of building our proof methods on top of the behaviour of systems rather than
processes is that communication cannot be observed directly, and thus few modifi-
cations are required to accommodate it.

Section 7. We apply our bisimulation proof methods to checking a collection of
algebraic laws (including the perfect firewall equation) with respect to ∼=p. The
proofs are pleasantly simple: the size of the candidate bisimulations is small thanks
to the up-to context proof technique. We also prove the correctness of a protocol,
introduced in [Cardelli and Gordon 2000], for controlling access through a firewall.

The paper ends with a comparison with related work.

1. MOBILE AMBIENTS IN TWO LEVELS

In Table I we report the syntax of MA, where N denotes a countable infinite set of
names.

Unlike the original definitions of MA, our syntax is defined in a two-level struc-
ture, a lower one for processes, and an upper one for systems. Systems are collections
of ambients running in parallel, that may share knowledge of ambient names. As
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 7

Table I. Mobile Ambients in Two Levels

Names: a, b, . . . , k, l, m, n, . . . ∈ N

Systems:
M, N ::= 0 inactive systemŕŕ M1 | M2 parallel compositionŕŕ (νn)M restrictionŕŕ n[P] ambient

Processes:
P, Q, R ::= 0 inactive processŕŕ P1 | P2 parallel compositionŕŕ (νn)P restrictionŕŕ C.P prefixingŕŕ n[P] ambientŕŕ !C.P replication

Capabilities:
C ::= in n may enter into nŕŕ out n may exit out of nŕŕ open n may open n

regards processes, the constructs for inactivity, parallel composition, restriction and
replicated prefixing are inherited from mainstream concurrent calculi, most notably
the π-calculus [Milner et al. 1992]. The inactive process, 0, does nothing. Par-
allel composition is denoted by the commutative and associative operator |. The
restriction operator, (νn)P , creates a new fresh name n within a scope P . We have
replicated prefixing, !C.P , (rather than full replication) to create as many parallel
replicas of a guarded process as needed. Since the copies of the guarded process
cannot interact among themselves, working with replicated prefixing simplifies the
definition of the LTS and most of the proofs.

The specific features of the ambient calculus are the ambient construct, n[P],
and the prefixing of capabilities, C.P . In n[P], n is the name of the ambient and
P is the process running inside the ambient. The process C.P performs an action
regulated by the capability C, and then continues as the process P . Capabilities are
constructed from names; given a name n, the capability in n allows entering into
n, the capability out n allows exiting out of n, and the capability open n allows
destructing the boundary of the ambient n. To avoid unnecessary complications at
this stage, we omit communication; it will be added in Section 6.

A (monadic) context C[−] is a process with a hole, denoted by −. A static context
is a context where the hole does not appear under a prefix or a replication.

The class of systems is not closed under arbitrary contexts: as an example, the
context C[−] = − | open n sends a system M into a process M | open n. We
restrict our attention to the class of contexts, called system contexts, that sends a
system to a system and that retains the distinguishing power of arbitrary contexts
(as shown in Section 5). Formally, system contexts are those static contexts that

Journal of the ACM, Vol. V, No. N, September 2005.

8 · M. Merro and F. Zappa Nardelli

transform systems into systems. They are generated by the grammar below:

C[−] ::= − ∣∣ C[−] | M ∣∣ M | C[−]
∣∣ (νn)C[−]

∣∣ n[C[−] | P]
∣∣ n[P | C[−]]

where M is an arbitrary system, and P is an arbitrary process. The contexts
n[C[−] | P] and n[P | C[−]] allow testing a term by running it in parallel with
a process: they are key elements to retain the distinguishing power of arbitrary
contexts. We always specify if we mean an arbitrary context or a system context
when we write C[−].

We use a number of notational conventions. Parallel composition has the lowest
precedence among the operators.

∏
i∈I Pi means the parallel composition of all

processes Pi, for i ∈ I. ñ denotes a tuple n1, . . . , nk of names. The process C.C ′.P
is read as C.(C ′.P). We omit trailing dead processes, writing C for C.0, and n[]
for n[0]. Occasionally, we omit inactive processes when they are in parallel with
processes, writing P for P | 0. The operator (νn) is a binder for names, leading
to the usual notions of free and bound occurrences of names, fn(·) and bn(·), and
α-conversion, ≡α. We write (νñ)P as an abbreviation for (νn1) . . . (νnk)P . We
will identify processes up to α-conversion. More formally we will view process
terms as representatives of their equivalence class with respect to ≡α, and these
representatives will always be chosen so that bound names are distinct from free
names. Unless otherwise stated, contexts are monadic.

Operational semantics. The dynamics of the calculus is specified by the reduction
relation over processes, _, described in Table II. As systems are processes with
a special structure, the rules of Table II also describe the evolution of systems.
The reduction semantics relies on an auxiliary relation called structural congruence
that brings the participants of a potential interaction into contiguous positions. It
is easy to check that the class of systems is closed under the reduction relation,
that is, systems always reduce to systems. The symbol _∗ denotes the reflexive
and transitive closure of _.

Behavioural semantics. We now introduce our reference equivalence, reduction
barbed congruence.

Definition 1.1 A relation R over processes is reduction closed if P R Q and
P _ P ′ imply the existence of some Q′ such that Q _∗ Q′ and P ′ R Q′.

Definition 1.2 A relation R over processes is preserved by contexts (resp. system
contexts) if P R Q implies C[P] R C[Q] for all contexts (resp. system contexts) C[−].

In MA, given a process P , a simple observable is the presence at top-level of an
ambient whose name (say n) is not restricted: the observation predicate P ↓ n
captures exactly this observable. Formally, we write P ↓ n if P ≡ (νm̃)(n[P1] | P2)
where n 6∈ {m̃}. We write P ⇓ n if there exists P ′ such that P _∗ P ′ and P ′ ↓ n.

Definition 1.3 We say that a relation R over processes is barb preserving if P R
Q and P ↓ n implies Q ⇓ n.

We are ready to define the contextual equivalences of interest:

Definition 1.4 (Reduction barbed congruence)

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 9

Table II. Structural Congruence and Reduction Rules

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!C.P ≡ C.P | !C.P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
n 6∈ fn(P) implies (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m implies (νn)(m[P]) ≡ m[(νn)P] (Struct Res Amb)

≡ is the least equivalence relation which satisfies the axioms and rules above, and is
preserved by contexts.

n[in m.P | Q] | m[R] _ m[n[P | Q] | R] (Red In)

m[n[out m.P | Q] | R] _ n[P | Q] | m[R] (Red Out)

open n.P | n[Q] _ P | Q (Red Open)

P ≡ Q Q _ R R ≡ S implies P _ S (Red Struct)

_ is the least relation which satisfies the rules above and is preserved by static contexts.

—Reduction barbed congruence over systems, written ∼=s, is the largest symmetric
relation over systems which is reduction closed, barb preserving, and preserved
by system contexts.

—Reduction barbed congruence over processes, written ∼=p, is the largest symmetric
relation over processes which is reduction closed, barb preserving, and preserved
by all contexts.

When comparing two processes, reduction barbed congruence allows the context
surrounding the processes being compared to be changed at any point in the bisim-
ulation game. An alternative contextual equivalence, called barbed congruence [Mil-
ner and Sangiorgi 1992], is defined as the context closure of the largest symmetric
relation which is reduction closed and barb preserving. Since barbed congruence
fixes the observer once for all at the beginning of the bisimulation game, it might be
argued that it is a more natural equivalence. However, we choose reduction barbed
congruence as our main equivalence because the the power to change the context
surrounding the systems being tested makes possible the proof of characterisation
theorem of Section 3.

In the remainder of the paper, when working with a relation R over processes
and/or systems, we write R= to denote the symmetric closure of R.

2. A LABELLED TRANSITION SEMANTICS FOR SYSTEMS

Along standard lines, [Milner 1989], prefixes C give rise to transitions of the form

P
C−−→ Q. For example we have

in n.P1

∣∣ P2
in n−−−−→ P1

∣∣ P2 .

However, similarly to what happens in [Merro and Hennessy 2002] and in [Merro
and Hennessy 2005] each of the capability C induces different and more complicated
actions. The LTS is defined over processes, although in the labelled bisimilarity
we only consider actions going from systems to systems. We make a distinction

Journal of the ACM, Vol. V, No. N, September 2005.

10 · M. Merro and F. Zappa Nardelli

Table III. Pre-actions, Env-actions, Actions, Concretions, and Outcomes

Pre-actions: π ::= Outcomes: O ::= P
ŕŕ K

ŕŕ in n
ŕŕ out nŕŕ open n

ŕŕ enter nŕŕ amb n
ŕŕ exit n

Env-actions: σ ::= Concretions: K ::= (νm̃)〈P 〉Qŕŕ k.enter n
ŕŕ k.exit n

ŕŕ ∗.enter n
ŕŕ ∗.exit n

ŕŕ n.enter k
ŕŕ k.open n

Actions: α ::= σ
ŕŕ τ

Table IV. Labelled Transition System - Pre-actions

(π Pfx)
−

π.P
π−−→ P

(π Repl Pfx)
−

!π.P
π−−→ P | !π.P

(π Enter)
P

in n−−−−→ P1

m[P]
enter n−−−−−−−→ 〈m[P1]〉0

(π Amb)
−

n[P]
amb n−−−−−→ 〈P 〉0

(π Exit)
P

out n−−−−−→ P1

m[P]
exit n−−−−−−→ 〈m[P1]〉0

(π Res)
P

π−−→ O n 6∈ fn(π)

(νn)P
π−−→ (νn)O

(π Par)
P

π−−→ O

P | Q π−−→ O | Q
Q | P π−−→ Q | O

between pre-actions and env-actions: the former denote the possibility to exercise
certain capabilities whereas the latter model the interaction of a system with its
environment. As usual, we also have τ -actions to model internal computations.
Only env-actions and τ -actions model the evolution of a system at run-time. The
formal definition of the LTS is given below, and is followed by several examples
illustrating its use (starting from page 12).

The pre-actions, defined in Table IV, are of the form P
π−−→ O where the ranges

of π and of O, the outcomes, are reported in Table III. An outcome may be a simple
process Q, if for example π is a capability, or a concretion, of the form (νm̃)〈P 〉Q,
when an ambient boundary is somehow involved. In this case, P represents the code
that may enter to, reside at, or exit from an ambient; Q represents the derivative
which is not affected by the action, and m̃ is the set of private names shared
by P and Q. We adopt the convention that if K is the concretion (νm̃)〈P 〉Q,
then (νr)K is a shorthand for (νm̃)〈P 〉(νr)Q if r 6∈ fn(P), and the concretion
(νrm̃)〈P 〉Q otherwise. We have a similar convention for the rule (π Par): K | R
is defined to be the concretion (νm̃)〈P 〉(Q | R), where m̃ are chosen, using α-
conversion if necessary, so that fn(R) ∩ {m̃} = ∅; similarly R | K is the concretion
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 11

Table V. Labelled Transition System - τ -actions

(τ Enter)
P

enter n−−−−−−−→ (νp̃)〈k[P1]〉P2 Q
amb n−−−−−→ (νq̃)〈Q1〉Q2

(∗)

P | Q τ−−→ (νp̃)(νq̃)(n[k[P1] | Q1] | P2 | Q2)

Q | P τ−−→ (νq̃)(νp̃)(n[Q1 | k[P1]] | Q2 | P2)

(τ Exit)
P

exit n−−−−−−→ (νm̃)〈k[P1]〉P2

n[P]
τ−−→ (νm̃)(k[P1] | n[P2])

(τ Amb)
P

τ−−→ Q

n[P]
τ−−→ n[Q]

(τ Open)
P

open n−−−−−−→ P1 Q
amb n−−−−−→ (νm̃)〈Q1〉Q2

P | Q τ−−→ P1 | (νm̃)(Q1 | Q2)

Q | P τ−−→ (νm̃)(Q1 | Q2) | P1

(τ Res)
P

τ−−→ P ′

(νn)P
τ−−→ (νn)P ′

(τ Par)
P

τ−−→ P ′

P | Q τ−−→ P ′ | Q
Q | P τ−−→ Q | P ′

(*) In rule (τ Enter) we require

((fn(k[P1]) ∪ fn(P2)) ∩ {q̃}) = ((fn(Q1) ∪ fn(Q2)) ∩ {p̃}) = ∅ .

(νm̃)〈P 〉(R | Q).
The rules (π Pfx), (π Repl Pfx), (π Res), and (π Par) are standard. The rule

(π Enter) results in a concretion containing the ambient willing to enter n. The
rule (π Exit) is similar, but the resulting concretion contains the ambient willing to
exit from n. The rule (π Amb) records in a concretion the code residing at n.

The τ -actions, formally defined in Table V, model the internal evolution of pro-
cesses. The rule (τ Enter) models an ambient migrating into a sibling ambient
n. The rule (τ Exit) models an ambient k exiting from an ambient n. The rule
(τ Open) describes the opening of an ambient n. Structural rules (τ Amb), (τ Res),
and (τ Par) are straightforward.

The env-actions, formally defined in Table VI, are of the form M
σ−−→ M ′, where

the range of σ is given in Table III. Env-actions turn concretions into running
systems by explicitly introducing the environment’s ambient interacting with the
process in question. The content of this ambient will be instantiated later, in the
definition of the bisimilarity, with a process. A special process variable, denoted ◦,
(also called placeholder) is used to pinpoint those ambients whose content will be
instantiated later.

Definition 2.1 (Extended syntax) We call extended syntax the grammar of
Table 1 extended with the production P ::= ... | ◦.
We will specify if P represents a process or a process over the extended syntax
whenever it is not clear from the context.

The LTS is defined over processes over the extended syntax. However, all the
equivalences defined in this paper relate only processes that do not contain the
special process variable ◦.

Note that, unlike pre-actions and τ -actions, env-actions do not have structural
Journal of the ACM, Vol. V, No. N, September 2005.

12 · M. Merro and F. Zappa Nardelli

Table VI. Labelled Transition System - Env-actions

(Enter)
P

enter n−−−−−−−→ (νm̃)〈k[P1]〉P2 k 6∈ m̃

P
k.enter n−−−−−−−−→ (νm̃)(n[k[P1] | ◦] | P2)

(Co-Enter)
P

amb n−−−−−→ (νm̃)〈P1〉P2 k 6∈ m̃

P
n.enter k−−−−−−−−→ (νm̃)(n[P1 | k[◦]] | P2)

(Exit)
P

exit n−−−−−−→ (νm̃)〈k[P1]〉P2 k 6∈ m̃

P
k.exit n−−−−−−−→ (νm̃)(k[P1] | n[◦ | P2])

(Open)
P

amb n−−−−−→ (νm̃)〈P1〉P 2

P
k.open n−−−−−−−→ k[◦ | (νm̃)(P1 | P2)]

(Enter Shh)
P

enter n−−−−−−−→ (νm̃)〈k[P1]〉P2 k ∈ m̃

P
∗.enter n−−−−−−−−→ (νm̃)(n[k[P1] | ◦] | P2)

(Exit Shh)
P

exit n−−−−−−→ (νm̃)〈k[P1]〉P2 k ∈ m̃

P
∗.exit n−−−−−−−→ (νm̃)(k[P1] | n[◦ | P2])

rules; this is because env-actions are supposed to be performed by systems that can
directly interact with the environment. In the rules (Enter) and (Exit) an ambient k
enters, respectively exit from, an ambient n provided by the environment. The rules
(Enter Shh) and (Exit Shh) are similar and model the migration of private ambients.
In the rule (Co-Enter) an ambient k, provided by the environment, migrates into
an ambient n of the process. In the rule (Open) the environment opens an ambient
n of the process; the opening is performed inside an ambient k provided by the
environment.

We call actions the set of env-actions extended with τ . Actions, denoted by α,
always go from systems over the extended syntax to systems over the extended
syntax. As our bisimilarity will be defined over systems, we will only consider
actions (and not pre-actions) in its definition.

Proposition 2.2 If T is a system (resp. a process) over the extended syntax, and
T

α−−→ T ′, then T ′ is a system (resp. a process) over the extended syntax.

Since we are interested in weak bisimilarities, that abstract over τ -actions, we
introduce the notion of weak action. The definition is standard: =⇒ denotes the
reflexive and transitive closure of

τ−−→; α==⇒ denotes =⇒ α−−→ =⇒; α̂==⇒ denotes =⇒
if α = τ and α==⇒ otherwise.

Now, let us explain with an example the rules induced by the prefix in, the
immigration of ambients. A typical example of an ambient m migrating into an
ambient n follows:

(νm)(m[in n.P1 | P2] | M) | n[Q] _ (νm)(n[m[P1 | P2] | Q] | M)
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 13

The driving force behind the migration is the activation of the prefix in n, within
the ambient m. It induces a capability in the ambient m to migrate into n, that
we formalise as a new action enter n. Thus, an application of (π Enter) gives

m[in n.P1 | P2]
enter n−−−−−−→ 〈m[P1 | P2]〉0

and, more generally, using the structural rules (π Res) and (π Par),

(νm)(m[in n.P1 | P2] | M)
enter n−−−−−−→ (νm)〈m[P1 | P2]〉M .

This means that the ambient m[in n.P1 | P2] has the capability to enter an ambient
n; if the capability is exercised, the ambient m[P1 | P2] will enter n while M will
be the residual where the execution started. Of course the transition fires only if
there is an ambient n in parallel. The rule (π Amb) allows to check for the presence
of ambients. So for example, we have

n[Q]
amb n−−−−−→ 〈Q〉0 .

Here, the concretion 〈Q〉0 says that the process Q is inside n and is affected by the
action, while the process 0 is outside and is not affected. Finally, the rule (τ Enter)

allows these two complementary actions to occur simultaneously, executing the
migration of the ambient m[P1 | P2] from its current computation space into the
ambient n, giving rise to the original move above:

(νm)(m[in n.P1 | P2] | M) | n[Q]
τ−−→ (νm)(n[m[P1 | P2] | Q] | M) .

Note that this is a higher-order interaction, as the ambient m[P1 | P2] is transferred
between two computation spaces.

We have not said yet what env-actions are useful for. They model the interaction
of mobile agents with their environment. So, for instance, using the rule (Enter Shh),
we derive from

(νm)(m[in n.P1 | P2] | M)
enter n−−−−−−→ (νm)〈m[P1 | P2]〉M .

the transition

(νm)(m[in n.P1 | P2] | M)
∗.enter n−−−−−−−−→ (νm)(n[m[P1 | P2] | ◦] | M) .

This transition denotes a private (secret) ambient entering an ambient n provided by
the environment. The computation running at n will be added later by instantiating
the placeholder ◦.

Had the ambient name m not been restricted, we would have used the rule (Enter)

to derive

m[in n.P1 | P2] | M
m.enter n−−−−−−−−→ n[m[P1 | P2] | ◦] | M

to model a global ambient m entering an ambient n provided by the environment.

Now, let us explain the rules for emigration with an example. A typical example
of an ambient m emigrating from an ambient n follows:

n[m[out n.P1 | P2] | Q] _ m[P1 | P2] | n[Q] .

The driving force behind the emigration is the activation of the prefix out n within
the ambient m. It induces a capability in the ambient m to emigrate from n, which

Journal of the ACM, Vol. V, No. N, September 2005.

14 · M. Merro and F. Zappa Nardelli

we formalise as a new action exit n. Thus an application of the rule (π Exit),
followed by (π Par), gives

m[out n.P1 | P2] | Q
exit n−−−−−−→ 〈m[P1 | P2]〉Q .

Here, when exercising this capability, the code Q remains inside the ambient n while
the ambient m[P1 | P2] moves outside. However, to complete the emigration of m
we need a further context, namely the ambient n from which to emigrate. This
leads to the rule (τ Exit); an application of which gives the original move above:

n[m[out n.P1 | P2] | Q]
τ−−→ m[P1 | P2] | n[Q] .

As for immigration, env-actions m.exit n and ∗.exit n model the exiting of global
and private ambients from an ambient n provided by the environment.

Whenever a system offers a public ambient n at top-level, a context can interact
with the system by providing an ambient willing to enter inside n. For instance,
the system n[P] | M can interact with the system context C[−] = − | k[in n.R]
(where R is an arbitrary process), yielding the system n[k[R] | P] | M . The rule
(Co-Enter) captures this interaction between system and environment. In fact, it
holds that

n[P] | M n.enter k−−−−−−−−→ n[k[◦] | P] | M .

A system that offers a public ambient n at top-level can also interact with a system
context willing to open it, like C[−] = k[open n.R | −]. The rule (Open) captures
this interaction. For instance, we have

n[P] | M k.open n−−−−−−−→ k[◦ | P | M] .

We end this section with several technical lemmas, and a theorem that asserts
that the LTS-based semantics coincides with the reduction semantics of Section 1.

For any process P , outcome O and pre-action π such that P
π−−→ O, the structure

of P and O can be determined up to structural congruence.

Lemma 2.3

—If P
C−−→ O, with C ∈ {in n, out n, open n}, then there exist p̃, P1, P2, with

n 6∈ p̃, such that

P ≡ (νp̃)(C.P1 | P2) and O ≡ (νp̃)(P1 | P2) .

—If P
enter n−−−−−−→ (νp̃)〈P ′〉P ′′ then there exist k, P1, P2, with n 6∈ p̃, such that

P ≡ (νp̃)(k[in n.P1 | P2] | P ′′) and P ′ ≡ k[P1 | P2] .

—If P
exit n−−−−−−→ (νp̃)〈P ′〉P ′′ then there exist k, P1, P2, with n 6∈ p̃, such that

P ≡ (νp̃)(k[out n.P1 | P2] | P ′′) and P ′ ≡ k[P1 | P2] .

—If P
amb n−−−−−→ (νp̃)〈P ′〉P ′′, with n 6∈ p̃, then P ≡ (νp̃)(n[P ′] | P ′′).

