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Abstract

We apply powerful proof-techniques of concurrency theory to study the ob-
servational theory of Thielecke’s CPS-calculus, a distillation of the target lan-
guage of Continuation-Passing Style transforms. We define a labelled transition
system from which we derive a (weak) labelled bisimilarity that completely char-
acterises Morris’ context-equivalence. We prove a context lemma showing that
Morris’ context-equivalence coincides with a simpler context-equivalence closed
under a smaller class of contexts. Then we profit of the determinism of the
CPS-calculus to give a simpler labelled characterisation of Morris’ equivalence,
in the style of Abramsky’s applicative bisimilarity. We enhance our bisimula-
tion proof-methods with up to bisimilarity and up to context proof techniques.
We use our bisimulation proof techniques to investigate a few algebraic prop-
erties on diverging terms that cannot be proved using the original axiomatic
semantics of the CPS-calculus.

1 Introduction

Continuations represent a fundamental concept in the semantics of programming
languages. In functional languages, a continuation is a parameter of a function
that represents the “rest of the computation” [33, 34]. Functions taking continua-
tions as arguments are called functions in Continuation-Passing Style (briefly CPS
functions), and have a special syntactic form: they terminate their computation by
passing the result to the continuation.

A fairly vast literature on functional programming studies transformations of
functions into CPS functions. These transformations are called CPS transforms.
CPS transforms, as syntactic technique for introducing continuations, were first
introduced by Fisher [5] and studied in detail by Plotkin in his seminal paper on
call-by-name and call-by-value λ-calculus [25].

The target language of CPS transforms is usually a simple subset of the λ-calculus
that admits a very “imperative” reading in terms of jumping [31]. Thielecke [37] pro-
posed a target language, called CPS-calculus, similar to the intermediate language

∗An extended abstract appeared in the Proceedings of the 22nd International Conference on the
Mathematical Foundations of Program Semantics, May 2006, Elsevier Electronic Notes in Theoret-
ical Computer Science 158.
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of Appel’s compiler [2], designed to bring out the jumping, imperative nature of the
continuation-passing. Thielecke showed that the more traditional CPS transforms
factorise through his calculus.

The CPS-calculus is a small deterministic name-passing calculus. The calculus
comes equipped with an axiomatic semantics defined as the congruence induced
by four simple axioms. Merro and Sangiorgi [15] proved the soundness of those
axioms with respect to Milner and Sangiorgi’s barbed congruence [19], a standard
contextually-defined program equality. Thielecke provided also a categorical account
of the structure inherent in first-class continuations building a term model, from the
syntax of the CPS-calculus, as an instance of the categorical framework. A more
recent account of the state of the art of the axiomatic and categorical semantics in
a simply-typed call-by-value setting can be found in [6].

The CPS-calculus consists of only two syntactic constructs and one operational
rule; this is enough to embody a special programming paradigm. The problem with
such calculi of minimal expressiveness is the difficulty in developing an handy be-
havioural theory. In the current paper, we apply powerful proof-techniques of con-
currency theory to develop an observational theory of the recursive CPS-calculus
(the results can be adapted to other variants of the calculus). More precisely, we are
interested in establishing when two CPS-terms have the same observable behaviour,
that is, they are indistinguishable in any context. Behavioural equivalences are fun-
damental for justifying program transformations performed either by programmers,
during system development, or by the optimising phases of compilers. While several
notions of behavioural equivalences can be found in the literature, most of them
share two key properties:

• two terms are equivalent only if they offer identical interactions to any envi-
ronment, that is, they expose the same observables;

• the equivalence is preserved by some key constructs of the calculus, as a conse-
quence, proving the equivalence of two large terms can be reduced to proving
the equivalence of their components.

A standard notion of behavioural equality is Morris’ context-equivalence [20]. The
definition of Morris’ equivalence is simple and intuitive; in practise, however, it is dif-
ficult to use as the quantification on all contexts is a heavy proof obligation. Simpler
proof techniques are based on labelled bisimilarities [21, 17], which are co-inductive
relations that characterise the behaviour of processes using a labelled transition sys-
tem (LTS).

Contribution

• In Section 3 we define a higher-order LTS for the CPS-calculus which captures
external jumps (i.e. jumps to continuations placed within the environment).
The LTS is higher-order as labels may contain CPS-terms. An intuitive re-
duction semantics for the CPS-calculus was already given in [15], in terms of

2



internal jumps. If on one hand reduction semantics are easier to grasp, on
the other hand LTS-based semantics are better suited for defining reasoning
techniques. We check the correctness of our LTS-based semantics by proving
its consistency with respect to the reduction semantics of [15].

• In Section 4.1, we use our LTS to define a (weak) labelled bisimilarity. Our
bisimilarity is a congruence, and completely characterises Morris’ context-
equivalence. This result allows us to use the simpler definition of bisimilarity
to verify whether or not two terms are Morris equivalent. Notice that, in gen-
eral, congruence proofs for higher-order bisimulations are hard, in particular
when the syntax of the calculus is very rigid. Our proof is relatively simple as
it relies on up to bisimilarity proof-techniques [29, 30]. As an easy corollary,
we derive a context lemma showing that Morris’ context-equivalence coincides
with a simpler contextually-based equivalence closed under a smaller class of
contexts.

• In Section 4.2, we provide a simpler labelled characterisation of Morris’ equi-
valence in the style of Abramsky’s applicative bisimilarity [1]. The character-
isation proof is quite simple as we profit of the determinism of the calculus
to show that applicative bisimilarity and bisimilarity coincide. When defin-
ing a behavioural equality for a confluent/deterministic calculus as the CPS-
calculus, applicative bisimilarity is the natural choice. On the other hand,
the definition of a “standard” bisimilarity allows us to derive easier proofs for
the characterisation theorem and the context lemma. Had we worked directly
with the applicative bisimilarity, the proofs would have been much harder.

• In Section 4.3, we enhance our proof methods by providing up to context proof
techniques [28, 30] for both bisimilarities. Up to context proof techniques are
very effective to reduce the size of the candidate bisimulation. In particu-
lar, these proof techniques are very useful when working with higher-order
bisimulations to factor out the universally quantified terms provided by the
environment.

• In Section 5 we investigate on divergent CPS-terms. We use our bisimulation-
based proof techniques to prove a number of algebraic laws that cannot be
derived using Thielecke’s axiomatic semantics.

2 The CPS-calculus

2.1 Syntax and reduction semantics

The CPS-calculus is very simple and low-level: only variables can be passed as
arguments, and applications are like jumps, with variables as argument. The terms
of the CPS-calculus are given by the following grammar:

M,N ::= a〈b〉
∣∣ M{a〈b〉 ⇐ N}
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where lowercase letters a, b, c, . . . range over variables (names) and uppercase letter
L,M,N, . . . range over terms. The intended meaning is that a〈b〉 is a jump to the
continuation a with actual parameter b, while M{a〈b〉 ⇐ N} binds the continuation
with body N and formal parameter b to a in M .

We study the monadic and recursive variant of the calculus, in that jumps have
a single argument, and in a term M{a〈b〉 ⇐ N} the sub-term N may refer to
itself under a. More precisely, in a term M{a〈b〉 ⇐ N} the scope of variable a
comprehends both M and N , while that of b extends to N only.

Remark 2.1 The theory developed in this article can be easily extended to the
polyadic variant of the CPS-calculus, where a jump may contain several parame-
ters.

The set of free variables fv(M) of a CPS term M is defined as follows.

• fv(a〈b〉) def= {a, b}

• fv(M{a〈b〉 ⇐ N}) def= (fv(M) \ {a}) ∪ (fv(N) \ {a, b})

We write fv(M,N) as an abbreviation for fv(M)∪ fv(N). In a jump a〈b〉 we say that
a is in subject and b in object position. We write M [a/b] for the capture avoiding
substitution of variable of a for each free occurrence of variable b in M . So, alpha-
conversion can be formally defined by the following two equations

M{a〈b〉 ⇐ N} = M{a〈c〉 ⇐ N [c/b]} for c 6∈ fv(N)
M{a〈b〉 ⇐ N} = M [c/a]{c〈b〉 ⇐ N [c/a]} for c 6∈ fv(M) ∪ fv(N) .

We will identify terms up to alpha-conversion. It is easy to see that every CPS-term
is in the form

a〈b〉{a1〈b1〉⇐M1} . . . {an〈bn〉⇐Mn}

for some n ≥ 0. We adopt the reduction semantics proposed in [15]; a slight variant
of the operational semantics given by Thielecke. Thus, the behaviour of CPS-terms
is modelled by means of just one (global) reduction rule:

ai〈b〉{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn}
−→

Mi[b/bi]{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn}

with 1≤i≤n and aj 6∈ fv(Mi)∪{ai}, for 1≤j<i. We denote with −→∗ the reflexive
and transitive closure of −→.

2.2 Behavioural semantics

In operational semantics two terms are deemed equivalent if they have the same
observable behaviour in all contexts. In the CPS-calculus the notion of observability

4



is represented by the “external” jump that a term can perform to interact with the
context. We define an observability predicate ↓a, for each variable a, which detects
the possibility of a term to interact with the environment via a. For instance, in
a jump of the form a〈b〉, we can observe (the occurrence of a jump to) a, whereas
the argument b does not play any direct role. More generally, a free variable in the
leftmost position can be observed.

Definition 2.2 (Observability/convergence) Let M be a term of the CPS-cal-
culus and a be a name, we say that M converges to a, written M ↓a, if there are
names b, a1, b1, . . . , an, bn, for some integer n ≥ 0 with a 6= ai, for all 1 ≤ i ≤ n,
such that M = a〈b〉{a1〈b1〉 ⇐ M1} . . . {an〈bn〉 ⇐ Mn}. We say that M (weakly)
converges to a, written M ⇓a, if there exists a CPS-term N such that M −→∗ N ↓a.

The definition of divergence is as expected. Formally,

Definition 2.3 (Divergence) A CPS-term M diverges, written M ⇑, if whenever
there is a term M ′ such that M −→∗ M ′ then there is also a term M ′′ such that
M ′ −→ M ′′.

Obviously, since the calculus is deterministic, a term either diverges or (weakly)
converges to some name a.

In order to define contextually-based equivalences we need to specify what a
context is. A (monadic) context C[·] is a CPS-term with a hole, denoted by [·].
CPS-contexts are generated by the following grammar:

C[·] ::= [·]
∣∣ C[·]{a〈x〉 ⇐ M}

∣∣ M{a〈x〉 ⇐ C[·]} .

A static context is a context that can be generated only applying the first two
productions of the grammar above.

Everything is in place to define Morris’ context-equivalences for the CPS-calculus.

Definition 2.4 (Observational equalities) Let M and N be two CPS-terms. We
say that M and N are observationally equivalent, written M ' N , if for all static
contexts C[·] and variables a, it holds that C[M ] ⇓a iff C[N ] ⇓a. M and N are
observationally congruent, written M ∼= N , if for all contexts C[·] and variables a,
it holds that C[M ] ⇓a iff C[N ] ⇓a.

The intuition is that two terms are observationally indistinguishable if no amount
of programming can tell them apart; obviously, ∼=⊆'.

Barbed equalities are branching-time contextually-based equivalences introduced
by Milner and Sangiorgi in the realm of concurrent processes [19]. Their definitions
can be easily adapted to the CPS-calculus.

Definition 2.5 (Barbed equalities) A symmetric relation S on CPS-terms is a
barbed bisimulation if M S N implies:

1. If M −→ M ′ then there exists N ′ such that N −→∗ N ′ and M ′ S N ′.

5



2. If M ↓a, for some a, then N ⇓a.

Two terms M and N are barbed bisimilar, written M ≈· N , if M S N for some
barbed bisimulation S. Two terms M and N are barbed equivalent if for each static
context C[·], it holds that C[M ] ≈· C[N ]; they are barbed congruent if for each
context C[·], it holds that C[M ] ≈· C[N ].

However, as the CPS-calculus is deterministic (and hence confluent), it is well-
known that observational congruence (respectively, observational equivalence) coin-
cides with barbed congruence (respectively, barbed equivalence) [17].

2.3 Axiomatic semantics

The original semantics of the CPS-calculus is an axiomatic semantics [37] defined
as the congruence induced by the following four axioms: 1

(DISTR) L{a〈b〉⇐M}{c〈d〉⇐N} ≡ L{c〈d〉⇐N}{a〈b〉⇐M{c〈d〉⇐N}}
where a 6= c and a, b 6∈ fv(N)

(GC) a〈b〉{c〈d〉⇐N} ≡ a〈b〉 where c 6∈ fv(a〈b〉)
(JMP) a〈b〉{a〈c〉⇐N} ≡ N [b/c]{a〈c〉⇐N}
(ETA) M{a〈b〉⇐c〈b〉} ≡ M [c/a] where a 6= c.

The (JMP) axiom is in some sense what drives the computation. In fact, our re-
duction rule can be seen as a “contextual” variant of the (JMP) axiom. The axiom
(GC) allows us to garbage collect unreachable continuations. The axiom (DISTR)
serves to bring the components of a (jumping) redex into contiguous positions. In
this respect, it is similar to the notion of structural congruence used when giving
the operational semantics in process calculi [18]. We write CPS ` M ≡ N when the
axiomatic semantics can be used to derive the equality between M and N .

The axiomatic semantics is sound with respect to barbed congruence, and hence
also with respect to observational congruence. Formally,

Theorem 2.6 (Merro and Sangiorgi [15]) Let M and N be two CPS-terms.
Then,

CPS ` M ≡ N implies M ∼= N .

Notice that the axiomatic semantics is meant to be the least equality on CPS-terms
that one would wish to impose, while observational equivalence is arguably the
greatest such notion one could consider.

3 A Labelled Transition System

In Table 1 we provide a labelled transition system (LTS) for the CPS-calculus. Tran-
sitions are of the form M

α−−→ M ′ where α can be either τ , to model internal jumps,
1Most of these axioms comes from [2].
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Table 1 Labelled Transition System for the CPS-calculus

(Jmp)
x 6∈ fv(a〈b〉)

a〈b〉
a〈x〉M
−−−−−−→ M [b/x]{a〈x〉 ⇐ M}

(Tau) M
a〈x〉N
−−−−−→ M ′

M{a〈x〉 ⇐ N} τ−−→ M ′

(Cxt Tau)
M

τ−−→ M ′

M{a〈x〉 ⇐ N} τ−−→ M ′{a〈x〉 ⇐ N}

(Cxt Jmp)
M

a〈x〉N
−−−−−→ M ′{a〈x〉 ⇐ N} a 6= b b 6∈ fv(N)

M{b〈y〉 ⇐ O}
a〈x〉N
−−−−−→ M ′{b〈y〉 ⇐ O}{a〈x〉 ⇐ N}

or a〈x〉N , for some variable a and CPS-term N , to model external jumps. In partic-
ular, the observable action a〈x〉N models the capability to perform an external jump
a〈b〉, for some parameter b. Notice that our actions do not mention the argument of
the jump (in this case b), although such argument has its influence on the derivative
M ′. Intuitively, in a transition

M
a〈x〉N
−−−−−→ M ′

the action a〈x〉N codifies the discriminating context [·]{a〈x〉 ⇐ N} with which M
can interact. This context becomes part of the derivative of the transition. The
main inference rules are (Jmp) and (Tau), modelling external and internal jumps,
respectively. Rules (Cxt Jmp) and (Cxt Tau) are their contextual counterparts.

Our LTS is necessarily higher-order to properly model the interaction with the
environment while preserving the transition closure of the calculus. In the sequel,
we write

τ−−→
∗

to denote the reflexive and transitive closure of
τ−−→.