Proof By induction on the transition rules of Tables IV and V. ¤
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 15

Transitions are preserved by structural congruence:

Lemma 2.4 If P ≡ Q and P
`−−→ P ′ for ` ∈ σ ∪ {τ}, then there is Q′ such that

Q
`−−→ Q′ and P ′ ≡ Q′.

The correspondence between reductions and τ -transitions is stated in the theorem
below:

Theorem 2.5

(1) If P
τ−−→ P ′ then P _ P ′

(2) If P _ P ′ then P
τ−−→≡ P ′.

The proof of these two results is standard, and is postponed to Appendix A.

3. CHARACTERISATION OF REDUCTION BARBED CONGRUENCE OVER SYS-
TEMS

In this section we define a labelled bisimilarity that completely characterises reduc-
tion barbed congruence over systems.

In the previous section we said that env-actions introduce a special process vari-
able ◦ to pinpoint those ambients whose content must be instantiated in the bisim-
ilarity. We write P • R to denote the name-capture avoiding substitution of the
process R for the occurrences of ◦ in P .

Definition 3.1 Let P , Q be processes over the extended syntax. Let R be a
process. We define:

0 •R
def= 0 (P | Q) •R

def= (P •R) | (Q •R)
n[P] •R

def= n[P •R] (νn)P •R
def= (νn)(P •R) if n 6∈ fn(R)

◦ •R
def= R C.P •R

def= C.(P •R)
!C.P •R

def= !C.(P •R).

It should be pointed out that in what follows, whenever we write P •R, there is
only one occurrence of ◦ in P . In some proofs, we use an extended definition of •
allowing R to range over processes involving ◦.

Everything is now in place to define our bisimilarity.

Definition 3.2 (Late bisimilarity) A symmetric relation R over systems is a
late bisimulation if M R N implies:

—if M
α−−→ M ′, α 6∈ {∗.enter n, ∗.exit n}, then there is a system N ′ such that

N
α̂==⇒ N ′ and for all processes P it holds that M ′ • P R N ′ • P ;

—if M
∗.enter n−−−−−−−−→ M ′ then there is a system N ′ such that N | n[◦] =⇒ N ′ and for

all processes P it holds that M ′ • P R N ′ • P ;

—if M
∗.exit n−−−−−−−→ M ′ then there is a system N ′ such that n[◦ | N] =⇒ N ′ and for

all processes P it holds that M ′ • P R N ′ • P .

Systems M and N are late bisimilar, written M ≈ N , if M R N for some late
bisimulation R.

Journal of the ACM, Vol. V, No. N, September 2005.

16 · M. Merro and F. Zappa Nardelli

The first clause applies to both observable and silent transitions. It ensures that
whenever the system being tested realises an observable action, then the matching
system realises the same observable action, possibly preceded and/or followed by
internal transitions. It also ensures that the outcomes are equivalent. In the case
of silent transitions (i.e., when α = τ), the outcome M ′ does not contain the
special process variable ◦, as there is no interaction with the environment. As a
consequence, for α = τ , we could simply write

—if M
τ−−→ M ′ then there is a system N ′ such that N =⇒ N ′ and M ′ R N ′.

When α is an env-action, there is a universal quantification over the process P
(provided by the environment) which replaces the placeholder ◦ generated by the
env-action.

The second and third clauses define the matching requirements when a system
interacts with a context by the movement of a secret ambient. The bisimulation is
not defined in the standard way, that is, as a symmetric relationR over systems such
that whenever M R N and M

α−−→ M ′, there is a system N ′ such that N
α̂==⇒ N ′,

and for all processes P it holds that M ′ • P R N ′ • P . A standard bisimilarity
would yield a sound proof technique, but would not be a complete characterisation
of ∼=s. In fact, the two systems

(νn)n[in k.0] and 0

are reduction barbed congruent, but are distinguished by the standard bisimilarity.
In particular, the system (νn)n[in k.0] can perform a ∗.enter k action while 0 can-
not. This example shows that a labelled characterisation of reduction barbed con-
gruence should treat actions ∗.enter n and ∗.exit n separately, asking for weaker
matching requirements: like input actions in the asynchronous π-calculus [Honda
and Tokoro 1991; Boudol 1992], these actions cannot be observed by a context.

According to the π-calculus terminology [Sangiorgi and Walker 2001a], the bisimi-
larity is defined in a late style as the existential quantification precedes the universal
one. Another possibility would be to define the bisimilarity in early style, where
the universal quantification over the environment’s contribution P precedes that
over the derivative N ′. We write ≈e to denote the early variant. By definition,
every late bisimulation is also a early one, while the converse, in general, does not
hold. However, in our case, as in HOπ [Sangiorgi 1996a], we will prove that late
and early bisimilarity coincide. We choose late bisimilarity as our main labelled
bisimilarity because the derivatives N ′ do not depend on the environment’s contri-
bution P . The π-calculus experience suggests that late bisimulations may fail to
be transitive. However, processes reveals to be more ‘tractable’ than names, and
in our framework late bisimilarity turns out to be an equivalence relation.

3.1 Soundness

We show that late and early bisimilarity are two proof techniques for reduction
barbed congruence over systems. More precisely, we prove that they are both
contained in reduction barbed congruence over systems.

Theorem 3.3 Late bisimilarity is preserved by system contexts.
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 17

Table VII. System Contexts for Visible Actions

Ck.enter n[−]
def
= n[done[in k.out k.out n] | ◦] | −

Ck.exit n[−]
def
= (νa)a[in k.out k.done[out a]] | n[◦ | −]

Cn.enter k[−]
def
= (νa)a[in n.k[out a.(◦ | (νb)b[out k.out n.done[out b]])]] | −

Ck.open n[−]
def
= k[◦ | (νa, b)(open b.open a.done[out k] | a[− | open n.b[out a]])]

where a,b and done are fresh names.

Proof We show that the closure of ≈ under system contexts is a bisimulation.
This requires a long induction on the structure of the system contexts, reported in
Appendix B. The result then follows by co-induction. ¤
In general, proving the congruence of a bisimilarity that involves higher-order terms
is difficult. In MA, however, the mobility model is not based on process variables
and substitutions, and the bisimilarity only relates closed processes. This avoids
several difficulties that occur, for instance, in the proof of congruence of applicative
bisimilarity for the λ-calculus [Howe 1996], and in Sangiorgi’s proof of congruence
of contextual bisimilarity for HOπ [Sangiorgi 1996a].

It is easy to adapt the proof of the theorem above to show that also early bisim-
ilarity is preserved by system contexts.

Proposition 3.4 Early bisimilarity is preserved by system contexts.

In the following lemma we point out a close relationship between the observation
predicate M ↓ n and a specific action that M can emit.

Lemma 3.5

(1) If M
n.enter k−−−−−−−−→ M ′ then M ↓ n;

(2) if M ↓ n then there exists a system M ′ such that M
n.enter k−−−−−−−−→ M ′ for some

name k.

It is thus easy to prove that both late and early bisimilarity imply reduction
barbed congruence over systems.

Theorem 3.6 (Soundness) The following chain of inclusions holds: ≈⊆≈e⊆∼=s.
Proof The first inclusion holds by definition. The second one comes from the
fact that early bisimilarity is reduction closed (immediate consequence of Theo-
rem 2.5), barb-preserving (by Lemma 3.5), and preserved by system contexts (by
Proposition 3.4). ¤

3.2 Completeness

We now prove that late and early bisimilarity are more than proof techniques.
They actually characterise reduction barbed congruence over systems. The main
challenge here is to design the system contexts capable of observing our visible
actions.

The definition of these contexts, denoted Cα[−], where α ranges over visible
actions, is given in Table VII. Each context uses the ambient done as a fresh
barb to signal that the action α has occurred. We now elucidate the intuitions

Journal of the ACM, Vol. V, No. N, September 2005.

18 · M. Merro and F. Zappa Nardelli

behind these contexts. The context for k.enter n offers an ambient n, containing
the ambient done. This interior ambient can consume the initial in k capability
and then migrate to top-level if and only if an ambient k enters into n, i.e. if
the system being tested realises the action k.enter n. The context for k.exit n
uses a private ambient a, different from done, to test if an ambient k exits from n
(that is, if the system being tested realises the action k.exit n). As a result, the
barb done can be observed at top-level only if the exit action has been detected.
The context for n.enter k is more complicated. Instead of moving the ambient k
directly into n, it encapsulates k inside a private ambient a. This ensures that a
Trojan horse hidden in the system being tested cannot use the ambient k to enter
into the ambient n (thus failing to capture the desired behaviour of the test and
contradicting Lemma 3.12). The barb done is then released only after that the
ambient k goes inside the ambient n. The use of the private ambient b is optional,
but allows a uniform formulation of Lemma 3.12 by ensuring that if the ambient
done arrives at top-level, then it is empty. Finally, in the context for k.open n, the
private ambients a and b guarantee that the barb done is unleashed only when an
ambient n is opened.

To prove our characterisation result we will show that reduction barbed congru-
ence over systems is contained in the late bisimilarity. Then, by Theorem 3.6, we
can prove that late bisimilarity, early bisimilarity, and reduction barbed congru-
ence over systems, they all coincide. To prove that reduction barbed congruence
over systems implies late bisimilarity we must spell out the correspondence between
visible actions α and their corresponding system contexts Cα[−].

We begin with a simple result that allows to garbage collect empty ambients
whose name is secret.

Lemma 3.7 (νn)n[] ∼=s 0.

The following lemma says that the distinguishing system contexts of Table VII
are sound, that is, they can successfully mimic the execution of visible actions.

Lemma 3.8 Let α ∈ {k.enter n, k.exit n, n.enter k, k.open n} and let M be a
system. For all processes P , if M

α−−→ M ′ then Cα[M]•P =⇒∼=s (M ′ •P) | done[].
Proof The proof is by case analysis on α. We detail here the case α = k.enter n,
and we report all the other cases in Appendix B.

Case α = k.enter n. Let P be a process. We know that M
k.enter n−−−−−−−−→ M ′.

Then

M ≡ (νm̃)(k[in n.M1 | M2] | M3)

where ({n, k} ∪ fn(P)) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(n[k[M1 | M2] | ◦] | M3).

Now,

Ck.enter n[M] • P

≡ (νm̃)(n[done[in k.out k.out n] | P] | k[in n.M1 | M2] | M3)
τ−−→ (νm̃)(n[done[in k.out k.out n] | P | k[M1 | M2]] | M3)
τ−−→ (νm̃)(n[P | k[M1 | M2 | done[out k.out n]]] | M3)

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 19

Table VIII. Spy Contexts

spyα〈i, j,−〉 def
= (i[out n] | −)⊕ (j[out n] | −)

if α ∈ {k.enter n, k.exit n, k.open n, ∗.enter n, ∗.exit n}

spyα〈i, j,−〉 def
= (i[out k.out n] | −)⊕ (j[out k.out n] | −) if α ∈ {n.enter k}

τ−−→ (νm̃)(n[P | done[out n] | k[M1 | M2]] | M3)
τ−−→ (νm̃)(done[] | n[P | k[M1 | M2]] | M3)
≡ (νm̃)(n[◦ | k[M1 | M2] | M3]) • P | done[]

= M ′ • P | done[]

By Lemma 2.4 and transitivity of≡, there exists a system O such that Ck.enter n[M]•
P =⇒ O, and O ≡ M ′•P | done[]. The result follows because structural congruence
restricted to systems is contained in reduction barbed congruence over systems, and
O ∼=s M ′ • P | done[].

The remaining cases are detailed in Appendix B. ¤
To complete the correspondence proof between actions α and their contexts

Cα[−], we have to prove the converse of Lemma 3.8, formalised in Lemma 3.12. The
proof of this result uses some special contexts spyα〈i, j,−〉, defined in Table VIII,
as a technical tool to guarantee that the process P provided by the environment
does not perform any action. This is necessary when proving completeness to guar-
antee that the contribution P is the same on both sides. Formally, the spyα〈i, j,−〉
contexts are multi-hole contexts, as the same hole occurs more than once (in this
case, twice). The spyα〈i, j,−〉 contexts use internal choice encoded as:

P ⊕Q
def= (νo)(o[] | open o.P | open o.Q) .

This encoding satisfies the following properties:

Lemma 3.9 P ⊕Q
τ−−→∼=s P and P ⊕Q

τ−−→∼=s Q.

The ability of spyα〈i, j, P 〉 to ‘spy’ on P stems from the fact that one of the two
fresh barbs i and j is lost when P performs any action. The key properties of
spyα〈i, j,−〉 are captured by the lemma below, proved in Appendix B.

Lemma 3.10

(1) Let M be a system over the extended syntax. If M • spyα〈i, j, P 〉
τ−−→ O and

O ⇓ i, j, where i, j are fresh for P and M , then there exists a system M ′ over
the the extended syntax such that:
(a) O = M ′ • spyα〈i, j, P 〉;
(b) M

τ−−→ M ′.
(2) For all ambients n and processes R, if {i, j} ∩ fn(P) = ∅, then

n[(νi, j)spyα〈i, j, P 〉 | R] ∼=s n[P | R] .

The second statement illustrates that when the barbs i and j cannot be observed,
spyα〈i, j,−〉 contexts can be garbage collected. We also need a simple result on
arbitrary contexts (proved in Appendix B), reminiscent of the perfect firewall men-
tioned in the introduction.

Journal of the ACM, Vol. V, No. N, September 2005.

20 · M. Merro and F. Zappa Nardelli

Lemma 3.11 Let C[−] and C′[−] be arbitrary contexts, P and P ′ processes, and r

a name fresh for C[−] and P , such that C[r[P]]
τ−−→ C′[r[P ′]]. Then C[0] =⇒ C′[0].

We can finally prove the correspondence between actions and contexts.

Lemma 3.12 Let α ∈ {k.enter n, k.exit n, n.enter k, k.open n} and let M be
a system. Let i, j be fresh names for M . For all processes P with {i, j}∩ fn(P) = ∅,
if Cα[M] • spyα〈i, j, P 〉 =⇒≡ N | done[] and N ⇓i,j then there exists a system M ′

such that M
α==⇒ M ′ and M ′ • spyα〈i, j, P 〉 ∼=s N .

Proof The proof depends on the precise definition of the context. The main
argument is that in the reduction

Cα[M] • spyα〈i, j, P 〉 =⇒≡ N | done[]

the fresh ambient done[] can only be unleashed if M performs the action α, possibly
preceded or followed by some internal actions. The fresh barbs i, j assure that the
process P does not take part in the reduction, and that the component spyα〈i, j, P 〉
is found intact after the reduction. We proceed by case analysis on α. We detail
here the case α = n.enter k, and we report all the other cases in Appendix B.

Case α = n.enter k. Observe that

Cα[M] • spyα〈i, j, P 〉 ≡
(νa)(νb)a[in n.k[out a.(spyα〈i, j, P 〉 | b[out k.out n.done[out b]])]] | M .

To unleash the ambient done, the ambient a must use its in n capability, and the
ambient k must use its out a capability. Moreover, the ambient b must exit from k
and n, and the ambient done must exit from b. More precisely, there must exist a
system M1 and system contexts D[−], D′[−], and D′′[−1,−2,−3] (for convenience
we use a ternary context) such that

Cn.enter k[M] • spyα〈i, j, P 〉
≡ (νa)(νb)a[in n.k[out a.(spyα〈i, j, P 〉 | b[out k.out n.done[out b]])]] | M
=⇒ (νa)(νb)a[in n.k[out a.(spyα〈i, j, P 〉 | b[out k.out n.done[out b]])]] | M1

τ−−→ (νa)(νb)D[a[k[out a.(spyα〈i, j, P 〉 | b[out k.out n.done[out b]]])]]
τ==⇒ (νa)(νb)D′[k[spyα〈i, j, P 〉 | b[out k.out n.done[out b]]] | a[]] (?)
=⇒ (νa)(νb)D′′[spyα〈i, j, P 〉 | a[], done[], b[]] (??)
≡ N | done[]

We know that the ambient done must end up at top level (up to ≡). This implies
that we first consume the capability out a (in the reduction sequence (?)) and
then the capabilities out k, out n, and out b (in the reduction sequence (??)).
Moreover, as N ⇓ i, j, by Lemma 3.10, the process spyα〈i, j, P 〉 must remain intact
inside ambient k which cannot be opened (although some ambients may enter inside
k). By examining the above reductions sequence from Cn.enter k[M] • spyα〈i, j, P 〉
we conclude that

M =⇒ M1
n.enter k−−−−−−−−→ D[k[◦]] =⇒ D′[k[◦]] .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 21

As names a, b, and done are all fresh, by Lemma 3.11 applied to the sequence of
transitions

(νa)(νb)D′[k[◦ | b[out k.out n.done[out b]]] | a[]]
=⇒ (νa)(νb)D′′[◦ | a[], done[], b[]]

we derive that there is M ′ such that

D′[k[◦]] =⇒ M ′ ≡ D′′[◦ | 0,0,0] .

As a and b are fresh and, by Lemma 3.7 (νn)n[] ∼=s 0, it holds that

M ′ • spyα〈i, j, P 〉 ≡ D′′[spyα〈i, j, P 〉 | 0,0,0]
∼=s (νa)(νb)D′′[spyα〈i, j, P 〉 | a[],0, b[]]

and hence also that:

M ′ • spyα〈i, j, P 〉 | done[] ∼=s (νa)(νb)D′′[spyα〈i, j, P 〉 | a[],0, b[]] | done[]
≡ (νa)(νb)D′′[spyα〈i, j, P 〉 | a[], done[], b[]]
≡ N | done[] .

As done is a fresh name and ∼=s is closed under restriction, we conclude M ′ •
spyα〈i, j, P 〉 ∼=s N , as desired. ¤

When proving the completeness result we implicitly use a standard property of
reduction barbed congruence.

Proposition 3.13 If P ∼=s Q then

—P ⇓ n iff Q ⇓ n

—P =⇒ P ′ implies there is Q′ such that Q =⇒ Q′ and P ′ ∼=s Q′.

Similar results hold for reduction barbed congruence over processes. In the sequel
we will use these properties without comment.

Theorem 3.14 (Completeness) Reduction barbed congruence over systems is
contained in late bisimilarity.
Proof We prove that the relationR = {(M, N) | M ∼=s N} is a late bisimulation.
The result will then follow by co-induction.

— Suppose that M R N and that M
α−−→ M ′ where α ∈ {k.enter n, k.exit n,

n.enter k, k.open n}. We must find a system N ′ such that N
α==⇒ N ′ and for all

P , M ′ • P ∼=s N ′ • P .
The idea of the proof is to use a particular context which mimics the effect of
the action α, and also allows us to subsequently compare the residuals of the two
systems. This context has the form

Dα〈P 〉[−] = (Cα[−] • spyα〈i, j, P 〉) | Flip

where Cα[−] are the contexts in Table VII and Flip is the system:

(νk)k[in done.out done.(succ[out k]⊕ fail[out k])]

where succ and fail are fresh names. Intuitively, the existence of the fresh barb
fail indicates that the action α has not yet happened, whereas the presence of succ

Journal of the ACM, Vol. V, No. N, September 2005.

22 · M. Merro and F. Zappa Nardelli

together with the absence of fail ensures that the action α has been performed, and
has been reported via done.
As ∼=s is preserved by system contexts, M ∼=s N implies that, for all processes P ,
it holds that

Dα〈P 〉[M] ∼=s Dα〈P 〉[N] .

By Lemma 3.8 and 3.10(1), we can build the following reduction sequence:

Dα〈P 〉[M] = (Cα[M] • spyα〈i, j, P 〉) | Flip =⇒ M1 | Flip =⇒ O1

with M1 ≡ D′[spyα〈i, j, P 〉] | done[] ∼=s (M ′•spyα〈i, j, P 〉) | done[], for some system
context D′[−], and by Lemma 3.9 O1

∼=s (M ′ • spyα〈i, j, P 〉) | done[] | succ[] with
O1 ⇓ i, j, succ 6⇓ fail.
This reduction must be matched by a corresponding reduction sequence

Dα〈P 〉[N] =⇒ O2

where O1
∼=s O2 and hence O2 ⇓ i, j, succ 6⇓ fail.

The constrains on the barbs allow us to deduce the structure of the above reduction
sequence. That is:

Dα〈P 〉[N] = (Cα[N] • spyα〈i, j, P 〉) | Flip =⇒ N1 | Flip =⇒ O2

with N1 ≡ D′′[spyα〈i, j, P 〉] | done[], and O2
∼=s D′′′[spyα〈i, j, P 〉] | done[] |

succ[] for some system contexts D′′[−] and D′′′[−] such that D′′[spyα〈i, j, P 〉] =⇒
D′′′[spyα〈i, j, P 〉].
As Cα[N] • spyα〈i, j, P 〉 =⇒ N1 ≡ D′′[spyα〈i, j, P 〉] | done[], by Lemma 3.12 there
is a system N ′ such that N

α==⇒ N ′ and D′′[spyα〈i, j, P 〉] ∼=s N ′ • spyα〈i, j, P 〉. As
D′′[spyα〈i, j, P 〉] =⇒ D′′′[spyα〈i, j, P 〉] ⇓ i, j there is N ′′ such that N ′ =⇒ N ′′ and
D′′′[spyα〈i, j, P 〉] ∼=s N ′′ • spyα〈i, j, P 〉.
Summarising, there is N ′′ such that N

α==⇒ N ′′ and:
—O1

∼=s M ′ • spyα〈i, j, P 〉 | done[] | succ[]
—O2

∼=s D′′′[spyα〈i, j, P 〉] | done[] | succ[]
—D′′′[spyα〈i, j, P 〉] ∼=s N ′′ • spyα〈i, j, P 〉
—O1

∼=s O2.
As barbed congruence is preserved by restriction, we have

(νdone, succ)O1
∼=s (νdone, succ)O2 .