Proposition 3.1 (Transition closure) Let M be a CPS-term. If M
α−−→ M ′ then

M ′ is a CPS-term.
Proof By a simple transition induction. �

As said in the introduction the CPS-calculus is deterministic. Formally,

Proposition 3.2 (Determinism) Let M be a CPS-term. Then, only one of the
following two cases applies.

1. M may perform at most one transition of the form M
τ−−→ M ′, for some M ′.

2. Fixed an arbitrary term L, the term M may perform at most one transition of

the form M
a〈x〉L
−−−−−→ M ′, for some variable a and term M ′.

Proof It follows from the definition of the LTS and because every CPS-term is
in the form

a〈b〉{a1〈b1〉 ⇐ M1} . . . {an〈bn〉 ⇐ Mn} .
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In the next result we prove the correctness of our LTS-based semantics showing
that it coincides with the reduction semantics given in Section 2.1.

Theorem 3.3 (Harmony Theorem) Let M and N be two CPS-terms. Then,

1. M ↓a iff M
a〈x〉L
−−−−−→ M ′{a〈x〉 ⇐ L} for any CPS-term L.

2. M −→ N iff M
τ−−→ N .

Proof See the Appendix. �

The following result says that the operational semantics is preserved under
(name) substitution.

Proposition 3.4

1. If M
τ−−→ M ′ then Mσ

τ−−→ M ′σ, for any capture avoiding substitution σ.

2. If M ⇓a and a 6= x then M [b/x] ⇓a.
Proof By Theorem 3.3(2) we can rewrite the first statement as: If M −→ M ′

then Mσ −→ M ′σ, for any capture avoiding substitution σ. By definition of −→, we
have

M = ai〈b〉{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn}

and
M ′ = Mi[b/bi]{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn} .

Notice that, for 1 ≤ i ≤ n, both ai and bi are bound in M . Since σ is a capture
avoiding substitution we can assume that, for 1≤i≤n, both ai and bi do not appear
in σ. As a consequence,

Mσ = ai〈bσ〉{a1〈b1〉⇐M1σ} . . . {ai〈bi〉⇐Miσ} . . . {an〈bn〉⇐Mnσ}

and

M ′σ = (Mi[b/bi]σ){a1〈b1〉⇐M1σ} . . . {ai〈bi〉⇐Miσ} . . . {an〈bn〉⇐Mnσ}
= (Miσ[bσ/bi]){a1〈b1〉⇐M1σ} . . . {ai〈bi〉⇐Miσ} . . . {an〈bn〉⇐Mnσ}

with Mσ −→ M ′σ.
The second statement follows from the first one and Theorem 3.3(2). In fact,

if M ⇓a then, by Theorem 3.3(2), there is M ′ such that M
τ−−→

∗
M ′ ↓a. As name

substitution does not affect silent actions it follows that M [b/x]
τ−−→

∗
M ′[b/x] ↓a. �
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4 Bisimulation proof methods

In this section, we propose two labelled characterisations of Morris’ context-equiva-
lence. We then prove a context lemma showing that static contexts have the same
discriminating power as full contexts. As a consequence, observational congruence
and observational equivalence coincide. Finally, we enhance our proof methods with
up to context proof techniques.

4.1 A labelled characterisation of Morris’ context-equivalence

Starting from the labelled transition system we can define our notion of bisimulation
for CPS-terms. We write =⇒ to denote the reflexive and transitive closure of

τ−−→.
We write α==⇒ for =⇒ α−−→, and α̂==⇒ for α==⇒ if α 6= τ , and for =⇒ if α = τ .

Definition 4.1 (Bisimulation) A symmetric relation S on CPS-terms is a bisim-
ulation if whenever M S N and M

α−−→ M ′ there exists a CPS-term N ′ such that
N

α̂==⇒ N ′ and M ′ S N ′. Two CPS-terms M and N are bisimilar, written M ≈ N
if there is some bisimulation S such that M S N .

Our bisimulation is defined in a delay style [38, 27], as weak actions always end with
an observable label. It is easy to see that ≈ is an equivalence relation.

In order to show that our bisimilarity characterises the observational congruence
we first prove the completeness of the bisimilarity with respect to the observational
equivalence (and not the observational congruence). Notice that, in general, a result
of this kind would not hold in concurrency theory. However, in our case, Lemma 4.2,
on the insensitiveness of behavioural equalities to τ -actions, allows us to easily prove
the completeness result.

Lemma 4.2 (Insensitiveness to τ-actions) Let M be a CPS-term. If M
τ−−→

M ′ then M ∼= M ′.
Proof By Theorem 3.3(2) the relations −→ and

τ−−→ coincide. As a consequence,
there are an integer n and variables b, ai, bi,Mi, for 1≤i≤n, such that

M = ai〈b〉{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn}

M ′ = Mi[b/bi]{a1〈b1〉⇐M1} . . . {ai〈bi〉⇐Mi} . . . {an〈bn〉⇐Mn} .

Now, we can prove that CPS ` M ≡ M ′, using the axioms of the previous section. In
particular, M ′ can be derived from M by applying i−1 times the axiom (DISTR) to
shift the continuation {ai〈xi〉 ⇐ Mi} at the extreme left, once axiom (JMP) to reduce
along variable ai, and i−1 times the axiom (DISTR) to put back the {ai〈bi〉 ⇐ Mi}
at its original place. By Theorem 2.6 we obtain M ∼= M ′. �
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Lemma 4.3 (Completeness of ≈ w.r.t. ') Let M and N be two CPS-terms.
Then M ' N implies M ≈ N .
Proof We prove that the relation ' is a bisimulation. Let M ' N .

• Suppose that M
τ−−→ M ′. By Lemma 4.2 we have M ∼= M ′ and hence also

M ' M ′. Now, let us choose as matching transition N =⇒ N . By transitivity
of ' it follows that M ′ ' N .

• Suppose that M
a〈x〉L
−−−−−→ M ′{a〈x〉 ⇐ L}. By Theorem 3.3(1) we have M ↓a.

As M ' N we also have N ⇓a. By several applications of Theorem 3.3(2)

and one application of Theorem 3.3(1) we have N
a〈x〉L

=====⇒ N ′{a〈x〉 ⇐ L}. As
M ' N and ' is preserved by all static contexts, we also have M{a〈x〉 ⇐ L} '

N{a〈x〉 ⇐ L}. As M
a〈x〉L
−−−−−→ M ′{a〈x〉 ⇐ L} and N

a〈x〉L
=====⇒ N ′{a〈x〉 ⇐ L},

by several applications of rules (Tau) and (Cxt Tau) we have M{a〈x〉 ⇐ L} τ−−→
M ′{a〈x〉 ⇐ L} and N{a〈x〉 ⇐ L} =⇒ N ′{a〈x〉 ⇐ L}. By applying Lemma 4.2
on the two derivations we obtain M ′{a〈x〉 ⇐ L} ' N ′{a〈x〉 ⇐ L}.

�

As to the proof of the soundness, the main difficulty resides in proving that
≈ is preserved by all contexts. A direct proof of that is far from trivial, due to
the rigid syntax of the calculus. To this end we define an up to weak bisimilarity
proof technique. Up-to proof techniques allow us to prove a bisimulation result
using a concise relation that in general is not itself a bisimulation, but contained
in a bisimulation [30]. Notice that, in general, the up to weak bisimilarity proof
technique is not sound [29, 17]. Thus, here we use a stronger definition, along the
lines of Exercise 2.4.64 of [30].

In the rest of the paper, we adopt the following notation on binary relations.
If R and S are binary relations over CPS-terms then we write RS for the binary
relation resulting by the composition of R and S. Thus, M RS N if there is M ′

such that M R M ′ and M ′ S N .

Definition 4.4 (Bisimulation up to ≈) A symmetric relation S over CPS-terms
is a bisimulation up to ≈ if M S N implies,

1. whenever M
τ−−→ M ′ then, for some N ′, N =⇒ N ′ and M ′ S≈ N ′

2. whenever M
α−−→ M ′, α 6= τ , then, for some N ′, N

α==⇒ N ′ and M ′ ≈S≈ N ′.