By Lemma 3.7 (νdone)done[] ∼=s (νsucc)succ[] ∼=s 0, which implies

M ′ • spyα〈i, j, P 〉 ∼=s N ′′ • spyα〈i, j, P 〉.
Observe that the placeholder must be located inside an ambient, and cannot be
under a prefix. Since ∼=s is preserved by restriction, is transitive, and is closed
under system contexts, we can apply Lemma 3.10(2) and we can finally derive
M ′ • P R N ′′ • P , for all processes P .

— Suppose now M R N and M
∗.enter n−−−−−−−−→ M ′. We must find a system N ′ such

that N | n[◦] =⇒ N ′ and for all P , M ′ • P ∼=s N ′ • P .
We consider the context

C〈P 〉[−] = − | n[spy∗.enter n〈i, j, P 〉] .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 23

Since ∼=s is preserved by system contexts, for all processes P it holds that

C〈P 〉[M] ∼=s C〈P 〉[N] .

By inspecting the reduction rules of C〈P 〉[M] we observe that,

C〈P 〉[M] =⇒ M ′ • spy∗.enter n〈i, j, P 〉
where M ′ • spy∗.enter n〈i, j, P 〉 ⇓ i, j. Call this outcome O1.
This reduction must be matched by a corresponding reduction

C〈P 〉[N] =⇒ O2

where O1
∼=s O2 and O2 ⇓ i, j. By Lemma 3.10(1) it follows that there is a system

N ′ such that O2 = N ′ • spy∗.enter n〈i, j, P 〉 and N | n[◦] =⇒ N ′. Again, as
∼=s is preserved by restriction, from O1

∼=s O2 and Lemma 3.10(2) we can derive
M ′ • P ∼=s N ′ • P , for all P , as required.

— Suppose M R N and M
∗.exit n−−−−−−−→ M ′. In this case we must find a system

N ′ such that n[◦ | N] =⇒ N ′ and for all P , M ′ • P ∼=s N ′ • P .
We consider the context

C〈P 〉[−] = n[− | spy∗.exit n〈i, j, P 〉] .

Since ∼=s is preserved by system contexts, for all processes P it holds that

C〈P 〉[M] ∼=s C〈P 〉[N] .

By inspecting the reduction rules of C〈P 〉[M] we observe that,

C〈P 〉[M] =⇒ M ′ • spy∗.exit n〈i, j, P 〉
where M ′ • spy∗.exit n〈i, j, P 〉 ⇓ i, j. Call this outcome O1.
This reduction must be matched by a corresponding reduction

C〈P 〉[N] =⇒ O2

where O1
∼=s O2 and O2 ⇓ i, j. By Lemma 3.10(1) it follows that there is a

system N ′ such that O2 = N ′ • spy∗.enter n〈i, j, P 〉 and n[◦ | N] =⇒ N ′. Again, as
∼=s is preserved by restriction, from O1

∼=s O2 and Lemma 3.10(2) we can derive
M ′ • P ∼=s N ′ • P , for all P , as required.

This concludes the analysis. ¤

As a consequence:

Theorem 3.15 (Characterisation of ∼=s) Late bisimilarity, early bisimilarity,
and reduction barbed congruence over systems coincide.

Proof Theorem 3.6 states that ≈ ⊆ ≈e and ≈e ⊆ ∼=s. Theorem 3.14 states the
reduction barbed congruence over systems is contained in late bisimilarity, that is
∼=s ⊆≈. We hence have the following chain of inclusions ∼=s ⊆≈⊆≈e ⊆∼=s. ¤

Journal of the ACM, Vol. V, No. N, September 2005.

24 · M. Merro and F. Zappa Nardelli

A remark on transitivity of (late) bisimilarity. Giving a direct proof that ≈ is
a transitive relation is difficult. At the same time, the characterisation result does
not rely on the transitivity of ≈. As ∼=s is an equivalence relation, late and early
bisimilarity are also equivalence relations.

4. UP-TO PROOF TECHNIQUES

In the previous section we presented a labelled characterisation of reduction barbed
congruence. To prove that two systems are equivalent using the labelled characteri-
sation, it is necessary to exhibit a relationR and to show that it is a bisimulation. If
we ignore for a moment the asynchronous actions and the instantiation of the place-
holder, the proof obligation consists of verifying that if M R N and M

α−−→ M ′,
there exists a system N ′ such that N

α̂==⇒ N ′ and M ′ R N ′. The idea behind
up-to proof techniques [Sangiorgi and Milner 1992; Sangiorgi 1998] is to replace the
heavy proof condition M ′ R N ′ with a weaker condition of the form M ′ SRS N ′,
where S is another relation on systems. In this case we talk of bisimulation up
to S, and of up-to S proof technique. The role of the S relation is to abstract
some details of the systems M ′ and N ′ being tested. For instance, the up-to ≡
proof technique replaces the condition M ′ R N ′ by M ′ ≡R≡ N ′; the size of the
relation R can be greatly reduced since R we need only consider representatives of
the equivalence classes of structurally equivalent terms. In general a bisimulation
up to S is not a bisimulation. However, for some well-chosen relations S, it can
be shown that if two processes are related by a bisimulation up to S, then there
exists also a bisimulation relating them (this result is called soundness of the up-to
S technique). For instance, the soundness of the up-to ≡ proof technique follows
easily from Lemma 2.4.

In this section we focus on two powerful up-to techniques: up-to expansion [San-
giorgi and Milner 1992], and up-to context [Sangiorgi 1996b]. As in the π-calculus,
these techniques can be merged.

When proving that two systems are bisimilar it is often useful to abstract from
their internal behaviour. Whereas bisimulation up to bisimilarity would be useful,
this proof technique is unsound [Sangiorgi and Milner 1992] for weak equivalences.
However, a variation, namely bisimulation up to expansion, is indeed sound. The
expansion relation [Arun-Kumar and Hennessy 1992], written ., is an asymmetric
variant of bisimilarity which allows us to count the number of silent moves per-
formed by a system. Intuitively, M . N holds if M and N are bisimilar and N has
at least as many τ -moves as M . This constraint on the number of internal reduc-
tions allows to recover the soundness of the up-to expansion proof technique, and
in many practical cases when M ≈ N holds, M and N are ordered by expansion.
To define expansion we introduce the following notation:

τ̂−−→ is
τ−−→ ∪ I, where I

is the identity relation; if α 6= τ then
α̂−−→ is

α−−→. The expansion relation is then
defined as follows.

Definition 4.1 (Expansion) A relation R over systems is an expansion if M R
N implies:

—if M
α−−→ M ′, α 6∈ {∗.enter n, ∗.exit n}, then there exists a system N ′ such

that N
α==⇒ N ′ and for all processes P it holds that M ′ • P R N ′ • P ;

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 25

—if M
∗.enter n−−−−−−−−→ M ′ then there exists a system N ′ such that N | n[◦] =⇒ N ′ and

for all processes P it holds that M ′ • P R N ′ • P ;

—if M
∗.exit n−−−−−−−→ M ′ then there exists a system N ′ such that n[◦ | N] =⇒ N ′ and

for all processes P it holds that M ′ • P R N ′ • P ;

—if N
α−−→ N ′, α 6∈ {∗.enter n, ∗.exit n}, then there exists a system M ′ such

that M
α̂−−→ M ′ and for all processes P it holds that M ′ • P R N ′ • P ;

—if N
∗.enter n−−−−−−−−→ N ′ then (M | n[P]) R N ′ • P , for all processes P ;

—if N
∗.exit n−−−−−−−→ N ′ then n[M | P] R N ′ • P , for all processes P .

We write M . N , if M R N for some expansion R.

Definition 4.2 (Bisimulation up to context and up to (& ,≈)) A symmet-
ric relation R over systems is a bisimulation up to context and up to (& ,≈) if
M R N implies:

—if M
α−−→ M ′′, α 6∈ {∗.enter n, ∗.exit n}, then there exists a system N ′′ such

that N
α̂==⇒ N ′′, and for all processes P there is a system context C[−] and

systems M ′ and N ′ such that M ′′ • P & C[M ′], N ′′ • P ≈ C[N ′], and M ′ R N ′;

—if M
∗.enter n−−−−−−−−→ M ′′ then there exists a system N ′′ such that N | n[◦] =⇒ N ′′,

and for all processes P there is a system context C[−] and systems M ′ and N ′

such that M ′′ • P & C[M ′], N ′′ • P ≈ C[N ′], and M ′ R N ′;

—if M
∗.exit n−−−−−−−→ M ′′ then there exist a system N ′′ such that n[◦ | N] =⇒ N ′′, and

for all processes P there is a system context C[−] and systems M ′ and N ′ such
that M ′′ • P & C[M ′], N ′′ • P ≈ C[N ′], and M ′ R N ′.

To prove that the bisimulation up to context and up to (& ,≈) is a sound proof
technique we first need a technical lemma.

Lemma 4.3 Let R be a bisimulation up to context and up to (& ,≈). If M R N

and for some system context C[−] and system M ′′ it holds that C[M]
α−−→ M ′′ for

α 6∈ {∗.enter n, ∗.exit n}, then there exists a system N ′′ such that C[N] α̂==⇒ N ′′

and for all processes P there are a system context C′[−] and systems M ′, N ′ such
that M ′′ • P & C′[M ′], N ′′ • P ≈ C′[N ′] and M ′ R N ′.

The proof demands an analysis of the interactions between M and C[−], and is
reported in Appendix C. The lemma above generalises to weak transitions.

Corollary 4.4 Let R be a bisimulation up to context and up to (& ,≈). If M R N

and for some system context C[−] and system M ′′ it holds that C[M] α̂==⇒ M ′′ for
α 6∈ {∗.enter n, ∗.exit n}, then there exists a system N ′′ such that C[N] α̂==⇒ N ′′

and for all processes P there are a system context C′[−] and systems M ′, N ′ such
that M ′′ • P & C′[M ′], N ′′ • P ≈ C′[N ′] and M ′ R N ′.

Proof The results follows by induction on the length of the transition C[M] α̂==⇒
M ′′, using Lemma 4.3 and standard reasoning on the expansion relation. ¤

Journal of the ACM, Vol. V, No. N, September 2005.

26 · M. Merro and F. Zappa Nardelli

Theorem 4.5 If R is a bisimulation up to context and up to (& ,≈), then R ⊆≈.
Proof We show that the relation

S = {(M, N) : ∃C[−],M ′, N ′ such that C[M ′] ≈ M, C[N ′] ≈ N, and M ′ R N ′}
is a bisimulation.

— Suppose (M,N) ∈ S and M
α−−→ M1 where α 6∈ {∗.enter n, ∗.exit n}. Since

(M,N) ∈ S, there exist C[−],M ′, N ′ such that M ≈ C[M ′], and N ≈ C[N ′], and
M ′ R N ′. The definition of bisimilarity ensures that there exists M ′

1 such that
C[M ′] α̂==⇒ M ′

1, and that for all P it holds that M1 •P ≈ M ′
1 •P . Corollary 4.4 tells

us that there exist N ′
1, C′[−],M2, N2 such that C[N ′] α̂==⇒ N ′

1, and M ′
1 •P & C′[M2],

and N ′
1 •P ≈ C′[N2], where M2 R N2. As N ≈ C[N ′], this implies that there exists

a system N1 such that N
α̂==⇒ N1 and N ′

1 • P ≈ N1 • P . In turn, we have that
M1 • P ≈ C′[M2] and N1 • P ≈ C′[N2] where M2 R N2. The construction of S
ensures that M1 • P S N1 • P , as required.

— Suppose (M, N) ∈ S and M
α−−→ M1, where α = ∗.enter n. We want to

prove that there is N1 such than N | n[◦] =⇒ N1 and that for all processes P , we
have M1 • P S N1 • P . Let P be an arbitrary process. Since (M, N) ∈ S, there
exist C[−],M ′, N ′ such that M ≈ C[M ′], C[N ′] ≈ N , and M ′ R N ′. The definition
of bisimilarity ensures that there exists M ′

1 such that C[M ′] | n[◦] =⇒ M ′
1 and, for

all processes R, it holds that M1 •R ≈ M ′
1 •R. In particular, M1 • spyα〈i, j, P 〉 ≈

M ′
1 • spyα〈i, j, P 〉, for i and j fresh. As the placeholder ◦ does not reduce, we

have C[M ′] | n[spyα〈i, j, P 〉] =⇒ M ′
1 • spyα〈i, j, P 〉. We use Corollary 4.4 (the

context we consider is C[−] | n[spyα〈i, j, P 〉]) and the presence of fresh barbs i and
j to deduce that there exist N ′

1, C′[−],M2, N2 such that C[N ′] | n[spyα〈i, j, P 〉] =⇒
N ′

1 • spyα〈i, j, P 〉, with M ′
1 • spyα〈i, j, P 〉 & C′[M2] and N ′

1 • spyα〈i, j, P 〉 ≈ C′[N2],
where M2 R N2. Now, since C[N ′] ≈ N and the bisimilarity is closed under
parallel composition with systems, we have that C[N ′] | n[spyα〈i, j, P 〉] ≈ N |
n[spyα〈i, j, P 〉]. The definition of bisimilarity and the presence of fresh barbs i
and j ensures that there exists a system N1 such that N | n[spyα〈i, j, P 〉] =⇒
N1 • spyα〈i, j, P 〉 and N ′

1 • spyα〈i, j, P 〉 ≈ N1 • spyα〈i, j, P 〉. From the above weak
transition we derive N | n[◦] =⇒ N1. Moreover, by Lemma 3.10(2) and because
both ≈ and & are preserved by restriction, it holds that M1 • P ≈ (νi, j)(M1 •
spyα〈i, j, P 〉) ≈ (νi, j)(M ′

1 • spyα〈i, j, P 〉) & (νi, j)C′[M2]. Similarly, (νi, j)C′[N2] ≈
(νi, j)(N ′

1 • spyα〈i, j, P 〉) ≈ (νi, j)(N1 • spyα〈i, j, P 〉) ≈ N1 • P . Thus, M1 • P S
N1 • P , as required.

— The case α = ∗.exit n is analogous to the previous one. ¤

5. A SEMANTIC THEORY FOR PROCESSES

In this section we characterise reduction barbed congruence over processes, ∼=p, in
terms of our labelled bisimilarity over systems, ≈.

The relation ∼=p is closed under arbitrary process contexts: reducing the number
of contexts in the quantification is a first step towards the definition of a useful proof
technique, and, broadly speaking, towards an understanding of the behavioural
theory of processes.
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 27

We show that it is possible to work with a lighter definition of contextuality.
In particular it suffices to require closure under the two crucial operators of MA:
parallel composition (to model concurrency) and ambient construct (to model lo-
cality).

Definition 5.1 Reduction barbed equivalence over processes, written ∼=e
p, is the

largest symmetric relation over processes which is reduction closed, barb preserving,
and closed under parallel composition and ambient construct.

Theorem 5.2 (Context Lemma) The relations ∼=p and ∼=e
p coincide.

Reduction barbed equivalence over processes still requires a universal quantification
on non-trivial contexts. More than that, a direct proof of the above context lemma is
surprisingly difficult. To overcome this difficulty, we first develop a characterisation
of ∼=e

p in terms of the labelled bisimulation of Section 3, and we postpone the proof
of the context lemma after Theorem 5.3.

Theorem 5.3 (Characterisation of ∼=e
p) Let

S = {(P, Q) : k[P | R] ≈ k[Q | R], for all k, R} .

The relations ∼=e
p and S coincide.

To prove Theorem 5.3 we need some technical lemmas. The next two lemmas (their
proofs are reported in the Appendix D) are necessary for proving the completeness
part of Theorem 5.3. In particular Lemma 5.4 says that reduction barbed equiva-
lence over processes is preserved by restriction. This result will be also useful when
proving the context lemma.

Lemma 5.4 If P ∼=e
p Q, then (νn)P ∼=e

p (νn)Q.

Lemma 5.5 ∼=e
p ∩ (M×M) ⊆ ∼=s, where M is the set of all systems.

The three lemmas below are important tools used to prove that the relations S and
∼=e

p coincide.

Lemma 5.6 Let P,Q be two processes such that k[P] ≈ k[Q]. Let r be a name
fresh for P and Q, and different from k. Then k[open r.P] ≈ k[open r.Q].

Proof The argument proceeds by contradiction. Suppose that k[open r.P] 6≈
k[open r.Q]. By Theorem 3.15, k[open r.P] 6∼=s k[open r.Q]. As a consequence,
there must exist a system context C[−] that tells k[open r.P] and k[open r.Q]
apart. In doing so C[−] must interact with the processes P and Q. This implies
that the context must necessarily consume the open r capability of both open r.P
and open r.Q. Without any loss of generality, the context C[−] can be assumed to
be of the form D[− | r[in k]], where D[−] is a system context with r 6∈ fn(D[−]);
the ambient r[in k] has the (exclusive) role of entering inside the ambient k and
consuming the capability open r. It is now clear that if the context D[− | r[in k]]
tells k[open r.P] and k[open r.Q] apart, then the context D[−] tells k[P] and k[Q]
apart. In turn, this implies that k[P] 6∼=s k[Q]. By Theorem 3.15, this contradicts
the hypothesis that k[P] ≈ k[Q]. ¤

Journal of the ACM, Vol. V, No. N, September 2005.

28 · M. Merro and F. Zappa Nardelli

Lemma 5.7 Let r be a name fresh for the process P . It holds that

n[P | R] ≈ n[(νr)(open r.P | r[]) | R] .

Proof The relation

R = { (k[P | Q], n[(νr)(open r.P | r[]) | Q]) : ∀k,Q }= ∪ I
is a bisimulation up to context and up to ≡. ¤

Lemma 5.8 Let P and Q be two processes, and k an ambient name. If k[P] ≈
k[Q], then for all n, R it holds that n[P | R] ≈ n[Q | R].

Proof Let n and R be respectively a name and a process. Let r be a fresh name
(that is, r 6∈ fn(P,Q, R) and r 6= n, k). By Lemma 5.6, we have

k[open r.P] ≈ k[open r.Q] .

The definition of bisimulation assures us that if k[open r.P]
k.open n−−−−−−−→ n[open r.P |

◦], then there is a matching transition k[open r.Q]
k.open n−−−−−−−→ n[open r.Q | ◦], and

that for all processes R′ it holds that n[open r.P | R′] ≈ n[open r.Q | R′]. Observe
that the matching transition must be strong, because the prefix open r prevents Q
from reducing. By taking R′ = r[] | R, we have

n[open r.P | r[] | R] ≈ n[open r.Q | r[] | R] .

As ≈ is preserved by restriction and r 6∈ fn(R), we have

n[(νr)(open r.P | r[]) | R] ≈ n[(νr)(open r.Q | r[]) | R] .

By Lemma 5.7 and transitivity of bisimulation, we conclude n[P | R] ≈ n[Q | R]. ¤

Everything is now in place to prove Theorem 5.3.

Proof of Theorem 5.3. We first show that P ∼=e
p Q implies P S Q. For that,

we must show that for all k, R, it holds that k[P | R] ≈ k[Q | R]. Both k[P | R]
and k[Q | R] are systems, and it holds that k[P | R] ∼=e

p k[Q | R] because ∼=e
p is

closed under parallel composition and ambient construct. The result follows from
Lemma 5.5 and Theorem 3.15.

It remains to prove that S ⊆ ∼=e
p. For that, we must show that S is reduc-

tion closed, barb preserving, and closed under parallel composition and ambient
construct.

(1) S is reduction closed. Suppose P S Q and P _ P ′. Let n be a name such
that n 6∈ fn(P, Q). We have n[P] ≈ n[Q], by definition of S. As n 6∈ fn(P, Q),
and because of the correspondence between τ -transitions and reductions, there is a
system M such that n[P]

τ−−→ M ≡ n[P ′]. As n[P] ≈ n[Q], there is N such that
n[Q] =⇒ N and M ≈ N . As n 6∈ fn(P,Q), there must be Q′ such that Q _∗ Q′

and N ≡ n[Q′]; thus n[P ′] ≈ n[Q′]. Lemma 5.8 allows us to derive P ′ S Q′, as
desired.

(2) S is barb preserving. Suppose that P S Q and P ⇓ n. Consider the context

C[−] = b[− | a[in n.out n.ok[out a.out b]]]

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 29

where a, b and ok are fresh for both P and Q. Then C[P] ≈ C[Q] by definition
of S. As P ⇓ n, the construction of C[−] assures that C[P] ⇓ ok. Bisimilarity is
barb preserving and C[Q] ⇓ ok must hold. The construction of C[−] guarantees that
Q ⇓ n.

(3) S is closed under parallel composition and ambient construct. We first show
that P S Q implies P | R S Q | R. By definition of S we have k[P | R′] ≈ k[Q | R′]
for all k, R′. By taking R′ = R | R′′ for arbitrary R′′ we have k[P | R | R′′] ≈ k[Q |
R | R′′] for all R′′. This implies P | R S Q | R. We then show that P S Q implies
n[P] S n[Q]. By definition of S we have n[P] ≈ n[Q] for all n. The result follows
from the closure of ≈ under static contexts. ¤

The characterisation of ∼=e
p is a fundamental tool to reason about processes. As

a first application, we prove the context lemma.

Proofof Theorem 5.2. We have to show that ∼=e
p = ∼=p. The inclusion ∼=p ⊆ ∼=e

p

is straightforward. For the converse we must prove that

(1) ∼=e
p is reduction closed;

(2) ∼=e
p is barb preserving;

(3) ∼=e
p is closed under arbitrary contexts.

Conditions 1 and 2 hold by definition of ∼=e
p. It remains to show that the relation ∼=e

p

is preserved by all process contexts. The relation ∼=e
p is preserved by parallel com-

position and ambient constructor by definition. It is also preserved by restriction
by Lemma 5.4. It remains to prove that it is preserved by prefixing and replicated
prefixing. We report the proof that ∼=e

p is preserved by prefixing in the Appendix,
and we focus on replicated prefixing.

We have to prove that if P ∼=e
p Q, then !C.P ∼=e

p !C.Q. Rather than working
directly with ∼=e

p, we use Theorem 5.3 and we prove that !C.P S !C.Q. For that, we
show that k[!C.P | R] ≈ k[!C.Q | R] for all k and R. We perform a case analysis
on C.

Suppose that C = in o. We show that the relation

R = {(n[!in o.P | R], n[!in o.Q | R]) : P ∼=e
p Q}= ∪ ≈

is a bisimulation up to context and up to (& ,≈).
The most interesting case is when the process !in o.P exercises the capability

in o. Suppose

n[!in o.P | R]
n.enter o−−−−−−−−→ o[n[P | !in o.P | R] | ◦] .

We have a matching transition

n[!in o.Q | R]
n.enter o−−−−−−−−→ o[n[Q | !in o.Q | R] | ◦] .

Since P ∼=e
p Q, we have P S Q and in turn, for all R′, we have n[P | R′] ≈ n[Q |

R′]. As ≈ is preserved by system contexts, for all instantiations of ◦ it holds that
o[n[P | R′] | ◦] ≈ o[n[Q | R′] | ◦]. By taking R′ = !in o.Q | R, we obtain

o[n[!in o.Q | R | P] | ◦] ≈ o[n[Q | !in o.Q | R] | ◦] .

Journal of the ACM, Vol. V, No. N, September 2005.

30 · M. Merro and F. Zappa Nardelli

Then, for all processes S, the following hold:

o[n[P | !in o.P | R] | ◦] • S & C[n[!in o.P | R | P]]
o[n[Q | !in o.Q | R] | ◦] • S ≈ C[n[!in o.Q | R | P]]

where C[−] = o[− | S] (we can rearrange the terms using structural congruence
because ≡ ⊆ & and ≡ ⊆ ≈). By construction of R we have

n[!in o.P | R | P] R n[!in o.Q | R | P]

and we can conclude that up to context and up to (& ,≈) we are still in R.
The cases C = out o and C = open o follow along similar lines. ¤
The result below is a consequence of Theorems 5.2 and 5.3.

Theorem 5.9 (Characterisation of ∼=p) The relations S and ∼=p coincide.

The relation S still involves a universal quantification over all the processes R. Yet,
it is built on top of ≈ and it can be coupled with the up-to proof techniques. In
turn, it reveals a useful tool to reason about processes, as illustrated by the proof
of the context lemma and by the other examples given in Section 7.

Systems revisited. In Section 3, we conjectured that reduction barbed congruence
over systems (∼=s) is “the right” equality when working with systems. We are now
in measure to close the conjecture. In fact, if we restrict our attention to systems,
we can show that system contexts have the same discriminating power as arbitrary
contexts.

Theorem 5.10 Let M and N be two systems, then M∼=sN if and only if M∼=pN .
Proof By definition, M ∼=p N implies M ∼=s N . For the converse, by Theo-
rem 3.15, if M ∼=s N then M ≈ N . As ≈ is preserved by system contexts, for all n
and R n[M | R] ≈ n[N | R]. By Theorems 5.3 and 5.2 it follows that M ∼=p N . ¤
This in turn implies a strong result: ≈ completely characterises ∼=p on systems.

Theorem 5.11 Let M and N be two systems, then M∼=pN if and only if M ≈ N .

A preliminary investigation suggests that it might be possible to define directly an
LTS and associated bisimulation for processes, extending the approach of Sections 2
and 3. The idea is that a process that exercises the in n capability, such as in n.P1 |
P2, can realise a τ -action by interacting with a context of the form k[− | R1] | n[R2],
where the name k and the processes R1 and R2 are arbitrary. The case of the out n
capability is similar, while the one for the open n capability might be simpler.
However, extending our LTS with the env-actions that capture these interactions
introduces the necessity of dealing with two arbitrary processes provided by the
context, instead of only one. On the one hand this increases greatly the number
of labels that must be checked when proving the equivalence of processes, and on
the other hand this adds a tremendous complexity to the proof of the congruence
of bisimilarity, of full-abstraction, and of soundness of the up-to proof technique.

6. ADDING COMMUNICATION

In this section we adapt our characterisation to the calculus extended with commu-
nication of capabilities. For that we introduce a (countable, infinite) set of variables,
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 31

Table IX. Message-passing Mobile Ambients

Names: a, b, . . . , k, l, m, n, . . . ∈ N Systems:
Variables: x, y, . . . ∈ V M, N ::= 0 termination

Capabilities:
ŕŕ M1 | M2 parallel composition

C ::= in n may enter into n
ŕŕ (νn)M restrictionŕŕ out n may exit out of n
ŕŕ n[P] ambientŕŕ open n may open n

Processes:
Expressions: P, Q, R ::= 0 nil process

E, F ::= x variable
ŕŕ P1 | P2 parallel compositionŕŕ C capability
ŕŕ (νn)P restrictionŕŕ E.F path
ŕŕ G.P prefixingŕŕ ε empty path
ŕŕ n[P] ambientŕŕ !G.P replication

Guards:
ŕŕ 〈E〉 output

G ::= E expressionŕŕ (x) input

denoted by V and ranged over by x, y, . . ., disjoint from the set of names and from
the placeholder ◦. Variables are bound by the input capability (x). The basic idea
is to have an output process 〈E〉, which outputs the message E, and an input pro-
cess (x).Q where the variable x is bound in the continuation Q. An output action
can synchronise with an input action provided that both take place inside the same
ambient, and the result is that the message E is bound to the variable x in Q. A
messages is a sequence of capabilities.

Unlike [Cardelli and Gordon 2000; Levi and Sangiorgi 2000], we do not allow
ambient names to be transmitted. This has been a deliberate choice, for several
reasons. First of all, if communication of names is allowed, then reduction can
generate nonsensical terms such as in n[. . .]. While it is possible to rule out such
terms using a type-system, studying the behavioural theory of typed ambients is
out of the scope of this paper. Also, as suggested by Cardelli and Gordon in
their seminal paper [Cardelli and Gordon 2000], communicating ambient names is
a dangerous operation, as, a priori, when the name is transmitted the recipient gets
considerable control over that ambient. Lastly, a technical point. It is well-known
that in π-calculus a weak late bisimilarity that matches strong actions against weak
ones fails to be an equivalence relation. As a consequence, great care would be
required to ensure that, if communication of names is added to Mobile Ambients,
the resulting late bisimilarity is still an equivalence relation.

The syntax of the extended language is given in Table IX. We assume an un-
derstanding of free and bound variables (fv(·) and bv(·)), and of substitutions.
Processes are identified up to α-conversion of bound variables. A process P is said
to be closed if fv(P) = ∅; otherwise is said to be open. Observe that the definition
of open process (and of closed process) does not take into account the set of free
names of the process, but only its free variables.

The structural and reduction rules below define the semantics of communication:

E.(F.P) ≡ (E.F).P ε.P _ P (x).P | 〈E〉 _ P{E/x} .

Journal of the ACM, Vol. V, No. N, September 2005.

32 · M. Merro and F. Zappa Nardelli

Table X. Pre-actions, Concretions and Labelled Transition System for Communication

Pre-actions: π ::= . . . Concretions: K ::= (νm̃)〈P 〉Qŕŕ (E)
ŕŕ 〈−〉 ŕŕ (νm̃)〈E〉Q

(π Output)
−

〈E〉 〈−〉−−−−→ 〈E〉0
(π Input)

−
(x).P

(E)−−−−→ P{E/x}
(π Path)

E.(F.P)
π−−→ Q

(E.F).P
π−−→ Q

(τ Eps)
−

ε.P
τ−−→ P

(τ Comm) P
〈−〉−−−−→ (νm̃)〈E〉P ′ Q

(E)−−−−→ Q′ fn(Q′) ∩ {m̃} = ∅
P | Q τ−−→ (νm̃)(P ′ | Q′)

The LTS is extended by the introduction of two new pre-actions (E) for input,
〈−〉 for output, and a new form of concretion (νm̃)〈E〉Q; intuitively the message
E is buffered in the concretion, Q is the outcome of the output action, and m̃ are
the names shared by E and Q. In Table X we give the rules that should be added
to those of Table IV and Table V to define the LTS for the closed processes of
the extended calculus. Note that in the structural rules of Table IV we are now
assuming that parallel composition and restriction distribute over the new form
of concretions (νm̃)〈E〉Q in the same manner as (νm̃)〈P 〉Q. The pre-action for
output allows a uniform treatment of extrusion of names. Definition 3.2 and the
extended LTS induce a bisimilarity relation, still denoted by ≈, over the closed
systems of the message passing calculus.

We define the open extension Ro of a relation R as: P Ro Q if and and only if for
every closing substitution σ mapping variables into expressions, we have Pσ R Qσ.

Theorem 6.1 (Characterisation of ∼=o
s) In the message-passing calculus, the

relations ≈o and ∼=o
s coincide.

Proof The extension of Theorem 3.6 (soundness of bisimilarity) to the message-
passing calculus is straightforward. The extension of Theorem 3.14 (completeness
of bisimilarity) follows because these relations are defined over systems and com-
munication cannot be observed at top-level. ¤
The open extension of the relation S, written So can be shown equivalent to the
relation

So = {(P, Q) : k[P | R] ≈o k[Q | R], for all k, R closed} .

Our characterisation of reduction barbed equivalence over processes lifts smoothly
to the message passing calculus.

Theorem 6.2 (Characterisation of ∼=e
p
o) The relations ∼=e

p
o and So coincide

over processes in the message-passing calculus.
Proof It is an easy extension of the proof of Theorem 5.3 to the closed terms of
the message passing calculus. The result then follows from the definition of open
extension. ¤
The context lemma can be rephrased for the message passing calculus.

Theorem 6.3 Relations ∼=e
p
o and ∼=o

p coincide over processes in the message-
passing calculus.
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 33

Proof The proof is an extension of the proof in the case without communication.
We detail the case of closure under input prefix and replicated input prefix (for all
the other cases it is enough to consider closed terms).

Suppose that P ∼=e
p
o Q and that fn(P) ∪ fn(Q) ⊆ {x}. We want to show that

(x).P ∼=e
p (x).Q. For that we use our characterisation of ∼=e

p and we prove that for
all n,R closed it holds that n[(x).P | R] ≈ n[(x).Q | R]. In particular, we prove
that the relation

R = {(n[(x).P | R], n[(x).Q | R]) :

P ∼=e
p
o Q, fn(P) ∪ fn(Q) ⊆ {x}, for all n,R closed}= ∪ ≈

is a bisimulation up to context and up to structural congruence. The most inter-
esting case is when n[(x).P | R]

τ−−→ n[(ν r̃)(P{E/x} | R′)] ≡ (ν r̃)n[P{E/x} | R′],
where n 6∈ r̃. Observe that R sends the message E and resumes as R′. So we have
a matching transition n[(x).Q | R]

τ−−→≡ (ν r̃)n[Q{E/x} | R′]. Since P ∼=e
p
o Q,

it holds that P{E/x} ∼=e
p Q{E/x}. The characterisation of ∼=e

p guarantees that
n[P{E/x} | R′] ≈ n[Q{E/x} | R′] and this allows us to conclude that up to con-
text we are still in R.

Suppose that P ∼=e
p
o Q and that fn(P)∪ fn(Q) ⊆ {x}. Now we want to show that

!(x).P ∼=e
p !(x).Q. Reasoning as before, we prove that for all n,R closed it holds

that n[!(x).P | R] ≈ n[!(x).Q | R]. In particular, we prove that the relation

R = {(n[!(x).P | R], n[!(x).Q | R)] :

P ∼=e
p
o Q, fn(P) ∪ fn(Q) ⊆ {x}, for all n,R closed}= ∪ ≈

is a bisimulation up to context and up to (& ,≈). The most interesting case is
when n[!(x).P | R]

τ−−→ n[(ν r̃)(P{E/x} | !(x).P | R)] ≡ (ν r̃)n[P{E/x} | !(x).P] | R′,
where n 6∈ r̃ and r̃∩fn(P) = ∅. Observe that R sends the message E and resumes as
R′. So we have a matching transition n[!(x).Q | R]

τ−−→≡ (ν r̃)n[Q{E/x} | !(x).Q |
R′], where r̃ ∩ fn(Q) = ∅. By construction of R we have n[P{E/x} | !(x).P |
R′] R n[P{E/x} | !(x).Q | R′]. Since P ∼=e

p
o Q, it holds that P{E/x} ∼=e

p Q{E/x}.
The characterisation of ∼=e

p guarantees that n[P{E/x} | !(x).Q | R′] ≈ n[Q{E/x} |
!(x).Q | R′]. Since bisimilarity is closed under restriction we have (ν r̃)n[P{E/x} |
!(x).Q | R′] ≈ (ν r̃)n[Q{E/x} | !(x).Q | R′]. This allows us to conclude that up to
context (we factor out the context (ν r̃)(−)) and up to (& ,≈) we are still in R. ¤

Corollary 6.4 In the message-passing calculus, the relations So and ∼=o
p coincide.

A crucial aspect of working with systems deserves to be pointed out. Bisimi-
larity is defined over systems, and as such it cannot directly observe the exercise
of communications capabilities (apart from internal communications). This allow
us to avoid any special treatment for asynchronous communication. More than
that, we can easily extend our results to a calculus equipped with synchronous
communication (e.g., 〈E〉.P).

7. ALGEBRAIC PROPERTIES

In this section we prove a collection of algebraic laws using our bisimulation proof
methods. Then, we prove the correctness of a protocol for controlling access through

Journal of the ACM, Vol. V, No. N, September 2005.

34 · M. Merro and F. Zappa Nardelli

a firewall, first proposed in [Cardelli and Gordon 2000].

Laws on systems. We briefly comment on the laws of Theorem 7.1. We recall
that M, N range over systems and P, Q, R over processes. The first two laws are two
examples of local communication within private ambients without interference. The
third law is the well-known perfect firewall law. The following four laws represent
non-interference properties about movements of private ambients. Finally, the last
two laws say when opening cannot be interfered.

Theorem 7.1

(1) (νn)n[〈W 〉 | (x).Q | M] ∼=p (νn)n[Q{W/x} | M] if n 6∈ fn(M)

(2) (νn)n[〈W 〉 | (x).Q | ∏j∈J open kj .Rj] ∼=p (νn)n[Q{W/x} |
∏

j∈J open kj .Rj]

(3) (νn)n[P] ∼=p 0 if n 6∈ fn(P)

(4) (νn)((νm)m[in n.P] | n[M]) ∼=p (νn)n[(νm)m[P] | M] if n 6∈ fn(M)

(5) (νm,n)(m[in n.P] | n[
∏

j∈J open kj .Rj]) ∼=p

(νm,n)n[m[P] | ∏j∈J open kj .Rj]

(6) (νn)n[(νm)m[out n.P] | M] ∼=p (νn)((νm)m[P] | n[M]) if n 6∈ fn(M)

(7) (νn)n[m[out n.P] | ∏j∈J open kj .Rj] ∼=p (νn)(m[P] | n[
∏

j∈J open kj .Rj])
if m 6= kj, for j ∈ J

(8) n[(νm)(open m.P | m[N]) | Q] ∼=p n[(νm)(P | N) | Q]
if Q ≡ M | ∏j∈J(xj).Rj and m 6∈ fn(N)

(9) (νn)n[(νm)(open m.P | m[Q]) | R] ∼=p (νn)n[(νm)(P | Q) | R]
if R ≡ ∏

i∈I(xi).Si |
∏

j∈J open kj .Rj and m,n 6∈ fn(Q).

Proof To prove the laws above, except (3) and (9), we exhibit a bisimulation
that relates them: the results will follow from Theorem 5.11. In all cases the
bisimulation follows a similar pattern:

S = {(lhs, rhs)}= ∪ ≈

where lhs and rhs denote respectively the left hand side and the right hand side
of the equation, parametrised over names, processes and systems. For proving
the laws (3) and (9) we show that the above S is a bisimulation up to context
and up to structural congruence. We illustrate the proof of the law (3). Let
S = {((νn)n[Q],0) | ∀Q s.t. n 6∈ fn(Q)}=. We show that S is a bisimulation up
to context and up to structural congruence. The most delicate cases are those
regarding the silent moves ∗.enter k and ∗.exit k. For instance, if

(νn)n[P]
∗.enter k−−−−−−−−→ (νn)k[◦ | n[P ′]] ≡ k[◦ | (νn)n[P ′]]

then

0 | k[◦] =⇒≡ k[◦ | 0]

and up to context and structural congruence we are still in S. ¤
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 35

Laws on processes. In Theorem 7.2 we give a collection of algebraic laws involv-
ing processes. Law 1 says that the opening of private ambients, possibly containing
arbitrary messages, cannot be observed. Law 2 says that realising the same ca-
pability several times sequentially or in parallel has the same effect. Law 3 shows
that processes prefixed by private capabilities are garbage. Law 4 says that two
processes that differ only for having received different private capabilities cannot
be distinguished. An instance of this law is

(νn)〈Cn〉 ∼=p (νn)〈Dn〉
for Cn, Dn ∈ {in n, out n, open n}. Notice that the above private outputs are
not equivalent to 0 (use context (x).a[], for a fresh). Law 5 is the Mobile Am-
bient variant of the asynchrony law [Amadio et al. 1998] due to asynchronous
communication. Finally, Law 6 equates two different outputs by adding a special
process. While this law reminds us of Honda and Yoshida’s equator [Honda and
Yoshida 1995], it should be pointed out that Honda and Yoshida’s equators hide
the difference between two channels, whereas we equate messages.

Theorem 7.2 (Process Laws)

(1) (νn)(n[
∏

j∈J〈Ej〉] | open n.P) ∼=p

∏
j∈J〈Ej〉 | P if n 6∈ fn(P, Ej) for all j;

(2) C.P ∼=p C.0 | P if P is of the form C. · · · .C.0;
(3) (νn)Cn.P ∼=p 0 if Cn ∈ {in n, out n, open n};
(4) (νn)P{Cn/x} ∼=p (νn)P{Dn/x} if Cn, Dn ∈ {in n, out n, open n}, fv(P) ⊆

{x}, and n 6∈ fn(P) ;
(5) (x).〈x〉 ∼=p 0 ;

(6) 〈E〉 | Eq(E, F) ∼=p 〈F 〉 | Eq(E, F) where Eq(E,F) def= !(x).〈E〉 | !(x).〈F 〉 .
Proof By Theorems 5.2 and 5.3, it suffices to show that

k[lhs | R] ≈ k[rhs | R]

for all k and R, where lhs and rhs denote the left hand side, right hand side, of each
law. In all cases, except 2 and 4, this can be proved by showing that the relation

R = {(k[lhs | R], k[rhs | R]) : for all k and R}= ∪ I
is a bisimulation up to context and up to (& ,≈), where I represent the identity
relation over systems.

The candidate bisimulation for law (2) is

R = {(k[C.C. · · · .C︸ ︷︷ ︸
n times

.0 | R], k[C.0 | C. · · · .C︸ ︷︷ ︸
n times

.0 | R]) :

for all n ≥ 0, and for all k and R}= ∪ I .

In Law 4, the equality to prove is k[(νn)P{Cn/x} | R] ≈ k[(νn)P{Dn/x} | R], for
all k and R. This can be proved by showing that the relation

R= {((νn)M{Cn/x}, (νn)M{Dn/x}) : fv(M) ⊆ {x} and n 6∈ fn(M)}=

is a bisimulation. Notice that, as R is closed, up to α-conversion (to avoid name-
capture), we have k[(νn)Pσ | R] ≡ (νn)k[P | R]σ. ¤

Journal of the ACM, Vol. V, No. N, September 2005.

36 · M. Merro and F. Zappa Nardelli

On stuttering. In [Sangiorgi 2001] it is argued that barbed equivalences are insen-
sitive to stuttering phenomena, originated by processes that may repeatedly enter
and exit an ambient. Using a sum operator à la CCS, the next example conveys
some intuitions about stuttering. The systems

M = m[in n.out n.in n.R] and N = m[in n.out n.in n.R + in n.R]

are indeed reduction barbed congruent. To see why the extra summand of N does
not affect its behaviour, consider a reduction produced by this summand:

N | n[S] _ n[S | m[R]] .

The process M can match it using three reductions:

M | n[S] _ n[S | m[out n.in n.R]] _ n[S] | m[in n.R] _ n[S | m[R]] .

The crucial point is that the exercise of the capability in n is matched by the
exercise of three capabilities, in n.out n.in n. Although it might seem that our
bisimilarity matches each action with only one action (possibly preceded and/or
followed by τ transitions), our bisimilarity is actually insensitive to stuttering. To
illustrate why, we use a variant of the example above that does not rely on internal
sum. Replication in the processes P and Q below implements a loop with an
alternation between input/output and the path in n.out n. There is a 1-cycle
shift, however, between the two loops. Stuttering makes the shift irrelevant.

Proposition 7.3 The processes P and Q defined as

P = (νl)(in n.l[] | !open l.out n.in n.l[])
Q = (νl)(in n.out n.in n.l[] | !open l.out n.in n.l[])

are reduction barbed congruent over processes.

Proof Let

R = {(k[O | (νl)(in n.l[] | !open l.out n.in n.l[])] ,

k[O | (νl)(in n.out n.in n.l[] | !open l.out n.in n.l[])])
| k and O are arbitrary}= ∪ I .

where I is the identity relation between systems. The relation R is a bisimulation
up to context and up to structural congruence. We detail the most interesting
case, where the exercise of one capability must be matched by the exercise of three
capabilities. Suppose M R N , with

M = k[O | (νl)(in n.l[] | !open l.out n.in n.l[])]

and

N = k[O | (νl)(in n.out n.in n.l[] | !open l.out n.in n.l[])] .