Lemma 4.5 If S is a bisimulation up to ≈ then S ⊆≈.
Proof See the Appendix. �
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Everything is in place to prove that ≈ is a congruence. Our proof relies on the
up to-bisimilarity proof technique, the axiom (DISTR) for permuting continuations,
and the axiom (ETA) for encoding substitutions. We then use Theorem 2.6 and
Lemma 4.3 to validate these two axioms with respect to bisimilarity.

Lemma 4.6 (≈ is preserved by all contexts) Let M and N be two CPS-terms
such that M ≈ N . Then,

1. M{a〈b〉 ⇐ O} ≈ N{a〈b〉 ⇐ O} for all terms O and variables a and b.

2. O{a〈b〉 ⇐ M} ≈ O{a〈b〉 ⇐ N} for all terms O and variables a and b.
Proof Let us prove that M{a〈b〉 ⇐ O} ≈ N{a〈b〉 ⇐ O}. Let S be the relation
defined as:

S def= {
(
M{a〈x〉 ⇐ O} , N{a〈x〉 ⇐ O}

)
for all a and O s.t. M ≈ N}∪ ≈

We prove that S is a bisimulation up to ≈. We do a case analysis on the transition
M{a〈x〉 ⇐ O} α−−→ M ′.

• Let M{a〈x〉 ⇐ O} τ−−→ M ′=M ′′{a〈x〉 ⇐ O}, by an application of rule
(Cxt Tau), because M

τ−−→ M ′′. Since M ≈ N there is N ′′ such that N =⇒ N ′′

with M ′′ ≈ N ′′. By several applications of rule (Cxt Tau), we get N{a〈x〉 ⇐
O} =⇒ N ′′{a〈x〉 ⇐ O}. By definition of S it follows that(

M ′′{a〈x〉 ⇐ O} , N ′′{a〈x〉 ⇐ O}
)
∈ S .

• Let M{a〈x〉 ⇐ O} τ−−→ M ′, by an application of rule (Tau), because M
a〈x〉O
−−−−−→

M ′. Since M ≈ N there is N ′ such that N
a〈x〉O

=====⇒ N ′ and M ′ ≈ N ′. By
several applications of rule (Cxt Tau) and one application of rule (Tau) we have
N{a〈x〉 ⇐ O} =⇒ N ′. By definition of S it follows that (M ′, N ′) ∈ S.

• Let M{a〈x〉 ⇐ O}
b〈y〉O′

−−−−−→ M ′, by an application of rule (Cxt Jmp), because

M
b〈y〉O′

−−−−−→ M ′′{b〈y〉 ⇐ O′}, with M ′ = M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′}. As

M ≈ N there is N ′′ such that N
b〈y〉O′

=====⇒ N ′′{b〈y〉 ⇐ O′} with

M ′′{b〈y〉 ⇐ O′} ≈ N ′′{b〈y〉 ⇐ O′} .

By applying rules (Cxt Tau) and (Cxt Jmp) we get

N{a〈x〉 ⇐ O} b〈y〉O′
=====⇒ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} .

So, we have to prove that

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} ≈S≈ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} .
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As M
b〈y〉O′

−−−−−→ M ′′{b〈y〉 ⇐ O′}, by applying rule (Tau) we obtain

M{b〈y〉 ⇐ O′} τ−−→ M ′′{b〈y〉 ⇐ O′} .

By an application of rule (Cxt Tau) we get

M{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} τ−−→ M ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} .

By Lemmas 4.2, the inclusion of ∼=⊆', and Lemma 4.3 it follows that

M{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} ≈ M ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} (1)

With a similar reasoning, from N
b〈y〉O′

=====⇒ N ′′{b〈y〉 ⇐ O′}, by several appli-
cations of rules (Cxt Tau) and one application of rule (Tau) we get

N{b〈y〉 ⇐ O′} =⇒ N ′′{b〈y〉 ⇐ O′} .

By several applications of rule (Cxt Tau) we obtain

N{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} =⇒ N ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} .

By Lemmas 4.2, the inclusion ∼=⊆', Lemma 4.3, and the transitivity of ≈ it
follows that

N{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} ≈ N ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} (2)

Now, by axiom (DISTR), Theorem 2.6, the inclusion ∼=⊆', and Lemma 4.3
we get

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} ≈ M ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} (3)

N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} ≈ N ′′{b〈y〉 ⇐ O′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O′}} (4)

Finally, since M ′′{b〈y〉 ⇐ O′} ≈ N ′′{b〈y〉 ⇐ O′}, by definition of S it follows
that

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} ≈S≈ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O′} .

This concludes the proof of first part of the statement.

Let us prove now that M ≈ N implies O{a〈x〉 ⇐ M} ≈ O{a〈x〉 ⇐ N}. We
show that the relation

S def= {
(
O{a〈x〉 ⇐ M} , O{a〈x〉 ⇐ N}

)
: for all a,M,N,O such that M ≈ N} ∪ ≈

is a bisimulation up to ≈. We do a case analysis on the transition O{a〈x〉 ⇐ M} α−−→
M ′.
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• Let O{a〈x〉 ⇐ M} τ−−→ O′{a〈x〉 ⇐ M}, because O
τ−−→ O′ by an application

of rule (Cxt Tau). This case is easy.

• Let O{a〈x〉 ⇐ M} τ−−→ M ′, by an application of rule (Tau), because

O
a〈x〉M
−−−−−−→ C[M [b/x]]{a〈x〉 ⇐ M} = M ′,

for some variable b and some context

C[·] = [·]{a1〈x1〉 ⇐ M1} . . . {an〈xn〉 ⇐ Mn} .

As a consequence, there is N ′ such that

O
a〈x〉N
−−−−−→ C[N [b/x]]{a〈x〉 ⇐ N} = N ′

and hence, by an application of rule (Tau), we have

O{a〈x〉 ⇐ N} τ−−→ N ′ .

As M ≈ N , by applying the first part of the current lemma we derive

M{x〈y〉 ⇐ b〈y〉} ≈ N{x〈y〉 ⇐ b〈y〉} .

By applying in sequence the axiom (ETA), Theorem 2.6, the inclusion ∼=⊆',
and Lemma 4.3 we obtain:

– M [b/x] ≈ M{x〈y〉 ⇐ b〈y〉}
– N [b/x] ≈ N{x〈y〉 ⇐ b〈y〉}.

By the transitivity of ≈ we derive M [b/x] ≈ N [b/x]. As C[·] is a static context,
by several applications of the first part of the current lemma we obtain

C[M [b/x]] ≈ C[N [b/x]] .

Again, by an application of the first part of the current lemma we derive
C[M [b/x]]{a〈x〉 ⇐ N} ≈ C[N [b/x]]{a〈x〉 ⇐ N}. We recall that

M ′ = C[M [b/x]]{a〈x〉 ⇐ M} and N ′ = C[N [b/x]]{a〈x〉 ⇐ N}.

This allows us to conclude that M ′ S≈ N ′.

• Let O{a〈x〉 ⇐ M}
b〈y〉L
−−−−−→ M ′, by an application of rule (Cxt Jmp), because

O
b〈y〉L
−−−−−→ O′{b〈y〉 ⇐ L}, with M ′ = O′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L}. By an

application of rule (Cxt Jmp), we have O{a〈x〉 ⇐ N}
b〈y〉L
−−−−−→ N ′, with N ′ =

O′{a〈x〉 ⇐ N}{b〈y〉 ⇐ L}. By applying in sequence the axiom (DISTR),
Theorem 2.6, the inclusion ∼=⊆', and Lemma 4.3 we obtain:
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– O′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L} ≈ O′{b〈y〉 ⇐ L}{a〈x〉 ⇐ M{b〈y〉 ⇐ L}}
– O′{a〈x〉 ⇐ N}{b〈y〉 ⇐ L} ≈ O′{b〈y〉 ⇐ L}{a〈x〉 ⇐ N{b〈y〉 ⇐ L}}.