Also suppose that

M
k.enter n−−−−−−−−→ n[◦ | k[O | (νl)(l[] | !open l.out n.in n.l[])]] .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 37

Then N can perform the following sequence of transitions:

N
k.enter n−−−−−−−−→ n[◦ | k[O | (νl)(out n.in n.l[] | !open l.out n.in n.l[])]]
τ−−→ n[◦] | k[O | (νl)(in n.l[] | !open l.out n.in n.l[])]
τ−−→ n[◦ | k[O | (νl)(l[] | !open l.out n.in n.l[])]] .

For all instantiations of ◦ we can factor out the context n[◦ | −] and up to context
we are still in R. ¤
The proof above clearly shows that the exercise of the sequence of three capabilities
in n.out n.in n is needed to match the capability in n give rise to a k.enter n
action followed by two internal transitions. The internal actions are subsequently
absorbed by the weak formulation of the equivalence.

Crossing a firewall. A protocol is discussed in [Cardelli and Gordon 2000] for
controlling access through a firewall. The ambient w represents the firewall; the
ambient m, a trusted agent containing a process Q that is supposed to cross the
firewall. The firewall ambient sends into the agent a pilot ambient k with the
capability in w for entering the firewall. The agent acquires the capability by
opening k. The process Q carried by the agent is finally liberated inside the firewall
by the opening of ambient m. Names m and k act like passwords which guarantee
the access only to authorised agents. Here is the protocol in MA:

AG
def= m[open k.(x).x.Q]

FW
def= (νw)w[open m.P | k[out w.in m.〈in w〉]]

The correctness (of a mild variant) of the protocol above is shown in [Cardelli
and Gordon 2000] for may-testing [De Nicola and Hennessy 1984] proving that

(νm, k)(AG | FW) ∼=p (νw)w[Q | P]

under the conditions that w 6∈ fn(Q), x 6∈ fv(Q), {m, k}∩ (fn(P)∪ fn(Q)) = ∅. The
proof relies on non-trivial contextual reasoning. In what follows, we show how it
can be established using our bisimulation proof methods.

The system on the right can be obtained from that one on the left by executing
six τ -actions. So, it suffices to prove that ∼=p is insensitive to all these τ -actions.
The result follows from the algebraic laws of Theorem 7.1 and the following two
laws:

Lemma 7.4 Let P , Q, and R be processes. Then

(1) (νk,m, w)(k[in m.P] | m[open k.Q] | w[open m.R])
∼=p (νk, m,w)(m[k[P] | open k.Q] | w[open m.R])

(2) (νm,w)(m[〈in w〉 | (x).P] | w[open m.Q])
∼=p (νm,w)(m[P{in w/x}] | w[open m.Q])

Proof By exhibiting the appropriate bisimulation. In both cases, the bisimula-
tions we exhibit have a similar form:

S = {(lhs, rhs)}= ∪ I
Journal of the ACM, Vol. V, No. N, September 2005.

38 · M. Merro and F. Zappa Nardelli

where lhs and rhs denote respectively the left hand side and the right hand side of
the equation. ¤

Theorem 7.5 If w 6∈ fn(Q) and {m, k} ∩ (fn(P) ∪ fn(Q)) = ∅, then

(νm, k)(AG | FW) ∼=p (νw)w[Q | P] .

Proof It suffices to apply the algebraic laws of Theorem 7.1 and Lemma 7.4.
More precisely, we apply Law (7) of Theorem 7.1, Law (1) of Lemma 7.4, Law (9)
of Theorem 7.1, Law (2) of Lemma 7.4, and Laws (5) and (9) of Theorem 7.1. ¤

8. RELATED WORK

In this paper we study the behavioural theory of Cardelli and Gordon’s Mobile
Ambients.

A theory of Morris-style preserved by system contexts equivalence for Mobile
Ambients has been developed by Gordon and Cardelli in [Gordon and Cardelli
2002]. In particular, they prove the perfect firewall equation, a simplified variant
of Law 1 of Theorem 7.2, and the protocol to cross a firewall discussed above.
Although their theory benefits of a context lemma which allows to consider only
contexts of a particular form, we believe that the verification of algebraic laws still
remains quite complicated. It should be noticed that all the laws proved in [Gordon
and Cardelli 2002] relate processes that engage only in limited interactions with
their context.

Higher-order LTSs for Mobile Ambients can be found in [Cardelli and Gordon
1996; Gordon and Cardelli 2002; Vigliotti 1999; Ferrari et al. 2001]. But we
are not aware of any form of bisimilarity defined using these LTSs. Sewell [2002]
addresses the problem of uniformly deriving LTSs and bisimulation congruences
from the reduction rules of a calculus. The transitions generated for a fragment of
Mobile Ambients require the same universal quantification on the content of the
interacting ambient as ours. Sewell’s techniques only apply to strong equivalences.
A simple first-order LTS for MA without restriction and replication is proposed by
Sangiorgi in [Sangiorgi 2001], and later extended to replication by Hirschkoff, Lozes
and Sangiorgi in [Hirschkoff et al. 2002]. Using this LTS the authors defines an
intensional bisimilarity for MA that separates terms on the basis of their internal
structure.

Recently, Jensen and Milner [2004], based on previous work by Leifer and Mil-
ner [Leifer and Milner 2000], derived an LTS for Mobile Ambients starting from
an encoding of Mobile Ambients into Bigraphs. They built a standard bisimilarity
on top of this LTS. Their LTS is strikingly similar to ours, and, if we confine our
attention to Mobile Ambients without restriction, we conjecture that their bisimi-
larity coincides with ours. In general, however, their equivalence is sensitive to the
movement of secret ambients unlike ours. As a consequence their bisimilarity does
not satisfy equations involving unobservable migrations, like the perfect firewall
equation.

Our work is the natural continuation of [Merro and Hennessy 2002; 2005] where
an LTS and a labelled characterisation of reduction barbed congruence are given
for a more handful variant of Levi and Sangiorgi’s Safe Ambients, called SAP. The
main differences with respect to [Merro and Hennessy 2002] are the following:
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 39

— unlike MA, the calculus SAP is equipped with co-capabilities and passwords;
both features are essential to prove the characterisation result in SAP. On the other
hand in MA, (i) the asynchrony nature of ambient migration, and (ii) the non-
observability of secret ambients, make the behavioural theory much more involved;

— our env-actions, unlike those in [Merro and Hennessy 2002], are truly late, be-
cause they do not mention the process provided by the environment. We add such
process later, when playing the bisimulation game. This highlights how the con-
tribution of the environment is limited to providing an ambient so that interaction
can happen; the content of the ambient is irrelevant when building the matching
actions. Following our experience, this approach has then been adopted in [Merro
and Hennessy 2005];

— our actions for ambient’s movement, unlike those in SAP, report the name of
the migrating ambient. For instance, in k.enter n we say that ambient k enters n.
The knowledge of k is necessary to make the action observable for the environment.
This is not needed in SAP, because movements can be observed by means of co-
capabilities;

— co-capabilities in SAP also allow the observation of the movement of an am-
bient whose name is private. As a consequence, the perfect firewall equation does
not hold neither in SAP, nor in Safe Ambients. By contrast, in MA the movements
of an ambient whose name is private cannot be observed. This is why the perfect
firewall equation holds;

— we enhance our proof methods with up-to expansion and up-to context proof
techniques.

Note that, although the labelled bisimilarity contains a universal quantification
over processes, it is an effective proof technique, especially when coupled with the
up-to expansion and up-to context proof techniques. The best illustration of this
are the proofs of the algebraic laws of Section 7: in all cases, the definition and
the verification of the candidate bisimulations are very simple. This should be
contrasted with the proofs based on contextual reasoning developed in [Levi and
Sangiorgi 2003; Gordon and Cardelli 2002].

Our work builds on Sangiorgi’s seminal research on bisimulations for HOπ [San-
giorgi 1996a], and inherits from this work the idea that transitions in the LTS must
correspond to interaction with some context. Sangiorgi achieves this by explicitly
quantifying over all possible interacting contexts (in the so-called contextual bisim-
ulation). The structure of contextual bisimulation as defined by Sangiorgi requires
an LTS in delay style: τ -transitions are forbidden after the observable action. As a
consequence, his contextual bisimulation for HOπ is sound but not complete with
respect to reduction barbed congruence. Sangiorgi then refined his approach by
replacing the interacting context by a term behaving as a fresh pointer; the pointer
can then be exploited by an arbitrary context to interact with the term being tested.
Sangiorgi’s approach has been recently improved by Jeffrey and Rathke [2005], who
obtained a full-abstraction result for HOπ: the pointers are now represented by spe-
cial markers (instead of terms) and are integrated directly in the LTS. It not clear
if Jeffrey and Rathke’s approach to pinpoint the interactions can be extended to
the complicated operational semantics of MA.

Journal of the ACM, Vol. V, No. N, September 2005.

40 · M. Merro and F. Zappa Nardelli

Higher-order features have been at the core of research on mobile processes. We
point out that, apart from [Merro and Hennessy 2002], other forms of bisimilarity for
higher-order distributed calculi, such as Distributed π-calculus [Hennessy and Riely
1998], Seal [Vitek and Castagna 1999], a Calculus for Mobile Resources [Godske-
sen et al. 2002], NBA [Bugliesi et al. 2005], SafeDpi [Hennessy et al. 2003],
Homer [T. Hildebrandt 2004], and the Kell calculus [Schmitt and Stefani 2004]
can be found in [Hennessy et al. 2004; Castagna et al. 2005; Godskesen et al.
2002; Bugliesi et al. 2005; Hennessy et al. 2003; Schmitt and Stefani 2004], but
only [Hennessy et al. 2004; Godskesen et al. 2002; Bugliesi et al. 2005; Hen-
nessy et al. 2003; Schmitt and Stefani 2004] prove labelled characterisations of a
contextually-defined program equivalence (in [T. Hildebrandt 2004] completeness
holds only for the strong equivalence). Unyapoth and Sewell [2001] take a different,
more intensional approach to define an equivalence for Nomadic Pict. To estab-
lish correctness of a particular protocol, they identify a novel equivalence based on
coupled simulation but tailored to accommodate code migration. Although this
equivalence has many interesting properties, in particular it is a congruence, is not
shown to coincide with any independent contextually defined equivalence.

APPENDIX

A. PROOFS FROM SECTION 2

Proof of Proposition 2.2 The LTS is defined over processes extended with the
process variable ◦. As such, it sends a process over the extended syntax to a process
over the extended syntax.

Let M be a system over the extended syntax, such that M
α−−→ P . We must

show that P is a system over the extended syntax. The env-action must have
been derived from a pre-action of the form M

π−−→ (νm̃)〈P1〉P2. If α = τ , then
the result follows because the class of systems is closed under reductions, and a
τ -transition can be assimilated to a reduction, as shown in Theorem 2.5. If α ∈
{k.exit n, k.open n, ∗.exit n}, then the rules (Exit), (Open), (Exit Shh) guarantee
that the outcome is a system. In the remaining cases, observe that the env-action
must have been derived from a pre-action of the form M

π−−→ (νm̃)〈P1〉P2. Since
M is a system, the P2 component of the concretion must be a system, and the
result follows. ¤

Proof of Lemma 2.4 We prove a stronger result stating that structural congru-
ence preserves all the labels of the LTS (including pre-actions):

(1) if P ≡ Q and P
`−−→ P ′ for ` ∈ {in n, out n, open n}, then there exists Q′ such

that Q
`−−→ Q′ and P ′ ≡ Q′;

(2) if P ≡ Q and P
`−−→ (νñ)〈P1〉P 2 for ` ∈ {enter n, exit n, amb n}, then there

exist Q1, Q2 such that Q
`−−→ (νñ)〈Q1〉Q2, with P1 ≡ Q1 and P2 ≡ Q2;

(3) if P ≡ Q and P
α−−→ P ′, then there exists Q′ such that Q

α−−→ Q′ and P ′ ≡ Q′.

The three statements are proved by induction on the derivation of P ≡ P ′, and by
case analysis on the transition `. As the ≡ relation is symmetric, we prove directly
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 41

the symmetric case, where Q realises the ` action. It is instructive to detail the
cases that deal with the (Struct Repl Par) and (Struct Res Par) rules.

1. Case (Struct Repl Par). Let P = !C.R and Q = C.R | !C.R. In this case,
the label ` must be a pre-action π. Suppose !C.R

π−−→ R | !C.R (rule (πRepl Pfx)).
We derive C.R | !C.R

π−−→ R | !C.R using the rules (π Pfx) and (π Par). For the
symmetric case, we must consider two subcases. If C.R | !C.R

π−−→ R | !C.R (rules
(π Pfx) and (π) Par), then we derive !C.R

π−−→ R | !C.R by the rule (π Repl Pfx).
If C.R | !C.R

π−−→ C.R | R | !C.R (rules (π Repl Pfx) and (π Par)), then !C.R
π−−→

R | !C.R by the rule (π Repl Pfx), and C.R | R | !C.R ≡ R | !C.R by application of
rules (Struct Repl Par), (Struct Par Comm), (Struct Par Assoc).
Observe that this structural rule must be considered only in the proof of the first
statement, because if P = !C.R and Q = C.R | !C.R, then the label ` must be a
pre-action ` ∈ {in n, out n, open n}.

1. Case (Struct Res Par). Let P = R | (νn)S and Q = (νn)(R | S), where
n 6∈ fn(R). If P

π−−→ P ′, then either R
π−−→ R′ and P ′ = R′ | (νn)S, or (νn)S

π−−→
S′ and P ′ = R | S′. In the first case, since n 6∈ fn(R) we have n 6∈ fn(π), and we
can deduce (νn)(R | S)

π−−→ (νn)(R′ | S) ≡ P ′. A derivation for the latter can
simply be obtained by switching the (π Res) and the (π Par) rules in the derivation
of P

π−−→ P ′. The cases when Q
π−−→ Q′ are similar.

2. Case (Struct Res Par). We detail the case when P = R | (νn)S
enter n−−−−−−→

(νñ)〈P1〉P 2. The enter n action is either realised by R and the outcome is
(νñ1)〈R1〉R2 | (νn)S, or by (νn)S and the outcome is (νñ2)〈S1〉R | S2. In the
first case, since n 6∈ fn(R), we can derive the transition Q = (νn)(R | S)

enter n−−−−−−→
(νñ1)〈R1〉(νn)(R2 | S), and it holds that R1 ≡ R1 and R2 | (νn)S ≡ (νn)(R2 | S)
because n 6∈ fn(R) implies n 6∈ fn(R2). In the latter, if n ∈ fn(S1), then the
outcome is (νñ2)〈S1〉R | S2 with n ∈ ñ2 and the result follows. Instead, if
n 6∈ fn(S1), then the outcome is (νñ2)〈S1〉(νn)(R | S2) and the result follows be-
cause R | (νn)S2 ≡ (νn)(R | S2).

3. Case (Struct Res Par). We detail the case when the transition P
τ−−→ P ′

is derived from R
enter m−−−−−−−→ (ν r̃)〈R1〉R2 and (νn)S

amb m−−−−−→ (νs̃)〈S1〉S2. Observe
that m 6= n. We distinguish two subcases. If n ∈ s̃, then P ′ = (ν r̃)(νs̃)(m[R1 |
S1] | R2 | S2), and S

amb m−−−−−→ (νs̃ \ n)〈S1〉S2. By (τ Enter) and by (τ Res) we
derive (νn)(R | S)

τ−−→ (νn)(ν r̃)(νs̃\n)(m[R1 | S1] | R2 | S2), which is equal to P1

modulo the order of names in the top-level restriction. If n 6∈ s̃, then P ′ = (ν r̃)(νs̃\
n)(m[R1 | S1] | R2 | (νn)S2), and S

amb m−−−−−→ (νs̃)〈S1〉S2, and by (τ Enter) and by
(τ Res) we derive (νn)(R | S)

τ−−→ (νn)(ν r̃)(νs̃)(m[R1 | S1] | R2 | S2), which is
structurally congruent to P ′ by successive applications of rule (Struct Res Par).
More in general, we point out that complementary pre-actions must refer to the
same name. Since the pre-action realised by R cannot mention the name n, the
pre-action realised by S cannot either; this allows to derive the required transitions
independently of the position of the restriction (νn). ¤

Journal of the ACM, Vol. V, No. N, September 2005.

42 · M. Merro and F. Zappa Nardelli

Proof of Theorem 2.5

Part 1. By induction on the derivation of P
τ−−→ P ′. Remark that τ -transitions

can only be generated by the rules in Table V.

(τ Enter) We know that P
enter n−−−−−−→ (νp̃)〈P1〉P 2, and Q

amb n−−−−−→ (ν q̃)〈Q1〉Q2.
From Lemma 2.3 we deduce that P ≡ (νs̃)(k[in n.P3 | P4] | P2) for some names s̃
and processes P3 and P4. Let r̃ be the names in s̃ that do not appear in p̃; these
names are not free in P2. We can then write P ≡ (νp̃)((ν r̃)k[in n.P3 | P4] | P2).
Also, P1 ≡ (ν r̃)k[P3 | P4]. From Lemma 2.3 we deduce that Q ≡ (ν q̃)(n[Q1] | Q2).
Then,

P | Q ≡ (νp̃)((ν r̃)k[in n.P3 | P4] | P2) | (ν q̃)(n[Q1] | Q2)
≡ (νp̃)(ν r̃)(ν q̃)(k[in n.P3 | P4] | n[Q1] | P2 | Q2)
_ (νp̃)(ν r̃)(ν q̃)(n[k[P3 | P4] | Q1] | P2 | Q2)
≡ (νp̃)(ν q̃)(n[P1 | Q1] | P2 | Q2)

as desired.

(τ Exit) We know that P
exit n−−−−−−→ (νp̃)〈k[P1]〉P 2. From Lemma 2.3 we deduce

that P ≡ (νp̃)((ν r̃)k[out n.P3 | P4] | P2), where P1 ≡ P3 | P4, for some processes
P3, P4 and names r̃. Then,

n[P] ≡ n[(νp̃)((ν r̃)k[out n.P3 | P4] | P2)]
≡ (νp̃)(ν r̃)n[k[out n.P3 | P4] | P2]

_ (νp̃)(ν r̃)(n[P2] | k[P3 | P4])
≡ (νp̃)(n[P2] | (ν r̃)k[P3 | P4])

as desired.

(τ Open) We know that P
open n−−−−−−→ P1 and Q

amb n−−−−−→ (ν q̃)〈Q1〉Q2. From
Lemma 2.3 we deduce that P ≡ (νp̃)(open n.P2 | P3), where P1 ≡ (νp̃)(P2 | P3)
for some processes P2, P3. Lemma 2.3 also guarantees that Q ≡ (ν q̃)(n[Q1] | Q2).
Then,

P | Q ≡ (νp̃)(open n.P2 | P3) | (ν q̃)(n[Q1] | Q2)
≡ (νp̃)(ν q̃)(open n.P2 | n[Q1] | P3 | Q2)
_ (νp̃)(ν q̃)(P2 | Q1 | P3 | Q2)
≡ (νp̃)(P2 | P3) | (ν q̃)(Q1 | Q2)

as desired.

The other cases follows straightforwardly from the congruence rules of the reduc-
tion relation.

Part 2. By induction on the derivation of P _ Q. There are three base cases.

(Red In) We know that

n[in m.P | Q] | m[R] _ m[n[P | Q] | R] .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 43

The derivation below is valid.

in m.P
in m−−−−−→ P

in m.P | Q in m−−−−−→ P | Q
n[in m.P | Q]

enter m−−−−−−−→ 〈n[P | Q]〉0 m[R]
amb m−−−−−→ 〈R〉0

n[in m.P | Q] | m[R]
τ−−→ m[n[P | Q] | R] | 0 | 0

and m[n[P | Q] | R] | 0 | 0 ≡ m[n[P | Q] | R].
(Red Out) We know that

m[n[out m.P | Q] | R] _ n[P | Q] | m[R]

The derivation below is valid.

out m.P
out m−−−−−→ P

out m.P | Q out m−−−−−→ P | Q
n[out m.P | Q]

exit m−−−−−−→ 〈n[P | Q]〉0
n[out m.P | Q] | R exit m−−−−−−→ 〈n[P | Q]〉R

m[n[out m.P | Q] | R]
τ−−→ n[P | Q] | m[R]

(Red Open) We know that

open n.P | n[Q] _ P | Q
The derivation below is valid

open n.P
open n−−−−−−→ P n[Q]

amb n−−−−−→ 〈Q〉0
open n.P | n[Q]

τ−−→ P | Q | 0
and P | Q | 0 ≡ P | Q.
For the inductive step, we must prove that:

— Rule (Red Struct). The induction hypothesis tells us that there exists R′ such
that Q

τ−−→ R′ ≡ R. Lemma 2.4 tells us that there exists R′′ such that P
τ−−→ R′′

and R′′ ≡ R′. The result follows from transitivity of ≡.
— The reduction relation is preserved by static context: τ -transitions are pre-

served by static contexts too. ¤

B. PROOFS FROM SECTION 3

Proof of Theorem 3.3 Let S be the smallest relation such that:

(1) ≈ ⊆ S;
(2) if M S N , then (νm)M S (νm)N for all names m;
(3) if M S N , then M | H S N | H for all systems H;
(4) if M S N , then n[M | P] S n[N | P] for all names n and processes P .

We prove that S is a bisimilarity up to ≡2, by induction on the definition of S.

2The up-to ≡ proof technique is introduced in Section 4.

Journal of the ACM, Vol. V, No. N, September 2005.

44 · M. Merro and F. Zappa Nardelli

Suppose that M S N because M ≈ N . This case is straightforward.

Suppose that (νm)M S (νm)N because M S N . Suppose (νm)M
α−−→ O1.

We perform a case analysis on α.

— (νm)M
τ−−→ O1.

This can only be derived from M
τ−−→ O′

1, where O1 = (νm)O′1. The induction
hypothesis tells us that there exists a system O′

2 such that N =⇒ O′2 and O′
1 S O′2.

We can derive (νm)N =⇒ (νm)O′2 and conclude (νm)O′1 S (νm)O′2 because S is
closed under restriction.

— (νm)M
k.enter n−−−−−−−−→ O1.

Observe that this must have been derived from

M
enter n−−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)M
enter n−−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)M
k.enter n−−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[k[M1] | ◦] | M2)

for some process M1 and system M2. Remark that this implies m 6= n and m 6= k.
As M

enter n−−−−−−→ (ν r̃)〈k[M1]〉M2 then M
k.enter n−−−−−−−−→ (ν r̃)(n[k[M1] | ◦] | M2) =

M ′. The induction hypothesis then tells us that there exist systems N ′, A, B such
that N =⇒ A

k.enter n−−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ • P S
N ′ • P . As A

k.enter n−−−−−−−−→ B, the system B must be of the form (νs̃)(n[k[N1] |
◦] | N2), for some process N1 and system N2. It also holds that A

enter n−−−−−−→
(νs̃)〈k[N1]〉N2. This implies (νm)A

enter n−−−−−−→ (νm)(νs̃)〈k[N1]〉N2, from which

we can derive (νm)A
k.enter n−−−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[k[N1] | ◦] | N2). We

obtain (νm)N =⇒ (νm)A
k.enter n−−−−−−−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We

can conclude that for all processes P , it holds that O1 •P S O2 •P up to structural
congruence, because S is closed under restriction.

— (νm)M
k.exit n−−−−−−−→ O1.

Observe that this must have been derived from

M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)M
exit n−−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)M
k.exit n−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | M2] | k[M1])

for some process M1 and system M2. Remark that this implies m 6= n and m 6= k.
As M

exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 then M
k.exit n−−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) =

M ′. The induction hypothesis then tells us that there exist systems N ′, A, B such
that N =⇒ A

k.exit n−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ •
P S N ′ • P . As A

k.exit n−−−−−−−→ B, the system B must be of the form (νs̃)(n[◦ |
N2] | k[N1]), for some process N1 and system N2. It also holds that A

exit n−−−−−−→
(νs̃)〈k[N1]〉N2. This implies (νm)A

exit n−−−−−−→ (νm)(νs̃)〈k[N1]〉N2, from which we

can derive (νm)A
k.exit n−−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[◦ | N2] | k[N1]). We

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 45

obtain (νm)N =⇒ (νm)A
k.exit n−−−−−−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We can

conclude that for all processes P , it holds that O1 • P S O2 • P up to structural
congruence, because S is closed under restriction.

— (νm)M
n.enter k−−−−−−−−→ O1.

Observe that this must have been derived from

M
amb n−−−−−→ (ν r̃)〈M1〉M2

(νm)M
amb n−−−−−→ (νm)(ν r̃)〈M1〉M2

(νm)M
n.enter k−−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[k[◦] | M1] | M2)

for some process M1 and system M2. Remark that this implies m 6= n and m 6= k.

As M
amb n−−−−−→ (ν r̃)〈M1〉M2 then M

n.enter k−−−−−−−−→ (ν r̃)(n[k[◦] | M1] | M2) = M ′.
The induction hypothesis then tells us that there exist systems N ′, A, B such that

N =⇒ A
n.enter k−−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ • P S

N ′ • P . As A
n.enter k−−−−−−−−→ B, the system B must be of the form (νs̃)(n[k[◦] |

N1] | N2), for some process N1 and system N2. It also holds that A
amb n−−−−−→

(νs̃)〈N1〉N2. This implies (νm)A
amb n−−−−−→ (νm)(νs̃)〈N1〉N2, from which we can

derive (νm)A
n.enter k−−−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[k[◦] | N1] | N2). We

obtain (νm)N =⇒ (νm)A
n.enter k−−−−−−−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We

can conclude that for all processes P , it holds that O1 •P S O2 •P up to structural
congruence, because S is closed under restriction.

— (νm)M
k.open n−−−−−−−→ O1.

Observe that this must have been derived from

M
amb n−−−−−→ (ν r̃)〈M1〉M2

(νm)M
amb n−−−−−→ (νm)(ν r̃)〈M1〉M2

(νm)M
k.open n−−−−−−−→ O1 ≡ k[◦ | (νm)(ν r̃)(M1 | M2)]

for some process M1 and system M2. Remark that this implies m 6= n and m 6= k.

As M
amb n−−−−−→ (ν r̃)〈M1〉M2 then M

k.open n−−−−−−−→ k[◦ | (ν r̃)(M1 | M2)] = M ′.
Also observe that O1 ≡ (νm)k[◦ | (ν r̃)(M1 | M2)] = (νm)M ′. The induc-
tion hypothesis then tells us that there exist systems N ′, A, B such that N =⇒
A

k.open n−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ • P S N ′ • P . As

A
k.open n−−−−−−−→ B, the system B must be of the form k[◦ | (νs̃)(N1 | N2)], for some

process N1 and system N2. It also holds that A
amb n−−−−−→ (νs̃)〈N1〉N2. This im-

plies (νm)A
amb n−−−−−→ (νm)(νs̃)〈N1〉N2, from which we can derive (νm)A

k.open n−−−−−−−→
C ≡ k[◦ | (νm)(νs̃)(N1 | N2)] ≡ (νm)k[◦ | (νs̃)(N1 | N2)] = (νm)N ′. We ob-

tain (νm)N =⇒ (νm)A
k.open n−−−−−−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We can

conclude that for all processes P , it holds that O1 • P S O2 • P up to structural
congruence, because S is closed under restriction.

Journal of the ACM, Vol. V, No. N, September 2005.

46 · M. Merro and F. Zappa Nardelli

— (νm)M
∗.enter n−−−−−−−−→ O1.

Observe that there are two possible derivations.
—Suppose:

M
enter n−−−−−−→ (ν r̃)〈m[M1]〉M2

(νm)M
enter n−−−−−−→ (νm)(ν r̃)〈m[M1]〉M2

(νm)M
∗.enter n−−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[m[M1] | ◦] | M2)

where m 6∈ r̃, for some process M1 and system M2. Remark that this implies
n 6∈ r̃. As M

enter n−−−−−−→ (ν r̃)〈m[M1]〉M2 then M
m.enter n−−−−−−−−→ (ν r̃)(n[m[M1] | ◦] |

M2) = M ′. The induction hypothesis then tells us that there exist systems
N ′, A, B such that N =⇒ A

m.enter n−−−−−−−−→ B =⇒ N ′, and for all processes P it
holds that M ′ • P S N ′ • P . As A

m.enter n−−−−−−−−→ B, the system B must be of the
form (νs̃)(n[m[N1] | ◦] | N2), for some process N1 and system N2, where m 6∈ s̃.
It also holds that A

enter n−−−−−−→ (νs̃)〈m[N1]〉N2. This implies (νm)A
enter n−−−−−−→

(νm)(νs̃)〈m[N1]〉N2, from which we can derive (νm)A | n[◦] τ−−→ C ≡ (νm)B =
(νm)(νs̃)(n[m[N1] | ◦] | N2). We obtain (νm)(N | n[◦]) ≡ (νm)N | n[◦] =⇒
(νm)A | n[◦]

τ−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We can conclude that
for all processes P , it holds that O1 • P S O2 • P up to structural congruence,
because S is closed under restriction.

—Suppose:

M
enter n−−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)M
enter n−−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)M
∗.enter n−−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[k[M1] | ◦] | M2)

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃. As
M

enter n−−−−−−→ (ν r̃)〈k[M1]〉M2 then M
∗.enter n−−−−−−−−→ (ν r̃)(n[k[M1] | ◦] | M2) = M ′.

The induction hypothesis then tells us that there exist a system N ′ such that
N | n[◦] =⇒ N ′, and for all processes P it holds that M ′ • P S N ′ • P . We
can derive (νm)N | n[◦] ≡ (νm)(N | n[◦]) =⇒ (νm)N ′. Call (νm)N ′ = O2.
We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because S is closed under restriction.

— (νm)M
∗.exit n−−−−−−−→ O1.

Observe that there are two possible derivations.
—Suppose:

M
exit n−−−−−−→ (ν r̃)〈m[M1]〉M2

(νm)M
exit n−−−−−−→ (νm)(ν r̃)〈m[M1]〉M2

(νm)M
∗.exit n−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | M2] | m[M1])

where m 6∈ r̃, for some process M1 and system M2. Remark that this implies
n 6∈ r̃. As M

exit n−−−−−−→ (ν r̃)〈m[M1]〉M2 then M
m.exit n−−−−−−−−→ (ν r̃)(n[◦ | M2] |

m[M1]) = M ′. The induction hypothesis then tells us that there exist systems
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 47

N ′, A, B such that N =⇒ A
m.exit n−−−−−−−−→ B =⇒ N ′, and for all processes P it holds

that M ′ • P S N ′ • P . As A
m.exit n−−−−−−−−→ B, the system B must be of the form

(νs̃)(n[◦ | N2] | m[N1]), for some process N1 and system N2, where m 6∈ s̃.
It also holds that A

exit n−−−−−−→ (νs̃)〈m[N1]〉N2. This implies (νm)A
exit n−−−−−−→

(νm)(νs̃)〈m[N1]〉N2, from which we can derive (νm)n[◦ | A]
τ−−→ C ≡ (νm)B =

(νm)(νs̃)(n[◦ | N2] | m[N1]). We obtain (νm)n[◦ | N] ≡ n[◦ | (νm)N] =⇒ n[◦ |
(νm)A]

τ−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We can conclude that for all
processes P , it holds that O1 • P S O2 • P up to structural congruence, because
S is closed under restriction.

—Suppose:

M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)M
exit n−−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)M
∗.exit n−−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | M2] | k[M1])

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃. As
M

exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 then M
∗.exit n−−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′.

The induction hypothesis then tells us that there exist a system N ′ such that
n[◦ | N] =⇒ N ′, and for all processes P it holds that M ′ • P S N ′ • P . We can
derive n[◦ | (νm)N] ≡ (νm)n[◦ | N] =⇒ (νm)N ′. Call (νm)N ′ = O2. We can
conclude that for all processes P , it holds that O1 • P S O2 • P up to structural
congruence, because S is closed under restriction.

Suppose that M | H S N | H because M S N . Suppose M | H α−−→ O1. We
perform a case analysis on α.

We first consider the cases when there is no interaction between M and H.

— M | H
τ−−→ O1, because M

τ−−→ M ′ and O1 ≡ M ′ | H. The induction
hypothesis tells us that there exists a N ′ such that N =⇒ N ′ and M ′ S N ′. Thus,
N | H =⇒ O2 ≡ N ′ | H and O1 ≡ M ′ | H S N ′ | H ≡ O2 because S is closed under
parallel composition.

— M | H
τ−−→ O1, because H

τ−−→ H ′ and O1 ≡ M | H ′. Let O2 = N | H ′:
it holds that N | H

τ−−→ O2, and O1 S O2 because M S N and S is closed under
parallel composition.

— M | H k.enter n−−−−−−−−→ O1.
There are two possible derivations.
—Suppose:

M
enter n−−−−−−→ (ν r̃)〈k[M1]〉M2

M | H enter n−−−−−−→ (ν r̃)〈k[M1]〉M2 | H

M | H k.enter n−−−−−−−−→ O1 ≡ (ν r̃)(n[k[M1] | ◦] | M2 | H)

for some process M1 and system M2. Remark that k 6∈ r̃. As M
enter n−−−−−−→

(ν r̃)〈k[M1]〉M2 then M
k.enter n−−−−−−−−→ (ν r̃)(n[k[M1] | ◦] | M2) = M ′. The

Journal of the ACM, Vol. V, No. N, September 2005.

48 · M. Merro and F. Zappa Nardelli

induction hypothesis then tells us that there exist systems N ′, A,B such that
N =⇒ A

k.enter n−−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ • P S
N ′ • P . As A

k.enter n−−−−−−−−→ B, the system B must be of the form (νs̃)(n[k[N1] |
◦] | N2), for some process N1 and system N2. It also holds that A

enter n−−−−−−→
(νs̃)〈k[N1]〉N2. This implies A | H

enter n−−−−−−→ (νs̃)〈k[N1]〉N2 | H, from which

we can derive A | H k.enter n−−−−−−−−→ (νs̃)(n[k[N1] | ◦] | N2 | H) ≡ B | H. We obtain

N | H =⇒ A | H
k.enter n−−−−−−−−→≡ B | H =⇒≡ N ′ | H. Call N ′ | H = O2. We can

conclude that for all processes P , it holds that O1 • P S O2 • P up to structural
congruence, because S is closed under parallel composition.

—Suppose:

H
enter n−−−−−−→ (ν r̃)〈k[H1]〉H2

M | H enter n−−−−−−→ (ν r̃)〈k[H1]〉H2 | M

M | H k.enter n−−−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[H1]] | H2 | M)

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct the
following derivation:

H
enter n−−−−−−→ (ν r̃)〈k[H1]〉H2

N | H enter n−−−−−−→ (ν r̃)〈k[H1]〉H2 | N

N | H k.enter n−−−−−−−−→ (ν r̃)(n[◦ | k[H1]] | H2 | N) = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composi-
tion.
— M | H k.exit n−−−−−−−→ O1.

There are two possible derivations.
—Suppose:

M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2

M | H exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 | H

M | H k.exit n−−−−−−−→ O1 ≡ (ν r̃)(n[◦ | M2 | H] | k[M1])

for some process M1 and system M2. Remark that k 6∈ r̃. As M
exit n−−−−−−→

(ν r̃)〈k[M1]〉M2 then M
k.exit n−−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′. The

induction hypothesis then tells us that there exist systems N ′, A,B such that
N =⇒ A

k.exit n−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ •
P S N ′ • P . Remark that N ′ ≡ (νh̃)n[◦ | N3] | N4, for some N3, N4. As

A
k.exit n−−−−−−−→ B, the system B must be of the form (νs̃)(n[◦ | N2] | k[N1]), for

some process N1 and system N2. It also holds that A
exit n−−−−−−→ (νs̃)〈k[N1]〉N2.

This implies A | H
exit n−−−−−−→ (νs̃)〈k[N1]〉N2 | H, from which we can derive

A | H
k.exit n−−−−−−−→ (νs̃)(n[◦ | N2 | H] | k[N1]) ≡ B • (◦ | H). We obtain

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 49

N | H =⇒ A | H k.exit n−−−−−−−→ B • (◦ | H) =⇒≡ N ′ • (◦ | H). Call N ′ • (◦ | H) = O2.
As for all processes P it holds that M ′ •P S N ′ •P , we can conclude that for all
processes Q, it holds that O1 •Q S O2 •Q up to structural congruence, because
O1 •Q ≡ M ′ • (Q | H) S N ′ • (Q | H) ≡ O2 •Q.

—Suppose:

H
exit n−−−−−−→ (ν r̃)〈k[H1]〉H2

M | H exit n−−−−−−→ (ν r̃)〈k[H1]〉H2 | M

M | H k.exit n−−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | M] | k[H1])

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct the
following derivation:

H
exit n−−−−−−→ (ν r̃)〈k[H1]〉H2

N | H exit n−−−−−−→ (ν r̃)〈k[H1]〉H2 | N

N | H k.exit n−−−−−−−→ (ν r̃)(n[◦ | H2 | N] | k[H1]) = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composition
and ambient.

— M | H n.enter k−−−−−−−−→ O1.
There are two possible derivations.

—Suppose:

M
amb n−−−−−→ (ν r̃)〈M1〉M2

M | H amb n−−−−−→ (ν r̃)〈M1〉M2 | H

M | H n.enter k−−−−−−−−→ O1 ≡ (ν r̃)(n[k[◦] | M1] | M2 | H)

for some process M1 and system M2. Remark that k, n 6∈ r̃. As M
amb n−−−−−→

(ν r̃)〈M1〉M2 then M
n.enter k−−−−−−−−→ (ν r̃)(n[k[◦] | M1] | M2) = M ′. The induc-

tion hypothesis then tells us that there exist systems N ′, A, B such that N =⇒
A

n.enter k−−−−−−−−→ B =⇒ N ′, and for all processes P it holds that M ′ • P S N ′ • P .

As A
n.enter k−−−−−−−−→ B, the system B must be of the form (νs̃)(n[k[◦] | N1] | N2),

for some process N1 and system N2. It also holds that A
amb n−−−−−→ (νs̃)〈N1〉N2.

This implies A | H
amb n−−−−−→ (νs̃)〈N1〉N2 | H, from which we can derive A |

H
n.enter k−−−−−−−−→ (νs̃)(n[k[◦] | N1] | N2 | H) ≡ B | H. We obtain N | H =⇒ A |

H
n.enter k−−−−−−−−→≡ B | H =⇒≡ N ′ | H. Call N ′ | H = O2. We can conclude that

for all processes P , it holds that O1 • P S O2 • P up to structural congruence,
because S is closed under parallel composition.

Journal of the ACM, Vol. V, No. N, September 2005.

50 · M. Merro and F. Zappa Nardelli

—Suppose:

H
amb n−−−−−→ (ν r̃)〈H1〉H2

M | H amb n−−−−−→ (ν r̃)〈H1〉H2 | M

M | H n.enter k−−−−−−−−→ O1 ≡ (ν r̃)(n[k[◦] | H1] | H2 | M)

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct the
following derivation:

H
amb n−−−−−→ (ν r̃)〈H1〉H2

N | H amb n−−−−−→ (ν r̃)〈H1〉H2 | N

N | H n.enter k−−−−−−−−→ (ν r̃)(n[k[◦] | H1] | H2 | N) = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composi-
tion.

— M | H k.open n−−−−−−−→ O1.
There are two possible derivations.
—Suppose:

M
amb n−−−−−→ (ν r̃)〈M1〉M2

M | H amb n−−−−−→ (ν r̃)〈M1〉M2 | H

M | H k.open n−−−−−−−→ O1 ≡ k[◦ | (ν r̃)(M1 | M2) | H]

for some process M1 and system M2. Remark that k, n 6∈ r̃. As M
amb n−−−−−→

(ν r̃)〈M1〉M2 then M
k.open n−−−−−−−→ k[◦ | (ν r̃)(M1 | M2)]. The induction hypothesis

then tells us that there exist systems N ′, A,B such that N =⇒ A
k.open n−−−−−−−→ B =⇒

N ′, and for all processes P it holds that M ′ • P S N ′ • P . As A
k.open n−−−−−−−→ B,

the system B must be of the form k[◦ | (νs̃)(N1 | N2)], for some process N1 and
system N2. It also holds that A

amb n−−−−−→ (νs̃)〈N1〉N2. This implies A | H amb n−−−−−→
(νs̃)〈N1〉N2 | H, from which we can derive A | H k.open n−−−−−−−→ k[◦ | (νs̃)(N1 | N2) |
H] ≡ B • (◦ | H). We obtain N | H =⇒ A | H

k.open n−−−−−−−→≡ B • (◦ | H) =⇒≡
N ′ • (◦ | H). Call N ′ • (◦ | H) = O2. We can conclude that for all processes P , it
holds that O1 •P S O2 •P up to structural congruence, because for all processes
P it holds that M ′ • (P | H) S N ′ • (P | H).

—Suppose:

H
amb n−−−−−→ (νh̃)〈H1〉H2

M | H amb n−−−−−→ (νh̃)〈H1〉H2 | M

M | H k.open n−−−−−−−→ O1 ≡ k[◦ | (νh̃)(H1 | H2) | M]
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 51

for some process H1 and system H2. Remark that k 6∈ h̃. We can construct the
following derivation:

H
amb n−−−−−→ (νh̃)〈H1〉H2

N | H amb n−−−−−→ (νh̃)〈H1〉H2 | N

N | H k.open n−−−−−−−→ k[◦ | (νh̃)(H1 | H2) | N] = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composition
and ambient.

— M | H ∗.enter n−−−−−−−−→ O1.
There are two possible derivations.

—Suppose:

M
enter n−−−−−−→ (ν r̃)〈k[M1]〉M2

M | H enter n−−−−−−→ (ν r̃)〈k[M1]〉M2 | H
M | H ∗.enter n−−−−−−−−→ O1 ≡ (ν r̃)(n[k[M1] | ◦] | M2 | H)

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃. As
M

enter n−−−−−−→ (ν r̃)〈k[M1]〉M2 then M
∗.enter n−−−−−−−−→ (ν r̃)(n[k[M1] | ◦] | M2) = M ′.

The induction hypothesis then tells us that there exist a system N ′ such that
N | n[◦] =⇒ N ′, and for all processes P it holds that M ′ • P S N ′ • P . We can
derive N | n[◦] | H =⇒ N ′ | H. Call N ′ | H = O2. We can conclude that for all
processes P , it holds that O1 • P S O2 • P up to structural congruence, because
S is closed under parallel composition.

—Suppose:

H
enter n−−−−−−→ (ν r̃)〈k[H1]〉H2

M | H enter n−−−−−−→ (ν r̃)〈k[H1]〉H2 | M
M | H ∗.enter n−−−−−−−−→ O1 ≡ (ν r̃)(n[k[H1] | ◦] | H2 | M)

where k ∈ r̃ for some process H1 and system H2. We can construct the following
derivation:

H
enter n−−−−−−→ (ν r̃)〈k[H1]〉H2

N | H enter n−−−−−−→ (ν r̃)〈k[H1]〉H2 | N n[◦]
amb n−−−−−→ 〈 ◦ 〉0

N | H | n[◦]
τ−−→ (ν r̃)(n[k[H1] | ◦] | H2 | N) = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composi-
tion.

— M | H ∗.exit n−−−−−−−→ O1.
There are two possible derivations.

Journal of the ACM, Vol. V, No. N, September 2005.