As M ≈ N , by the first part of the current lemma we also have M{b〈y〉 ⇐
L} ≈ N{b〈y〉 ⇐ L}. As a consequence,

O′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L} ≈S≈ O′{a〈x〉 ⇐ N}{b〈y〉 ⇐ L} .
�

We can now prove the characterisation result.

Theorem 4.7 (Characterisation of ∼=) Let M and N be two CPS-terms. Then
M ≈ N iff M ∼= N .
Proof As to the implication from left to right, by Lemma 4.6 we have C[M ] ≈
C[N ], for all contexts C[·]. By Definition 4.1 and Theorem 3.3 we derive C[M ] ⇓a

iff C[N ] ⇓a. The implication from right to left follows from Lemma 4.3 and the fact
that ∼=⊆'. �

An easy consequence of the previous result and Lemma 4.3 is the following.

Theorem 4.8 (Context lemma) The relations ' and ∼= coincide.

This result shows that static contexts retain all distinguishing power of Morris’
context-equivalence. Said in other words, contexts of the form M{a〈x〉 ⇐ C[·]} do
not add extra distinguishing power to Morris’ equivalence.

4.2 Applicative bisimilarity

As our equivalences are insensitive to τ -actions (see Lemma 4.2) we can simplify
the definition of bisimulation by removing the clause on τ -actions. In this manner,
we basically get a definition of Abramsky’s applicative bisimilarity [1] for the CPS-
calculus. In applicative bisimulations only observable (weak) actions are taken into
account.

Definition 4.9 (Applicative bisimilarity) A symmetric relation S on CPS-terms
is an applicative bisimulation if whenever M S N and M

α==⇒ M ′, α 6= τ , then
there exists a CPS-term N such that N

α==⇒ N ′ and M ′ S N ′. Two CPS-terms
M and N are applicative bisimilar, written M ≈A N , if there is some applicative
bisimulation S such that M S N .

In general, applicative bisimulations are smaller in size than bisimulations as they
allow us to collapse terms that differ only for τ -actions. It is easy to show that the
applicative bisimilarity is an equivalence relation.

In the following theorem we prove that bisimilarity and applicative bisimilarity
coincide.
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Theorem 4.10 The relations ≈ and ≈A coincide.
Proof Let us prove that ≈⊆≈A. We show that the relation ≈ is an applicative
bisimulation. Let M ≈ N and M

α==⇒ M ′, α 6= τ . Then, by definition there
is M ′′ such that M =⇒ M ′′ α−−→ M ′. By Lemma 4.2 and Lemma 4.3 we have
M ′′ ≈ M ≈ N . As M ′′ ≈ N there is N ′ such that N

α==⇒ N ′ and M ′ ≈ N ′.
Let us prove now that ≈A⊆≈. We show that the relation ≈A is a bisimulation.

Let M ≈A N .

1. If M
τ−−→ M ′, then by Lemma 4.2, Lemma 4.3, and the inclusion ≈⊆≈A we

derive M ≈A M ′. As matching transition we choose N =⇒ N . By M ≈A N
and the transitivity of ≈A we obtain M ′ ≈A N .

2. If M
α−−→ M ′, as M ≈A N , there is N ′ such that N

α==⇒ N ′ and M ′ ≈A N ′.
�

This result, together with Theorem 4.7, allows us to show that applicative bisim-
ilarity is a labelled characterisation of Morris’ equivalence. More precisely, all be-
havioural equivalences defined up to now coincide, as stated below.

Corollary 4.11 The relations ∼=, ', ≈, and ≈A coincide.
Proof By an application of Theorems 4.7, 4.8, and 4.10. �

4.3 Up to context proof techniques

In this section we introduce up to context proof techniques [30, 28] for both bisim-
ilarity and applicative bisimilarity. When comparing terms in higher-order calculi,
(equipped with a higher-order LTS) up to context proof techniques are very useful
to reduce the size of the candidate bisimulation. Intuitively, these techniques allow
us to strip off a common context from the terms under consideration.

Remark 4.12 Up to context techniques are particularly useful when working with
applicative bisimulations. However, it is technically easier to prove the correctness
of these techniques with respect to the notion of bisimulation. The correctness of the
up to context technique for applicative bisimulation is an easy consequence of that
for bisimulation.

Definition 4.13 (Bisimulation up to context and up to ≈) A symmetric re-
lation S over CPS-terms is a bisimulation up to context and up to ≈ if whenever
M S N and M

α==⇒ M ′′, there is a term N ′′ such that N
α̂==⇒ N ′′ and there is a

static context C[·], and terms M ′ and N ′ such that M ′′ ≈ C[M ′], C[N ′] ≈ N ′′ and
M ′ S N ′.

In order to prove the soundness of the above proof technique we need a technical
lemma.
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Lemma 4.14 Let R be a bisimulation up to context and up to ≈. If M R N and
for some static context C[·] and term M ′′ it holds that C[M ]

α−−→ M ′′, then there
exists a term N ′′ such that C[N ] α̂==⇒ N ′′ and there are a static context C ′[·] and
terms M ′ and N ′ such that M ′′ ≈ C ′[M ′], C ′[N ′] ≈ N ′′ and M ′ R N ′.
Proof See the Appendix. �

The previous lemma can be easily generalised to the weak case as stated below.

Lemma 4.15 Let R be a bisimulation up to context and up to ≈. If M R N and
for some static context C[·] and term M ′′ it holds that C[M ] α==⇒ M ′′, then there
exists a term N ′′ such that C[N ] α̂==⇒ N ′′ and there are a static context C ′[·] and
terms M ′ and N ′ such that M ′′ ≈ C ′[M ′], C ′[N ′] ≈ N ′′ and M ′ R N ′.
Proof The result follows by induction on the length of the transition C[M ] α==⇒
M ′′, using Lemma 4.14. �

Theorem 4.16 If R is a bisimulation up to context and up to ≈, then R⊆≈.
Proof We recall that we only use static contexts. The proof consists in showing
that the relation

S def= {(M,N) : ∃C[·],M ′, N ′, such that M ≈ C[M ′], C[N ′] ≈ N, and M ′ R N ′}

is a bisimulation.
Suppose (M,N) ∈ S and M

α==⇒ M1. Since (M,N) ∈ S there exist C[·],M ′, N ′

such that M ≈ C[M ′], C[N ′] ≈ N , and M ′ R N ′. As M ≈ C[M ′], the definition of
bisimilarity ensures that there exists M ′

1 such that C[M ′] α̂==⇒ M ′
1 and M1 ≈ M ′

1.
As M ′ R N ′, Lemma 4.15 tells us that there exist N ′

1, C
′[·],M2, N2 such that

C[N ′] α̂==⇒ N ′
1, M ′

1 ≈ C ′[M2] and N ′
1 ≈ C ′[N2], with M2 R N2. As N ≈ C[N ′],

the definition of bisimilarity ensures that there exists N1 such that N
α̂==⇒ N1 and

N1 ≈ N ′
1. The transitivity of ≈ and the definition of S ensures that (M1, N1) ∈S. �

In deterministic higher-order calculi, as the CPS-calculus, it is more convenient
to work with applicative bisimulations up to context and up to ≈A.

Definition 4.17 (Applicative bisimulation up to context and up to ≈A) A
symmetric relation S over CPS-terms is an applicative bisimulation up to context
and up to ≈A if whenever M S N and M

α==⇒ M ′′, for α 6= τ , there is a term N ′′

such that N
α==⇒ N ′′ and there is a static context C[·], and terms M ′ and N ′ such

that M ′′ ≈A C[M ′], C[N ′] ≈A N ′′ and M ′ S N ′.

The soundness of this proof technique follows from Theorem 4.16 and Theo-
rem 4.10.

Theorem 4.18 If R is an applicative bisimulation up to context and up to ≈A,
then R⊆≈A.
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Proof Let us prove that R is also a bisimulation up to context and up to ≈. Let
(M,N) ∈ R.

1. If M =⇒ M ′, for some M ′, then we can choose N =⇒ N . Let C[·] def= [·]. By
Lemmas 4.2 and 4.3 we have M ′ ≈ M = C[M ], C[N ] ≈ N , and M R N .

2. If M
α==⇒ M ′, with α 6= τ , the result follows from Definition 4.17 and Theo-

rem 4.10.

By Theorem 4.16 it follows that M ≈ N . By Theorem 4.10 we derive M ≈A N . �

5 On divergent terms

The axiomatic semantics of Thielecke, reported in Section 2.3, allows us to prove
a wide number of equalities. However, none of those axioms deal with divergent
terms. This means the axiomatic semantics does not provide any instrument to
prove equality between divergent terms. On the other hand, the coinductive na-
ture of bisimulation proof methods is particularly suited for dealing with divergent
terms. So, as a workbench for both our bisimulation theory and up to context proof
technique, we prove a few algebraic properties on divergent terms.

We start describing how the divergence of CPS-terms is preserved by the oper-
ators of the calculus.

Proposition 5.1 Let M be a divergent CPS-term.

1. For any substitution σ, the term Mσ diverges.

2. For any static context C[·], the term C[M ] diverges.

3. For any term L such that L ⇓a, the term L{a〈x〉 ⇐ M} diverges.
Proof

1. It follows from Proposition 3.4(1).

2. If C[·] is a static context and M ⇑, then the context C[·] does not play any
role during the computation of C[M ].

3. As L ⇓a, by Proposition 3.2 L{a〈x〉 ⇐ M} =⇒ C[Mσ], for some static context
C[·] and some substitution σ. From the first and the second items of this
proposition it follows that L{a〈x〉 ⇐ M} diverges.

�
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Now, let us consider a few algebraic laws dealing with divergent terms. The first
one equates two simple terms.

a〈b〉{a〈x〉 ⇐ a〈b〉} ∼= a〈c〉{a〈x〉 ⇐ a〈c〉} . (5)

According to Definition 2.3 the two terms diverge. However, Thielecke’s axiomatic
semantics cannot be used to prove this equality. In fact, we can only apply axiom
(JMP) which leaves the two terms unchanged.

The law above could be slightly complicated to equate two terms diverging in
different ways.

a1〈b〉{a1〈x1〉 ⇐ a2〈a1〉}{a2〈x2〉 ⇐ x2〈b〉} ∼= a〈c〉{a〈x〉 ⇐ a〈c〉} (6)

where the left hand term contains some kind of mutual recursion.
More generally, in CPS-calculus it holds a reformulation of the Ω-equation [3] of

the λ-calculus:

M ∼= N if both M and N diverge. (7)

Notice that, in general, it may be useful to have some instruments to determine
whether a term diverges. For instance, the terms appearing in Laws 5 and 6 diverge
because they enter a loop.

Proposition 5.2 Let M and N be CPS-terms such that M
τ==⇒ N

τ==⇒ N . Then
M ⇑.
Proof It follows from the determinism of the calculus. �

Theorem 5.3 (Ω-equation) Let M and N be CPS-terms. If both M and N di-
verge then for any context C[·] it holds that C[M ] ∼= C[N ].
Proof By Proposition 3.2, if M and N diverge then M and N are trivially
applicative bisimilar. From Corollary 4.11 it follows M ∼= N . From the definition of
∼= it follows C[M ] ∼= C[N ], for any context C[·]. �

Now, let us focus on another algebraic law where divergence plays a crucial role.

b〈a〉{a〈x〉 ⇐ a〈c〉} ∼= b〈a〉{a〈x〉 ⇐ a〈d〉} (8)

Here, the two terms can perform an external jump to the continuation “b” passing,
as an argument, the address a of two different but diverging, and hence equivalent,
continuations.

Before proving an appropriate generalisation of the law above we need a couple
of technical results.

Lemma 5.4

1. If M{a〈x〉 ⇐ M} ⇑ then either M ⇑ or M ⇓a.

2. If M{a〈x〉 ⇐ M} ⇑ and L ⇓a then L{a〈x〉 ⇐ M} ⇑.
Proof See the Appendix. �
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Now, everything is in place to prove a generalisation of Law 8.

Theorem 5.5 If M{a〈x〉 ⇐ M} ⇑ and M ′{a〈x〉 ⇐ M ′} ⇑ then for any CPS-term
L it holds that L{a〈x〉 ⇐ M} ∼= L{a〈x〉 ⇐ M ′}.
Proof We prove that the binary relation R defined as:

{
(
L{a〈x〉 ⇐ M} , L{a〈x〉 ⇐ M ′}

)
| ∀ a, L,M,M ′. M{a〈x〉 ⇐ M} ⇑ ∧M ′{a〈x〉 ⇐ M ′} ⇑}

is an applicative bisimulation up to context.
Let L{a〈x〉 ⇐ M} α==⇒ L̂, with α 6= τ . We can suppose α = b〈y〉L′, for some b
and L′, with b 6= a. By Lemma 5.4(2) it follows that L 6⇓a. As a consequence there
cannot be any interaction between L and the continuation {a〈x〉 ⇐ M}. This means
that the action α must be generated by L. More precisely, there is L′′ such that

L
b〈y〉L′

=====⇒ L′′{b〈y〉 ⇐ L′} .

By rule (Cxt Jmp) it follows that

L{a〈x〉 ⇐ M} b〈y〉L′
=====⇒ L′′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L′} .

With a similar reasoning we derive

L{a〈x〉 ⇐ M ′} b〈y〉L′
=====⇒ L′′{a〈x〉 ⇐ M ′}{b〈y〉 ⇐ L′} .

If we factor out the context [·]{b〈y〉 ⇐ L′} we get (L′′{a〈x〉 ⇐ M}, L′′{a〈x〉 ⇐
M ′}) ∈ R. �

The reader may notice that the application of the up to context proof technique
allows us to exhibit a more succinct proof of the previous theorem.

6 Conclusion and Related work

We have presented two labelled characterisations of Morris’ observational equiva-
lence for Thielecke’s CPS-calculus. The former resembles Sangiorgi’s context bisim-
ulation for Higher-Order π-calculus [27], whereas the latter is in the style of Abram-
sky’s applicative bisimilarity [1], an operational theory for higher-order languages,
inspired by bisimulation theories for concurrency [21, 17]. Our LTS has some simi-
larities with that developed by Gordon [7] for PCF plus streams, in particular our
higher-order rule (Jmp) has its counterpart in Gordon’s rule (Trans Fun) for functions.

Since Abramsky’s work, the idea of applicative bisimilarity has been applied to
a variety of higher-order sequential languages; see [7, 23] for surveys. Our char-
acterisation proof for the applicative bisimilarity is quite different from that of [1]
(due to Stoughton), as we use ≈ as an auxiliary relation. In fact, the presence of
single arrow transitions on the left hand in the definition of ≈ is of great help in the
congruence proof. Stoughton’s proof uses a variant of Milner’s [16] and Berry’s [4]
Context Lemma. Our congruence proof relies on up to bisimilarity proof techniques.
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An immediate consequence of our characterisation result is a context lemma
showing that the observational congruence coincides with the observational equiv-
alence. In general, context lemmas are hard to prove. The literature on context
lemmas for functional languages is quite large. Milner [16] showed that contextual
equivalence on a combinatory-logic of PCF is unchanged if we restrict attention to
‘applicative contexts’ [·]a1 . . . an. Berry [4] extended Milner’s proof to the lambda-
calculus form of PCF. Gordon [7] proved a context lemma for PCF plus streams
showing that only evaluation contexts need to be considered. Pitts [24] proved a
context lemma for a higher-order language with assignable variables that only store
first-order values. The proof uses logical relations that are defined in terms of the
operational semantics. Sullivan [35] defined a metalanguage based on PCF extended
with I/O and dynamic store primitives. A context lemma for this language is proved
by showing that an applicative simulation relation is a precongruence. Finally, Tal-
cott [36] investigated a lambda-calculus augmented with primitive operations to ma-
nipulate the computation state (store, continuation), and the environment (sending
messages, creating processes). She proved a context lemma, called ‘ciu theorem’,
that allows us to consider only contexts which correspond to computation states in
which the hole is associated to the expression to be evaluated next. The ciu theorem
relies on the notion of ‘uniform computation’ which allows computation steps to be
carried out on states with missing information.