52 · M. Merro and F. Zappa Nardelli

—Suppose:

M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2

M | H exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 | H
M | H ∗.exit n−−−−−−−→ O1 ≡ (ν r̃)(n[◦ | M2 | H] | k[M1])

for some process M1 and system M2. Remark that k ∈ r̃. As M
exit n−−−−−−→

(ν r̃)〈k[M1]〉M2 then M
∗.exit n−−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′. The induc-

tion hypothesis then tells us that there exist systems N ′ such that n[◦ | N] =⇒ N ′,
and for all processes P it holds that M ′•P S N ′•P . Remark that N ′ ≡ (νs̃)n[◦ |
N3] | N4, for some N3, N4. We can derive n[◦N | H] =⇒ (νs̃)n[◦ | N3 | H] | N4.
Call (νs̃)n[◦ | N3 | H] | N4 = O2. As for all processes P it holds that M ′ • P S
N ′ •P , we can conclude that for all processes Q, it holds that O1 •Q S O2 •Q up
to structural congruence, because O1 •Q ≡ M ′ •(Q | H) S N ′ •(Q | H) ≡ O2 •Q.

—Suppose:

H
exit n−−−−−−→ (ν r̃)〈k[H1]〉H2

M | H exit n−−−−−−→ (ν r̃)〈k[H1]〉H2 | M
M | H ∗.exit n−−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | M] | k[H1])

for some process H1 and system H2. Remark that k ∈ r̃. We can construct the
following derivation:

H
exit n−−−−−−→ (ν r̃)〈k[H1]〉H2

N | H exit n−−−−−−→ (ν r̃)〈k[H1]〉H2 | N
n[◦ | N | H]

τ−−→ (ν r̃)(n[◦ | H2 | N] | k[H1]) = O2

We can conclude that for all processes P , it holds that O1 • P S O2 • P up to
structural congruence, because M S N and S is closed under parallel composition
and ambient.

Then, we consider the cases when there is interaction between M and H.

— M | H τ−−→ O1, because

M
enter n−−−−−−→ (νm̃)〈k[M1]〉M2 and H

amb n−−−−−→ (νh̃)〈H1〉H2.

Then O1 ≡ (νh̃, m̃)(n[k[M1] | H1] | M2 | H2). We distinguish the cases k ∈ m̃, and
k 6∈ m̃.

—k 6∈ m̃. As M
enter n−−−−−−→ (νm̃)〈k[M1]〉M2, it also holds that M

k.enter n−−−−−−−−→
M ′ ≡ (νm̃)(n[k[M1] | ◦] | M2). The induction hypothesis tells us that there
exists a system N ′ such that N

k.enter n========⇒ N ′ ≡ (νm̃)(n[k[N1] | ◦] | N2),
and for all processes P , it holds that M ′ • P S N ′ • P . But if N

k.enter n========⇒
N ′, then N

enter n======⇒ (νm̃)〈k[N1]〉N2. This implies that N | H
τ==⇒ O2 ≡

(νh̃, ñ)(n[k[N1] | H1] | N2 | H2). Since for all processes P , M ′ • P S N ′ • P ,
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 53

it also holds that M ′ •H1 S N ′ •H1, and O1 S O2 follows because S is closed
under parallel composition and restriction.

—k ∈ m̃. As M
enter n−−−−−−→ (νm̃)〈k[M1]〉M2, it also holds that M

∗.enter n−−−−−−−−→ M ′ ≡
(νm̃)(n[k[M1] | ◦] | M2). The induction hypothesis tells us that there exists
a system N ′ such that N | n[◦] =⇒ N ′ ≡ (νñ)(n[N1 | ◦] | N2), and for all
processes P , it holds that M ′ • P S N ′ • P . We can derive N | H =⇒ O2 ≡
(νh̃, ñ)(n[N1 | H1] | N2 | H2). Since for all processes P , M ′ • P S N ′ • P , it also
holds that M ′ • H1 S N ′ • H1, and O1 S O2 follows because S is closed under
parallel composition and restriction.
— M | H τ−−→ O1, because

M
amb n−−−−−→ (νm̃)〈M1〉M2 and H

enter n−−−−−−→ (νh̃)〈k[H1]〉H2.

Then O1 ≡ (νh̃, m̃)(n[k[H1] | M1] | M2 | H2). As M
amb n−−−−−→ (νm̃)〈M1〉M2, it

also holds that M
n.enter k−−−−−−−−→ M ′ ≡ (νm̃)(n[k[◦] | M1] | M2). The induction

hypothesis tells us that there exists a system N ′ such that N
n.enter k========⇒ N ′ ≡

(νñ)(n[k[◦] | N1] | N2), and for all processes P , it holds that M ′ • P S N ′ • P .

As N
n.enter k========⇒ N ′, we can derive N

amb n=====⇒ (νñ)〈N1〉N2. It follows N | H =⇒
(νh̃, ñ)(n[k[H1] | N1] | N2 | H2) = O2. Since for all processes P , it holds that
M ′ • P S N ′ • P , we have M ′ • k[H1] S N ′ • k[H1], and O1 S O2 follows because
S is closed under parallel composition and restriction.

Suppose that n[M | P] S n[N | P] because M S N . Suppose n[M | P]
α−−→

O1. We perform a case analysis on α.

— n[M | P]
τ−−→ O1, because M

τ−−→ M ′. Then O1 ≡ n[M ′ | P]. The induction
hypothesis tells us that there exists a system N ′ such that N =⇒ N ′ and M ′ S N ′.
We can derive n[N | P] =⇒ n[N ′ | P] and conclude n[M ′ | P] S n[N ′ | P] because
S is closed under ambient.

— n[M | P]
τ−−→ O1, because P

τ−−→ P ′. Then O1 ≡ n[M | P ′]. Call O2 =
n[N | P ′]. Then O1 S O2 because M S N , and S is closed under the contexts of
the form C[−] = n[− | Q] where Q is a process.

— n[M | P]
τ−−→ O1, because M

exit n−−−−−−→ (ν r̃)〈k[M1]〉M2. Then we have that
O1 ≡ (ν r̃)(k[M1] | n[M2 | P]). We distinguish the two cases k ∈ r̃ and k 6∈ r̃.

—k 6∈ r̃. From M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 we derive M

k.exit n−−−−−−−→ (ν r̃)(k[M1] |
n[◦ | M2]). The induction hypothesis tells us that there exists a system N ′ such
that N

k.exit n=======⇒ N ′ ≡ (νs̃)(k[N1] | n[◦ | N2]) and for all processes Q, it holds
that M ′ •Q S N ′ •Q. But N

k.exit n=======⇒ N ′ can only be derived from N
exit n======⇒

(νs̃)〈k[N1]〉N2 and thus n[N | P] =⇒ N ′•P . As for all processes Q, it holds that
M ′•Q S N ′•Q, we can derive (ν r̃)(k[M1] | n[P | M2]) S (νs̃)(k[N1] | n[P | N2]),
as required.

—k ∈ r̃. From M
exit n−−−−−−→ (ν r̃)〈k[M1]〉M2 we derive M

∗.exit n−−−−−−−→ (ν r̃)(k[M1] |
n[◦ | M2]). The induction hypothesis tells us that there exists a system N ′ such
that n[◦ | N] =⇒ N ′ ≡ (νs̃)(k[N1] | n[◦ | N2]), and for all processes Q, it holds
that M ′ • Q S N ′ • Q. We can instantiate the placeholder ◦ with the process

Journal of the ACM, Vol. V, No. N, September 2005.

54 · M. Merro and F. Zappa Nardelli

P , thus obtaining the transition n[N | P] =⇒ N ′ • P . As for all processes Q, it
holds that M ′ •Q S N ′ •Q , we have O1 = (νm̃)(k[M1] | n[P | M2]) ≡ M ′ •P S
N ′ • P ≡ (νs̃)(k[N1] | n[P | N2]) = O2, as required.

— n[M | P]
τ−−→ O1, because P

exit n−−−−−−→ (ν r̃)〈k[P1]〉P 2. This implies O1 ≡
(ν r̃)(k[P1] | n[M | P2]). It also holds that n[N | P]

τ−−→≡ (ν r̃)(k[P1] | n[N | P2]).
Call this last term O2. The relation O1 S O2 follows because M S N and from the
closure properties of S.

— n[M | P]
τ−−→ O1, and the τ action is generated by an interaction between

M and P . There are three cases.
—M

amb m−−−−−→ (ν r̃)〈M1〉M2 and P
open m−−−−−−→ P ′. Then O1 ≡ n[(ν r̃)(M1 | M2) | P ′].

It holds that M
n.open m−−−−−−−−→ n[◦ | (ν r̃)(M1 | M2)]. The induction hypothesis tells

us that there exist systems A,B,N ′ such that N =⇒ A
n.open m−−−−−−−−→ B =⇒ N ′, and

for all processes Q it holds that M ′ •Q S N ′ •Q. The transition A
n.open m−−−−−−−−→ B

must have been derived from A
amb m−−−−−→ (νs̃)〈N1〉N2. Then A must be of the

form (νs̃)(m[N1] | N2) and B must be of the form n[◦ | (νs̃)(N1 | N2)]. This
implies that n[N | P] =⇒ B • P ′ −→ N ′ • P ′. As for all Q it holds that M ′ •Q S
N ′ •Q, we can deduce M ′ • P ′ S N ′ • P ′ and conclude by take O2 = N ′ • P ′.

—M
enter m−−−−−−−→ and P

amb m−−−−−→, or M
amb m−−−−−→ and P

enter m−−−−−−−→. Call A1 the
outcome of the interaction between M and P . In both cases, by an analysis
carried on previously, we know that there is a process A2 such that N | P =⇒ A2,
with A1 S A2. We obtain n[M | P]

τ−−→ n[A1] = O1, and n[N | P] =⇒ n[A2].
The relation n[A1] S n[A2] follows from the closure of S under ambient.

— n[M | P]
n.enter k−−−−−−−−→ O1. Then O1 ≡ n[k[◦] | M | P]. But n[N |

P]
n.enter k−−−−−−−−→ O2, where O2 ≡ n[k[◦] | N | P]. For all processes Q, O1 •Q S O2 •Q

follows from M S N because of the closure properties of S.

— n[M | P]
n.exit m−−−−−−−−→ m[◦] | n[M | P ′] = O1, because P

out m−−−−−→ P ′. It also
holds that n[N | P]

n.exit m−−−−−−−−→ m[◦] | n[N | P ′]. Call this last term O2. Then, for
all processes Q, the relation O1 • Q S O2 • Q follows from M S N because of the
closure properties of S. ¤

Proof of Lemma 3.7 The relation {((νn)n[],0)} is a bisimulation, and the result
follows from the soundness of bisimulation. ¤

Proof of Lemma 3.8 – omitted cases In all the cases below, ambients of the
form (νn)n[] are garbage collected by applying Lemma 3.7.

Case α = k.exit n. Let P be a process. We know that M
k.exit n−−−−−−−→ M ′. Then

M ≡ (νm̃)(k[out n.M1 | M2] | M3)

where ({n, k} ∪ fn(P)) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(k[M1 | M2] | n[◦ | M3]).
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 55

Now,

Ck.exit nM • P

≡ (νm̃)((νa)a[in k.out k.done[out a]] | n[P | k[out n.M1 | M2] | M3)]
τ−−→ (νm̃)((νa)a[in k.out k.done[out a]] | k[M1 | M2] | n[P | M3])
τ−−→ (νm̃)((νa)k[a[out k.done[out a]] | M1 | M2] | n[P | M3])
τ−−→ (νm̃)((νa)a[done[out a]] | k[M1 | M2] | n[P | M3])
τ−−→ (νm̃)((νa)(done[] | a[]) | k[M1 | M2] | n[P | M3])
∼=s (νm̃)(k[M1 | M2] | n[◦ | P3]) • P | done[]

= M ′ • P | done[]

This implies Ck.exit n[M] • P =⇒∼=s M ′ • P | done[].

Case α = n.enter k. Let P be a process. We know that M
n.enter k−−−−−−−−→ M ′.

Then

M ≡ (νm̃)(n[M1] | M2)

where ({n, k} ∪ fn(P)) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(n[M1 | k[◦]] | M2).

Now,

Cn.enter k[M] • P

≡ (νm̃)((νa)a[in n.k[out a.(P | (νb)b[out k.out n.done[out b]])]] | n[M1] | M2)
τ−−→ (νm̃)(n[M1 | (νa)a[k[out a.(P | (νb)b[out k.out n.done[out b]])]]] | M2)
τ−−→ (νm̃)(n[M1 | (νa)a[] | k[P | (νb)b[out k.out n.done[out b]]]] | M2)
τ−−→ (νm̃)(n[M1 | (νa)a[] | k[P] | (νb)b[out n.done[out b]]] | M2)
τ−−→ (νm̃)(n[M1 | (νa)a[] | k[P]] | (νb)b[done[out b]] | M2)
τ−−→ (νm̃)(n[M1 | (νa)a[] | k[P]] | (νb)b[] | done[] | M2)
∼=s (νm̃)(n[M1 | k[◦]] | M2) • P | done[]

= M ′ • P | done[]

This implies Cn.enter k[M] • P =⇒∼=s M ′ • P | done[].

Case α = k.open n. Let P be a process. We know that M
k.open n−−−−−−−→ M ′. Then

M ≡ (νm̃)(n[M1] | M2), where n 6∈ {m̃}, and M ′ ≡ k[◦ | (νm̃)(M1 | M2)]. Names
Journal of the ACM, Vol. V, No. N, September 2005.

56 · M. Merro and F. Zappa Nardelli

a and b are fresh for M . Now,

Ck.open n[M] • P

≡ k[P | (νa, b)(open b.open a.done[out k] |
a[(νm̃)(n[M1] | M2) | open n.b[out a]])]

τ−−→ k[P | (νa, b)(open b.open a.done[out k] | a[(νm̃)(M1 | M2) | b[out a]])]
τ−−→ k[P | (νa, b)(open b.open a.done[out k] | a[(νm̃)(M1 | M2)] | b[])]
τ−−→ k[P | (νa, b)(open a.done[out k] | a[(νm̃)(M1 | M2)])]
τ−−→ k[P | (νa, b)(done[out k] | (νm̃)(M1 | M2))]
τ−−→ k[P | (νm̃)(M1 | M2))] | done[]

≡ k[◦ | (νm̃)(M1 | M2)] • P | done[]

= M ′ • P | done[]

This implies Ck.open n[M] • P =⇒∼=s M ′ • P | done[]. ¤
Proof of Lemma 3.10

Part 1. For point a), the definition of • assures that there exists an arbitrary
context C[−] such that C[spyα〈i, j, P 〉] = M • spyα〈i, j, P 〉, and names in P are not
bound in C[−]. The construction of spyα〈i, j, P 〉 assures that if C[spyα〈i, j, P 〉]

τ−−→
Q, then either there is an arbitrary context C ′ such that Q = C′[spyα〈i, j, P 〉], or
Q = C[P ′] where spyα〈i, j, P 〉

τ−−→ P ′. But if spyα〈i, j, P 〉
τ−−→ P ′, then P ′ ⇓ i 6⇓ j,

or P ′ ⇓ j 6⇓ i. As O ⇓ i, j, O must be the outcome of the first reduction, and as
such there exists an arbitrary context C′[−] such that O = C′[spyα〈i, j, P 〉]. Let
M ′ = C′[◦]. As C[spyα〈i, j, P 〉]

τ−−→ C′[spyα〈i, j, P 〉], names in P cannot be bound
in C′[−]. This implies O = C′[spyα〈i, j, P 〉] = M ′ • spyα〈i, j, P 〉, as required for 1).

For point b), M • spyα〈i, j, P 〉 = C[spyα〈i, j, P 〉]
τ−−→ C′[spyα〈i, j, P 〉] = M ′ •

spyα〈i, j, P 〉 implies M = C[◦] τ−−→ C′[◦] = M ′, as required.

Part 2. It is easy to see that the relation

R = {(n[(νi, j)spyα〈i, j, P 〉 | R], n[P | R]) | for all n,R} ∪ I
is a bisimulation up-to context. Observe that the soundness of the up-to context
proof technique does not depend on the completeness of the bisimilarity. ¤
Proof of Lemma 3.11 If C[r[P]]

τ−−→ C′[r[P ′]], then either P
τ−−→ P ′ (the process

P performs the τ action without a contribution of the context C[−], or C[0]
τ−−→ C′[0]

(the context C[−] performs the τ action without a contribution of the process r[P]),
or C[−] and r[P] interact. In the two first cases, the result follows easily. In the
last case, since the name r is fresh, the only possible interactions are originated by
P

in m−−−−−→ or P
out m−−−−−→, that is the ambient r moves in the ambient hierarchy of

C[−], which is otherwise left unchanged. The result follows. ¤
Proof of Lemma 3.12 – omitted cases

Case α = k.enter n. Observe that

Cα[M] • spyα〈i, j, P 〉 = n[done[in k.out k.out n] | spyα〈i, j, P 〉] | M .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 57

As N ⇓ i, j and done is fresh, by Lemma 3.10(1), there must be a system context
D[−] such that N | done[] ≡ D[done[]] • spyα〈i, j, P 〉 and Cα[M] =⇒ D[done[]].
As P cannot reduce and done is fresh, the ambient n does not migrate during the
reduction. Moreover, as M is a system, the ambient n cannot be opened. Also
observe that the ambient done must consume the prefix in k, thus requiring the
presence of an ambient k inside the ambient n during the reduction. More precisely,
there exist systems M1 and M2 and a static context C[−] such that:

Cα[M] • spyα〈i, j, P 〉
= n[done[in k.out k.out n] | spyα〈i, j, P 〉] | M

=⇒ τ−−→ (νm̃)(n[done[in k.out k.out n] | spyα〈i, j, P 〉 | M1] | M2)
τ−−→ (νm̃)(n[spyα〈i, j, P 〉 | C[done[out k.out n]]] | M2)
=⇒ D[done[]] • spyα〈i, j, P 〉
≡ D[0] • spyα〈i, j, P 〉 | done[]

≡ N | done[]

Examining the above reductions sequence from Cα[M] • spyα〈i, j, P 〉 we conclude
that

M =⇒ k.enter n−−−−−−−−→ (νm̃)(n[M1 | ◦] | M2) .

As the name done is fresh for M , by Lemma 3.11 we also have that

(νm̃)(n[◦ | 0 | M1] | M2) • spyα〈i, j, P 〉 =⇒ D[0] • spyα〈i, j, P 〉 .

Repeated application of Lemma 3.10(1) gives (νm̃)(n[◦ | 0 | M1] | M2) =⇒ D[0],
and therefore, as ≡ is closed under reduction, there is a M ′, M ′ ≡ D[0], such that
M

k.enter n========⇒ M ′, as desired.

Case α = k.exit n. Observe that

Ck.exit n[M] • spyα〈i, j, P 〉 ≡ (νa)a[in k.out k.done[out a]] | n[spyα〈i, j, P 〉 | M] .

To unleash the ambient done, the ambient a must perform both its capabilities,
and as its name is restricted the ambient a will be empty at the end of reduction.
As P cannot reduce, and M is a system, the ambient n does not migrate during
the reduction. Also observe that the ambient a must consume the prefix in k, thus
requiring the presence of an ambient k at top-level. More precisely, there exist a
system M1 and static contexts D[−] and E [−1,−2] such that:

Ck.exit n[M] • spyα〈i, j, P 〉
= (νa)a[in k.out k.done[out a]] | n[spyα〈i, j, P 〉 | M]

=⇒ (νa)a[in k.out k.done[out a]] | M1 • spyα〈i, j, P 〉
τ−−→ (νa)D[a[out k.done[out a]]] • spyα〈i, j, P 〉
=⇒ (νa)E [done[], a[]] • spyα〈i, j, P 〉 (?)
≡ N | done[]

Journal of the ACM, Vol. V, No. N, September 2005.

58 · M. Merro and F. Zappa Nardelli

Examining the above reductions sequence from Ck.exit n[M] • spyα〈i, j, P 〉 we con-
clude that

M =⇒ k.exit n−−−−−−−→ M1 .

As the name done is fresh for M , by several applications of Lemma 3.11 to the
reduction marked by (?) we have:

(νa)a[in k.out k.0] | M1 • spyα〈i, j, P 〉 =⇒ (νa)E [0, a[]] • spyα〈i, j, P 〉 .

Again, as a is fresh, by several applications of Lemma 3.11, and reducing underneath
(νa), we obtain:

(νa)(0 | M1) • spyα〈i, j, P 〉 =⇒ (νa)E [0,0] • spyα〈i, j, P 〉 .

Summarising,

M1 • spyα〈i, j, P 〉 ≡ (νa)(0 | M1) • spyα〈i, j, P 〉 =⇒ (νa)E [0,0] • spyα〈i, j, P 〉
and, as ≡ is closed under reductions,

M1 =⇒≡ E [0,0] .

So, assuming M ′ = E [0,0], we can conclude.

Case α = k.open n. Observe that

Ck.open n[M] • spyα〈i, j, P 〉 =
k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M | open n.b[out a]])]

where a and b are fresh. To unleash the ambient done, the ambient a must use its
open n capability, and the ambient b must exit from a. Moreover both the empty
ambients a and b will be opened before done is activated. Also observe that the
prefix open n must be consumed, thus requiring the presence of an ambient n inside
the ambient a. More precisely, there exist a system M1, processes Qi, and a static
context D[−] such that:

Ck.open n[M] • spyα〈i, j, P 〉
= k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M | open n.b[out a]])]
=⇒ k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M1 | open n.b[out a]])]
τ−−→ k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]
=⇒ k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q1 | b[out a]])]
τ−−→ k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[] | a[Q1])]
=⇒ k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[] | a[Q2])]
τ−−→ k[spyα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q2])]
=⇒ k[spyα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q3])]
=⇒ k[spyα〈i, j, P 〉 | (νa, b)(done[out k] | 0 | Q3)]
=⇒ D[done[]] • spyα〈i, j, P 〉
≡ D[0] • spyα〈i, j, P 〉 | done[]

= N | done[]

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 59

Examining the above reductions sequence from Ck.open n[M] • spyα〈i, j, P 〉 we con-
clude that

M =⇒ k.open n−−−−−−−→ k[◦ | Q].