In the current paper, we have enhanced our bisimulation proof-methods with
up to bisimilarity and up to context proof techniques [28, 30]. We have used these
techniques to prove a few algebraic laws on divergent terms that cannot be derived
by Thielecke’s axiomatic semantics. In higher-order languages, up to context proof
techniques are notoriously hard. Sangiorgi’s bisimulation up to context is a powerful
bisimulation proof method for process calculi [28, 30]. Unfortunately, his correct-
ness proof does not carry over to applicative bisimilarities for higher-order languages.
Pitts [22] extended Howe’s congruence proof to establish an up to context rule for
applicative bisimulation. Gordon [7] and Sands [26] defined applicative bisimula-
tions up to bisimilarity and/or up to context. They demonstrated the power of this
approach to produce concise proofs of equivalences which are difficult to derive by
other operational methods. However, the validity of general applicative bisimula-
tions up to context remains an open problem [9]. Other examples of up to context
bisimulation proof techniques in higher-order languages are [8] and [10]. More pre-
cisely, Koutavas and Wand [8] introduced a new notion of bisimulation for showing
contextual equivalence in an untyped λ-calculus augmented with higher-order proce-
dures and a general store. Lassen [10] provided an operational bisimulation account
for Böhm tree equivalence including an elementary congruence proof, from which a
bisimulation up to context technique is derived. This work is extended and gener-
alised in [12], where underlying principles from Böhm tree [3] and Lévy-Longo tree
equivalences [13, 14] are adapted to the call-by-value λ-calculus. A notion of enf
bisimulation is defined using eager normal form (enf) equivalence classes and eager
reductions, to reduce function arguments to values before application. It is then
shown that enf bisimulation congruences are analogues to Lévy-Longo tree equiv-
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alence and that they both coincide on terms in the target of the CPS transforms.
An up to η-reduction proof technique for enf bisimulation is also introduced since
enf bisimulation does not relate terms induced by the η equation x = λy.xy. More
recently, Støvring and Lassen [32] have defined an eager normal form bisimilarity
for the untyped call-by-value lambda calculus extended with continuations and mu-
table references. The bisimilarity is proved to be sound and complete with respect
to contextual equivalence.

Finally, Lassen and Levy [11] have developed a normal form bisimulation theory
for a different CPS-calculus, Jump-With-Argument, called JWA. The paper makes
three important contributions: (i) it extends normal form bisimulation to types; (ii)
it provides a novel congruence proof, based on insight from game semantics; (iii) it
presents a seamless treatment of η-expansion.
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A Proofs
Proof of Theorem 3.3

1. Let us consider the implication from left to right. If M ↓a then, by definition,
there are names b, a1, b1, . . . , an, bn, for some integer n ≥ 0, with a 6= ai for
every 1 ≤ i ≤ n, such that M = a〈b〉{a1〈b1〉 ⇐M1} . . . {an〈bn〉 ⇐Mn}. By
an application of rule (Jmp) and n applications of rule (Cxt Jmp) we get the
required derivation.

Let us prove the implication from right to left. We do induction on the length
of the derivation of an a〈x〉L action.

• Suppose that a〈b〉
a〈x〉L
−−−−−→ L[b/x]{a〈x〉 ⇐ L} then a〈b〉 ↓a.

• Suppose that M{b〈y〉 ⇐ O}
a〈x〉L
−−−−−→ M ′{b〈y〉 ⇐ O}{a〈x〉 ⇐ L} because

M
a〈x〉L
−−−−−→ M ′{a〈x〉 ⇐ L}, with a 6= b and b 6∈ fv(L), by an application

of rule (Cxt Jmp). By inductive hypothesis M ↓a, and since a 6= b we also
have M{b〈y〉 ⇐ O} ↓a .

2. Let us prove the implication from left to right. The only reduction rule is

ai〈b〉{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn}
−→

Mi[b/bi]{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn} .

Now, by applying in sequence, once the rule (Jmp), i − 1 times the rule
(Cxt Jmp), one time the rule (Tau), and n − i times the rule (Cxt Tau), we
get

ai〈b〉{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn}
τ−−→

Mi[b/bi]{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn} .

For the implication from right to left we do rule induction on the derivation
M

τ−−→ N .

• Suppose that M{a〈x〉 ⇐ N} τ−−→ M ′ by an application of rule (Tau) with

premise M
a〈x〉N
−−−−−→ M ′. By applying the first part of the current theorem

we have M ↓a. By Definition 2.2 it follows that

M = a〈b〉{a1〈b1〉⇐M1} . . . {an〈bn〉⇐Mn}

with

M ′ = N [b/x]{a1〈b1〉⇐M1} . . . {an〈bn〉⇐Mn}{a〈x〉 ⇐ N} .

As a consequence,
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a〈b〉{a1〈b1〉⇐M1} . . . {an〈bn〉⇐Mn}{a〈x〉 ⇐ N}
−→

N [b/x]{a1〈b1〉⇐M1} . . . {an〈bn〉⇐Mn}{a〈x〉 ⇐ N}

and hence M{a〈x〉 ⇐ N} −→ M ′.

• Suppose that M{a〈x〉 ⇐ N} τ−−→ M ′{a〈x〉 ⇐ N} by an application of
rule (Cxt Tau) with premise M

τ−−→ M ′. By inductive hypothesis M −→
M ′ which is a reduction of the form:

ai〈b〉{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn}
−→

Mi[b/bi]{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn} .

This implies

ai〈b〉{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn}{a〈x〉 ⇐ N}
−→

Mi[b/bi]{a1〈b1〉 ⇐ M1}...{ai〈bi〉 ⇐ Mi}...{an〈bn〉 ⇐ Mn}{a〈x〉 ⇐ N}

and therefore M{a〈x〉 ⇐ N} −→ M ′{a〈x〉 ⇐ N}.
�

Proof of Lemma 4.5

It suffices to prove that the symmetric relation ≈S≈ is a bisimulation. Let L and O
be two CPS-terms such that L ≈S≈ O. This means that there are M and N such
that L ≈ M S N ≈ O. There are two cases.

1. Suppose L
τ−−→ L′. As L ≈ M , there is M ′ such that M =⇒ M ′ and L′ ≈ M ′.

As M S N , if M =⇒ M ′ then there is N ′ such that N =⇒ N ′ and M ′ S≈ N ′.
Now, if N =⇒ N ′ then there is O′ such that O =⇒ O′ and N ′ ≈ O′. By
transitivity of ≈ we have L′ ≈S≈ O′.

2. Suppose L
α−−→ L′. As L ≈ M , there are M ′ and M ′′ such that M =⇒ M ′ α−−→

M ′′ and L′ ≈ M ′′. As M S N , if M =⇒ M ′ then there is N ′ such that
N =⇒ N ′ and M ′ S N ′. As a consequence, if M ′ α−−→ M ′′ then there are N ′′

and N ′′′ such that N ′ =⇒ N ′′ α−−→ N ′′′ and M ′′ ≈S≈ N ′′′. Finally, as N ≈ O,
if N =⇒ α−−→ N ′′′ then there are O′ and O′′ such that O =⇒ O′ α−−→ O′′ and
N ′′′ ≈ O′′. By transitivity of ≈ we have L′ ≈S≈ O′′.

�
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Proof of Lemma 4.14

Let R be a bisimulation up to context and up to ≈. Suppose that (M,N) ∈R and
that C[M ]

α−−→ M ′′ for some static context

C[·] def= [·]{a1〈x1〉 ⇐ M1} . . . {an〈xn〉 ⇐ Mn} .