As
k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]
=⇒ D[done[]] • spyα〈i, j, P 〉

and the name done is fresh, by several applications of Lemma 3.11 we have

k[spyα〈i, j, P 〉 | (νa, b)(open b.open a.0 | a[Q | b[out a]])]
=⇒ D[0] • spyα〈i, j, P 〉.

By Lemma 3.10, this implies

k[◦ | (νa, b)(open b.open a.0 | a[Q | b[out a]])] =⇒ D[0].

Applying our proof techniques we can easily prove that:

k[◦ | (νa, b)(open b.open a.0 | a[Q | b[out a]])] ∼=s k[◦ | Q].

As ∼=s is closed under reduction, it follows that there is M ′ such that

k[◦ | Q] =⇒ M ′ ∼=s D[0].

So, there is M ′ such that M =⇒ M ′ and N ∼=s M ′ • spyα〈i, j, P 〉, as desired. ¤

C. PROOFS FROM SECTION 4

Proof of Lemma 4.3 Let R be a bisimulation up to context and up to (& ,≈).
Suppose that (M, N) ∈ R and that C[M]

α−−→ M ′′ for some system context C[−].
We prove the result by induction on the structure of C[−].

—C[−] = −. In this case the result follows directly from the definition of bisimula-
tion up to context and up to (& ,≈).

—C[−] = − | H, for some system H. We decompose the transition C[M]
α−−→ M ′′,

distinguishing four cases.
(1) The transition is performed by M , that is, M

α−−→ M ′ and M ′′ = M ′ | H.
As (M, N) ∈ R there is N ′ such that N

α̂==⇒ N ′ and for all processes P there is a
systems context DP [−] and systems M ′′′

P and N ′′′
P such that M ′ • P & DP [M ′′′

P],
N ′•P ≈ DP [N ′′′

P], and M ′′′
P R N ′′′

P . As & is preserved by parallel composition, for
all processes P we have M ′′ •P = (M ′ | H)•P = (M ′ •P) | H & DP [M ′′′

P] | H =

EP [M ′′′
P], where EP [−] = DP [−] | H. Moreover, C[N] = N | H α̂==⇒ N ′ | H = N ′′.

As ≈ is preserved by parallel composition N ′′ • P = (N ′ | H) • P = (N ′ • P) |
H ≈ DP [N ′′′

P] | H = EP [N ′′′
P], as required.

(2) The transition is performed by H, that is, H
α−−→ H ′ and M ′′ = M | H ′.

This case follows easily.
(3) The systems M and H interact because M

enter n−−−−−−→ (νp̃)〈k[P1]〉M2 and
H

amb n−−−−−→ (ν q̃)〈Q1〉H2, obtaining

M | H τ−−→ M ′′ ≡ (νp̃q̃)(n[k[P1] | Q1] | M2 | H2) .

Journal of the ACM, Vol. V, No. N, September 2005.

60 · M. Merro and F. Zappa Nardelli

We distinguish two subcases, because, depending on whether k ∈ p̃ or not, the
system M may move either a free or a private ambient k into the ambient n. We
detail the case k 6∈ p̃, the other being similar. We derive M

k.enter n−−−−−−−−→ M ′ =
(νp̃)(n[k[P1] | ◦] | M2). As (M,N) ∈ R, there is N ′ such that N

k.enter n========⇒ N ′

and for all processes P there is a systems context DP [−] and systems M ′′′
P and

N ′′′
P such that M ′ • P & DP [M ′′′

P], N ′ • P ≈ DP [N ′′′
P], and M ′′′

P R N ′′′
P . As

& is preserved by restriction and parallel composition, it holds that M ′′ • P =
M ′′ ≡ (ν q̃)(M ′ • Q1 | H2) & (ν q̃)(DQ1 [M

′′′
Q1

] | H2) = EQ1 [M
′′′
Q1

], for EQ1 [−] =
(ν q̃)(DQ1 [−] | H2). Moreover, C[N] = N | H =⇒ (ν q̃)(N ′ • Q1 | H2) = N ′′.
As also ≈ is preserved by restriction and parallel composition, we obtain that
N ′′ • P = N ′′ ≈ (ν q̃)(DQ1 [N

′′′
Q1

] | H2) = EQ1 [N
′′′
Q1

], as required.

(4) The systems M and H interact since M
amb n−−−−−→ (νp̃)〈P1〉M2 and H

enter n−−−−−−→
(ν q̃)〈k[Q1]〉H2, obtaining

M | H τ−−→ M ′′ ≡ (νp̃q̃)(n[P1 | k[Q1]] | M2 | H2) .

This case is similar to the previous one.
—C[−] = n[− | R], for some name n and process R. We decompose the transition
C[M]

α−−→ M ′′, distinguishing three cases.
(1) If α 6= τ then the system M does not play any role in the transition, and it
is easy to conclude.
(2) If α = τ but M does not take part in the transition, it is easy to conclude.
(3) If α = τ and M takes part in the transition, then we distinguish four cases.

(a) Suppose that M
k.exit n−−−−−−−→ M ′, with M ′′ ≡ M ′ •R. As (M, N) ∈ R there is

N ′ such that N
k.exit n=======⇒ N ′ and for all processes P there exist a systems

context DP [−] and systems M ′′′
P and N ′′′

P such that M ′ • P & DP [M ′′′
P],

N ′•P ≈ DP [N ′′′
P], and M ′′′

P R N ′′′
P . Thus M ′′•P = M ′′ ≡ M ′•R & DR[M ′′′

R].
Moreover, C[N] =⇒ N ′ •R = N ′′ and N ′′ • P = N ′′ = N ′ •R ≈ DR[N ′′′

R], as
required.
Suppose instead that M

∗.exit n−−−−−−−→ M ′, with M ′′ ≡ M ′ •R. As (M,N) ∈ R
there is N ′ such that n[N | ◦] =⇒ N ′ and for all processes P there exist
a systems context DP [−] and systems M ′′′

P and N ′′′
P such that M ′ • P &

DP [M ′′′
P], N ′ • P ≈ DP [N ′′′

P], and M ′′′ R N ′′′. Thus M ′′ • P = M ′′ ≡
M ′ • R & DR[M ′′′

R]. Moreover, C[N] =⇒ N ′ • R = N ′′ and N ′′ • P = N ′′ =
N ′ •R ≈ DR[N ′′′

R], as required.

(b) M
amb k−−−−−→ (νp̃)〈P1〉M2 and R

open k−−−−−−→ R1, with M ′′ = n[(νp̃)(P1 | M2) |
R1]. This implies M

n.open k−−−−−−−→ n[(νp̃)(P1 | M2) | ◦] = M ′. As (M, N) ∈ R
there is N ′ such that N

n.open k
=======⇒ N ′ and for all processes P there exist a

system contextDP [−] and systems M ′′′
P and N ′′′

P such that M ′•P & DP [M ′′′
P],

N ′ • P ≈ D[N ′′′
P], and M ′′′ R N ′′′. Thus M ′′ • P = M ′′ ≡ M ′ • R1 &

DR1 [M
′′′
R1

]. Moreover, C[N] =⇒ N ′ •R1 = N ′′ and N ′′ •P = N ′′ = N ′ •R1 ≈
DR1 [N

′′′
R1

], as required.

(c) M
enter m−−−−−−−→ (νp̃)〈k[P1]〉M2 and R

amb m−−−−−→ (ν q̃)〈R1〉R2, with

M ′′ ≡ n[(νp̃q̃)(m[k[P1] | R1] | M2 | R2)] .

Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 61

This case is similar to case C[−] = − | H, subcase 3.
(d) M

amb m−−−−−→ (νp̃)〈P1〉M2 and R
enter m−−−−−−−→ (ν q̃)〈k[R1]〉R2, with

M ′′ ≡ n[(νp̃q̃)(m[P1 | k[R1]] | M2 | R2)] .

This case is similar to case C[−] = − | H, subcase 4.
—C[−] = (νn)−. We do not detail this case, which follows easily. ¤

D. PROOFS FROM SECTION 5

Proof of Lemma 5.4 Let R = {(P ′, Q′) : P ′ ≡ (νn)P, Q′ ≡ (νn)Q, P ∼=e
p

Q}∪ ∼=e
p. We show that R ⊆ ∼=e

p. The relation R is reduction closed because
both ∼=e

p and ≡ are, and restriction does not influence internal reductions. R is also
barb preserving because ∼=e

p and ≡ are. To prove that R is closed under ambient
nesting, we have to show that if P ′ R Q′, with P ′ ≡ (νn)P and Q′ ≡ (νn)Q,
then k[P ′] R k[Q′]. But k[P ′] ≡ k[(νn)P] ≡ (νn)k[P] and k[Q′] ≡ k[(νn)Q] ≡
(νn)k[Q]. Moreover, by definition of ∼=e

p, k[P] ∼=e
p k[Q]. The result follows from

the construction of R. The argument for parallel composition is similar. ¤
Proof of Lemma 5.5 To prove the inclusion ∼=e

p ∩ (M×M) ⊆ ∼=s, observe
that the relation ∼=e

p ∩(M×M) is: reduction closed because ∼=e
p is reduction closed

and systems always reduce in systems; barb preserving because ∼=e
p preserves barbs;

closed under system contexts because ∼=e
p is preserved by parallel composition, am-

bient, and, by Lemma 5.4, by restriction. ¤
Proof of Theorem 5.2 – omitted cases We prove that the relation ∼=e

p is
preserved by prefixing. We have to prove that if P ∼=e

p Q, then C.P ∼=e
p C.Q. Rather

than working directly with ∼=e
p, we use Theorem 5.3 and we prove that C.P S C.Q.

For that, we must show that for all n,R, it holds that n[C.P | R] ≈ n[C.Q | R].
We perform a case analysis on C.

—C = in o. We show that the relation

R = {(n[in o.P | R], n[in o.Q | R]) : P ∼=e
p Q, n, R arbitrary}= ∪ ≈

is a bisimulation up to context and up to structural congruence. Suppose that
n[in o.P | R]

α−−→ M . We perform a case analysis on α.
— α = τ . There are two sub-cases.
First case. M ≡ n[in o.P | R′] with R

τ−−→ R′. It follows that n[in o.Q | R]
τ−−→

N , where N ≡ n[in o.Q | R′], and M ≡R≡ N .
Second case. M ≡ (ν r̃)(r[R1] | n[in o.P | R2]), where R ≡ (ν r̃)(r[out n.R1] |
R2). This implies n[in o.Q | R]

τ−−→ N , where N ≡ (ν r̃)(r[R1] | n[in o.Q | R2]).
Now, we can factor out the system context C[−] = (ν r̃)(r[R1] | −) and the
construction of R guarantees that we are still in R up to context and up to ≡.
— α = m.open n. Then M ≡ m[◦ | in o.P | R]. This implies n[in o.Q |
R]

m.open n−−−−−−−−→ N , where N ≡ m[◦ | in o.Q | R]. Then, for all processes R′ we
have M •R′ ≡R≡ N •R′.
— α = n.enter k. Then M ≡ n[in o.P | R | k[◦]]. This implies n[in o.Q |
R]

n.enter k−−−−−−−−→ N , where N ≡ n[in o.Q | R | k[◦]]. Then for all processes R′ we
have M •R′ ≡R≡ N •R′.

Journal of the ACM, Vol. V, No. N, September 2005.

62 · M. Merro and F. Zappa Nardelli

— α = n.exit k. Then M ≡ n[in o.P | R′] | k[◦] and R has unleashed the

capability out k turning into R′. This implies n[in o.Q | R]
n.exit k−−−−−−−→ N , where

N ≡ n[in o.Q | R′] | k[◦]. Then, factoring out the context C[−] = − | k[S],
for all processes S, the construction of R guarantees that we are still in R up to
context and up to ≡.
— α = n.enter o. There are two sub-cases.
First case. M ≡ o[n[in o.P | R′] | ◦] and R has unleashed the capability
in o turning into R′. This implies n[in o.Q | R]

n.enter o−−−−−−−−→ N , where N ≡
o[n[in o.Q | R′] | ◦]. Then, factoring out the context C[−] = o[− | S], for all
processes S, the construction of R guarantees that we are still in R up to context
and up to ≡.
Second case. M ≡ o[n[P | R] | ◦]. This implies n[in o.Q | R]

n.enter o−−−−−−−−→ N ,
where N ≡ o[n[Q | R] | ◦]. As P ∼=e

p Q it holds that n[P | R] ∼=e
p n[Q | R]. By

Theorem 5.3 we get M • S ≡≈≡ N • S and hence M • S R N • S.
— α = n.enter k, k 6= o. It is similar to the first part of the previous case.

—C = out o. We show that the relation

R = {(n[out o.P | R], n[out o.Q | R]) : P ∼=e
p Q}= ∪ ≈

is a bisimulation up to context and up to structural congruence. The only case
different from the above is when the process out o.P exercises the capability
out o. Suppose n[out o.P | R]

n.exit o−−−−−−−→ M ≡ n[P | R] | o[◦]. This implies
n[out o.Q | R]

n.exit o−−−−−−−→ N ≡ n[Q | R] | o[◦]. As P ∼=e
p Q it holds that

n[P | R] ∼=e
p n[Q | R]. By Lemma 5.5 and Theorem 3.15 it follows n[P | R] ≈

n[Q | R]. As ≈ is preserved by system contexts, we have M • S ≡≈≡ N • S. As
a consequence, M • S R N • S.

—C = open o. We show that the relation

R = {(n[open o.P | R], n[open o.Q | R]) : P ∼=e
p Q}= ∪ ≈

is a bisimulation up to context and up to structural congruence. The only case
different from the above is when the process open o.P exercises the capability
open o. Suppose n[open o.P | R]

τ−−→ n[P | R′]. This implies n[open o.Q |
R]

τ−−→ n[Q | R′]. As P ∼=e
p Q it holds that n[P | R′] ∼=e

p n[Q | R′]. By
Lemma 5.5 and Theorem 3.15 it follows n[P | R′] ≈ n[Q | R′]. As a consequence,
n[P | R′] R n[Q | R′]. ¤

ACKNOWLEDGMENTS

We would like to thank Vladimiro Sassone, who spotted a problem in the proof of
Theorem 4.5 in an early draft of the paper, James Leifer, for his suggestions for
improving the paper, and the anonymous referees, for their accurate reading and
their constructive comments. The second author is grateful to the Foundations of
Computing Group of University of Sussex for the kind hospitality and support, and
to the Computer Laboratory of the University of Cambridge.
Journal of the ACM, Vol. V, No. N, September 2005.

Behavioural Theory for Mobile Ambients · 63

REFERENCES

Amadio, R., Castellani, I., and Sangiorgi, D. 1998. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science 195, 291–324.

Arun-Kumar, S. and Hennessy, M. 1992. An efficiency preorder for processes. Acta Informat-
ica 29, 737–760.

Boudol, G. 1992. Asynchrony and the π-calculus. Tech. Rep. RR-1702, INRIA-Sophia Antipolis.

Bugliesi, M., Crafa, S., Merro, M., and Sassone, V. 2005. Communication and mobility
control in boxed ambients. Information and Computation. In press. An extended abstract
appeared in Proc. FSTTCS’02, LNCS, Springer Verlag.

Cardelli, L. 1999. Wide area computation. Lecture Notes in Computer Science 1644, 10–24.

Cardelli, L. and Gordon, A. 1996. A commitment relation for the ambient calculus. Unpub-
lished notes.

Cardelli, L. and Gordon, A. 2000. Mobile ambients. Theoretical Computer Science 240, 1,
177–213. An extended abstract appeared in Proc. of FoSSaCS ’98.

Castagna, G., Vitek, J., and Zappa Nardelli, F. 2005. The seal calculus. Information and
Computation 201:1, 1–54.

De Nicola, R. and Hennessy, M. 1984. Testing equivalences for processes. Theoretical Computer
Science 34, 83–133.

Ferrari, G., Montanari, U., and Tuosto, E. 2001. A LTS semantics of ambients via graph
synchronization with mobility. In Proc. ICTCS. LNCS, vol. 2202. Springer Verlag.

Fournet, C. and Gonthier, G. 1998. A hierarchy of equivalences for asynchronous calculi. In
Proc. 25th ICALP. Springer Verlag, 844–855.

Godskesen, J., Hildebrandt, T., and Sassone, V. 2002. A calculus of mobile resources. In
Proc. 10th CONCUR ’02. LNCS, vol. 2421. Springer Verlag.

Gordon, A. D. and Cardelli, L. 2002. Equational properties of mobile ambients. Journal of
Mathematical Structures in Computer Science 12, 1–38. An extended abstract appeared in
Proc. FoSSaCs ’99.

Hennessy, M., Merro, M., and Rathke, J. 2004. Towards a behavioural theory of access and
mobility control in distributed systems. Theoretical Computer Science 322, 615–669.

Hennessy, M., Rathke, J., and Yoshida, N. 2003. Safedpi: A language for controlling mobile
code. Computer Science Report 2003:02, University of Sussex. An extended abstract appeared
in the Proc. FOSSACS’04, volume 2987, Lecture Notes in Computer Science. Springer-Verlag
2004.

Hennessy, M. and Riely, J. 1998. A typed language for distributed mobile processes. In Proc.
25th POPL. ACM Press.

Hirschkoff, D., Lozes, E., and Sangiorgi, D. 2002. Separability, expressiveness, and decid-
ability in the ambient logic. In Proc. LICS. IEEE Computer Society Press, 423–432.

Honda, K. and Tokoro, M. 1991. An Object Calculus for Asynchronous Communications. In
Proc. ECOOP ’91. LNCS, vol. 512. Springer Verlag.

Honda, K. and Yoshida, N. 1995. On reduction-based process semantics. Theoretical Computer
Science 152, 2, 437–486.

Howe, D. J. 1996. Proving congruence of bisimulation in functional programming languages.
Information and Computation 124, 2, 103–112.

Jeffrey, A. and Rathke, J. 2005. Contextual equivalence for higher-order π-calculus revisited.
Logical Methods in Computer Science 1, 1-4.

Jensen, O. H. and Milner, R. 2004. Bigraphs and mobile processes (revised). Tech. Rep. 580,
LFCS, Dept. of Comp. Sci., Edinburgh Univ. Feb. An extended abstract appeared in Conference
Record of 30th Symposium on Principles of Programming Languages, ACM Press, 2003.

Leifer, J. J. and Milner, R. 2000. Deriving bisimulation congruences for reactive systems. In
Proc. CONCUR 2000. LNCS, vol. 1877. Springer-Verlag, 243–258.

Levi, F. and Sangiorgi, D. 2000. Controlling interference in ambients. In Proc. 27th POPL.
ACM Press.

Journal of the ACM, Vol. V, No. N, September 2005.

64 · M. Merro and F. Zappa Nardelli

Levi, F. and Sangiorgi, D. 2003. Mobile safe ambients. ACM Transactions on Programming
Languages and Systems 25, 1 (Jan.), 1–69.

Merro, M. and Hennessy, M. 2002. Bisimulation congruences in safe ambients. In Proc. 29th
POPL ’02. ACM Press.

Merro, M. and Hennessy, M. in press, 2005. A bisimulation-based semantic theory for safe
ambients. ACM Transactions on Programming Languages and Systems.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes, (Parts I and
II). Information and Computation 100, 1–77.

Milner, R. and Sangiorgi, D. 1992. Barbed bisimulation. In Proc. 19th ICALP. LNCS, vol.
623. Springer Verlag, 685–695.

Park, D. 1981. Concurrency on automata and infinite sequences. In Conf. on Theoretical Com-
puter Science, P. Deussen, Ed. LNCS, vol. 104. Springer Verlag.

Sangiorgi, D. 1992. Expressing mobility in process algebras: First-order and higher-order
paradigms. Ph.D. thesis, Dept. of Comp. Sci., Edinburgh University.

Sangiorgi, D. 1996a. Bisimulation for Higher-Order Process Calculi. Information and Compu-
tation 131, 2, 141–178.

Sangiorgi, D. 1996b. Locality and non-interleaving semantics in calculi for mobile processes.
Theoretical Computer Science 155, 39–83.

Sangiorgi, D. 1998. On the bisimulation proof method. Journal of Mathematical Structures in
Computer Science 8, 447–479.

Sangiorgi, D. 2001. Extensionality and intensionality of the ambient logic. In Proc. 28th POPL.
ACM Press.

Sangiorgi, D. and Milner, R. 1992. The problem of “Weak Bisimulation up to”. In Proc.
CONCUR ’92. LNCS, vol. 630. Springer Verlag, 32–46.

Sangiorgi, D. and Walker, D. 2001a. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press.

Sangiorgi, D. and Walker, D. 2001b. Some results on barbed equivalences in pi-calculus. In
Proc. CONCUR ’01. LNCS, vol. 2154. Springer Verlag.

Schmitt, A. and Stefani, J. 2004. The kell calculus: A family of higher-order distributed process
calculi. In LNCS. Springer-Verlag. Workshop of Global Computing.

Sewell, P. 2002. From rewrite rules to bisimulation congruences. TCS 274, 1–2, 183–230.

T. Hildebrandt, J.C. Godskesen, M. B. 2004. Bisimulation congruences for homer. Technical
Report TR-2004-52, ITU.

Unyapoth, A. and Sewell, P. 2001. Nomadic Pict: Correct communication infrastructures for
mobile computation. In Proc. 28th POPL. ACM Press.

Vigliotti, M. G. September 1999. Transition systems for the ambient calculus. Master thesis,
Imperial College of Science, Technology and Medicine (University of London).

Vitek, J. and Castagna, G. 1999. Seal: A framework for secure mobile computations. In Internet
Programming Languages. Number 1686 in LNCS. Springer Verlag, 47–77.

Journal of the ACM, Vol. V, No. N, September 2005.