We decompose the transition C[M ]
α−−→ M ′′, distinguishing two cases.

1. The transition is performed by M , that is, M
α−−→ M ′. There are two sub-cases

depending on α.

(a) Let M
τ−−→ M ′. By several applications of rule (Cxt Tau) we derive

M ′′ = C[M ′]. As (M,N) ∈R, there is N ′ such that N =⇒ N ′ and there is
a static context C ′[·], and terms M ′′′ and N ′′′ such that M ′ ≈ C ′[M ′′′] and
C ′[N ′′′] ≈ N ′, with (M ′′′, N ′′′) ∈R. Let D[·] def= C[C ′[·]]. D[·] is a static
context. As M ′ ≈ C ′[M ′′′] and ≈ is preserved by all contexts, M ′′ =
C[M ′] ≈ C[C ′[M ′′′]] = D[M ′′′]. As N =⇒ N ′, by several applications
of rule (Cxt Tau) we have C[N ] =⇒ C[N ′] with C[N ′] ≈ C[C ′[N ′′′]] =
D[N ′′′]. To conclude, we recall that (M ′′′, N ′′′) ∈R.

(b) Let M
a〈x〉L
−−−−−→ M ′ = M̂{a〈x〉 ⇐ L}, for some a, L and M̂ . By several

applications of rule (Cxt Jmp) we derive M ′′ = C[M̂ ]{a〈x〉 ⇐ L}.

As (M,N) ∈R, there is N ′ such that N
a〈x〉L

=====⇒ N ′ = N̂{a〈x〉 ⇐ L},
for some N̂ , and there is a static context C ′[·], and terms M ′′′ and N ′′′

such that M ′ ≈ C ′[M ′′′] and C ′[N ′′′] ≈ N ′, with (M ′′′, N ′′′) ∈R. As

N
a〈x〉L

=====⇒ N ′, by several applications of rules (Cxt Tau) and (Cxt Jmp),

we have C[N ]
a〈x〉L

=====⇒ N ′′ = C[N̂ ]{a〈x〉 ⇐ L}.
Let

Ĉ[·] def= [·]{a1〈x1〉 ⇐ M1{a〈x〉 ⇐ L}} . . . {an〈xn〉 ⇐ Mn{a〈x〉 ⇐ L}} .

By applying n times the axiom (DISTR) (to shift the continuation {a〈x〉 ⇐
L} at the extreme left), Theorem 2.6, the inclusion ∼=⊆', Lemma 4.3 and
Lemma 4.6 we obtain:

C[M̂ ]{a〈x〉 ⇐ L} ≈ Ĉ[M̂{a〈x〉 ⇐ L}] .

As M̂{a〈x〉 ⇐ L} = M ′ ≈ C ′[M ′′′] and ≈ is preserved by all contexts, it
follows that

Ĉ[M̂{a〈x〉 ⇐ L}] ≈ Ĉ[C ′[M ′′′]] .

With a similar reasoning we derive:

C[N̂ ]{a〈x〉 ⇐ L} ≈ Ĉ[N̂{a〈x〉 ⇐ L}] ≈ Ĉ[C ′[N ′′′]] .

Let D[·] def= Ĉ[C ′[·]]. D[·] is a static context. By the transitivity of ≈ we
obtain M ′′ ≈ D[M ′′′], D[N ′′′] ≈ N ′′ and (M ′′′, N ′′′) ∈R.
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2. The transition is due to an interaction between M and the context C[·]. More

precisely, M
ai〈xi〉Mi−−−−−−−→ M ′ = M̂{ai〈xi〉 ⇐ Mi}, for some 1 ≤ i ≤ n and term

M̂ . By i− 1 applications of rule (Cxt Jmp) we have

M{a1〈x1〉 ⇐ M1} . . . {ai−1〈xi−1〉 ⇐ Mi−1}
ai〈xi〉Mi−−−−−−−→

M̂{a1〈x1〉 ⇐ M1} . . . {ai−1〈xi−1〉 ⇐ Mi−1}{ai〈xi〉 ⇐ Mi} .

By an application of rule (Tau) we have

M{a1〈x1〉 ⇐ M1} . . . {ai〈xi〉 ⇐ Mi}
τ−−→ M̂{a1〈x1〉 ⇐ M1} . . . {ai〈xi〉 ⇐ Mi} .

By n − i applications of rule (Cxt Tau) we have M ′′ = C[M̂ ]. As (M,N) ∈R
there is N ′ such that N

ai〈xi〉Mi=======⇒ N ′ = N̂{ai〈xi〉 ⇐ Mi}, for some N̂ ,
and there is a static context C ′[·], and terms M ′′′ and N ′′′ such that M ′ ≈
C ′[M ′′′] and N ′ ≈ C ′[N ′′′] with (M ′′′, N ′′′) ∈R. As N

ai〈xi〉Mi=======⇒ N ′, by i− 1
applications of rule (Cxt Jmp), and n− i applications of rule (Cxt Tau) we have
C[N ] =⇒ N ′′ = C[N̂ ].

Let

Ĉ[·] def= [·]{a1〈x1〉 ⇐ M1{ai〈xi〉 ⇐ Mi}}
. . . {ai−1〈xi−1〉 ⇐ Mi−1{ai〈xi〉 ⇐ Mi}}{ai+1〈xi+1〉 ⇐ Mi+1}
. . . {an〈xn〉 ⇐ Mn} .

By applying i − 1 times the axiom (DISTR) (to shift {ai〈xi〉 ⇐ Mi} at the
extreme left), Theorem 2.6, the inclusion ∼=⊆', Lemma 4.3 and Lemma 4.6
we obtain:

C[M̂ ] ≈ Ĉ[M̂{ai〈xi〉 ⇐ Mi}] .

As M̂{ai〈xi〉 ⇐ Mi} = M ′ ≈ C ′[M ′′′] and ≈ is preserved by all contexts, it
follows that

Ĉ[M̂{ai〈xi〉 ⇐ Mi}] ≈ Ĉ[C ′[M ′′′]] .

With a similar reasoning we derive

C[N̂ ] ≈ Ĉ[N̂{ai〈xi〉 ⇐ Mi}] ≈ Ĉ[C ′[N ′′′]] .

Let D[·] def= Ĉ[C ′[·]]. D[·] is a static context. By the transitivity of ≈ we
obtain M ′′ ≈ D[M ′′′], N ′′ ≈ D[N ′′′] and (M ′′′, N ′′′) ∈R.

�
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Proof of Lemma 5.4

1. There are two possibilities: either M ⇑ or M ⇓b, for some variable b. However,
if M ⇓b then it must be b = a, otherwise we would have M{a〈x〉 ⇐ M} ⇓b.

2. If L ⇓a then
L{a〈x〉 ⇐ M} =⇒ C[M [b/x]]{a〈x〉 ⇐ M}

for some variable b and some static context C[·] that does not capture free
occurrences of variable a. As M{a〈x〉 ⇐ M} ⇑, by the previous item of this
lemma there are two possibilities: either M ⇑ or M ⇓a. If M ⇑ by Proposi-
tion 3.4(1) also M [b/x] ⇑. By Proposition 5.1(2) we obtain C[M [b/x]]{a〈x〉 ⇐
M} ⇑. If M ⇓a by Proposition 3.4(2) also M [b/x] ⇓a. As C[·] does not capture
the free occurrences a, it follows that

C[M [b/x]]{a〈x〉 ⇐ M} =⇒ C ′[M [b′
/x]]{a〈x〉 ⇐ M}

for some variable b′ and some static context C ′[·] obtained by adding the
continuations of C[·] to those of M [b/x]. As a consequence also C ′[·] does not
capture the free occurrences of a. As M ⇓a, by Proposition 3.4(2) we have
M [b′

/x] ⇓a and the reduction sequence above can be reproduced “ad infinitum”
showing that the term under investigation diverges.

�
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