
A Timed Calculus for Wireless Systems ∗†

Massimo Merro, Francesco Ballardin, Eleonora Sibilio

Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract

We propose a timed broadcasting process calculus for wireless systems
where time-consuming communications are exposed to collisions. The op-
erational semantics of our calculus is given in terms of a labelled transition
system. The calculus enjoys a number of desirable time properties such as
(i) time determinism: the passage of time is deterministic; (ii) patience:
devices will wait indefinitely until they can communicate; (iii) maximal
progress: data transmissions cannot be delayed, they must occur as soon
as a possibility for communication arises. We use our calculus to model
and study MAC-layer protocols with a special emphasis on collisions and
security. The main behavioural equality of our calculus is a timed variant
of barbed congruence, a standard branching-time and contextually-defined
program equivalence. As an efficient proof method for timed barbed con-
gruence we define a labelled bisimilarity. We then apply our bisimulation
proof-technique to prove a number of algebraic laws.

1 Introduction

Wireless technology spans from user applications such as personal area networks,
ambient intelligence and wireless local area networks, to real-time applications,
such as cellular, and ad hoc networks. The IEEE 802.11 standard [22] contains
a series of specifications for wireless LAN technologies. The basic building block
of an 802.11 network is the Basic Service Set (BSS), which is a set of stations
that have successfully synchronised and that use radio transceivers to broadcast

∗This work was partially supported by the PRIN 2007 project “SOFT”.
†An extended abstract appeared in the proceedings of the 3rd International Conference

on Fundamentals of Software Engineering (FSEN’09), volume 5961, pages 228-243, of Lecture
Notes in Computer Science, Springer, 2010.

1

messages. In Independent BSS (IBSS), stations communicate with each other
without using any distribution system. IBSS networks are sometimes referred to
as ad hoc networks. In this paper, we propose a formal model for IBSS networks
paying particular attention to communication interferences. Communication in-
terferences represent one of the main concerns when evaluating the performance
of a network in terms of network throughput, i.e. the average rate of successful
message delivery over a communication channel.

In concurrent systems, an interference occurs when the activity of a compo-
nent is damaged or corrupted because of the activities of another component. In
Ethernet-like networks communication channels are full-duplex; that is, a node
can transmit and receive at the same time. Thus, collisions caused by two simulta-
neous transmissions are immediately detected and repaired by retransmitting the
message after a randomly-chosen period of time. This is not possible in wireless
networks where radio signals span over a limited area, called transmission cell,
and channels are half-duplex : on a given channel, a device can either transmit or
receive, but cannot do both at the same time. As a consequence, communication
collisions in wireless systems can be only detected at destination.

Many protocols for wireless networks rely on a common notion of time among
the devices, provided by some clock synchronisation protocol. Most clock syn-
chronisation protocols for ad hoc networks [34, 13, 43, 45, 27, 49] follow the “clock
correction” approach correcting the local clock of each node to run in parallel with
a global time scale.1 This approach heavily relies on network connectivity . In a
connected network all nodes are in touch with each other, although not always
directly. Wireless networks are usually assumed to be connected; disconnected
devices can be considered as not being part of the network as, in general, they
need to re-authenticate to rejoin the network.

In the last twenty-five years, process calculi [30, 8, 31, 10, 21] have been
intensively used to study the semantics of concurrent/distributed systems, and
to develop verification techniques for such systems. In the literature, there exist
a number of process calculi modelling wireless systems [25, 36, 44, 29, 16, 17,
14, 15]. Most of these calculi support message loss to model communication
collisions . In fact, collisions in wireless systems cannot be avoided, although
there are protocols to reduce their occurrences (see, for instance, the IEEE 802.11
CSMA/CA protocol [22] for unicast communications).

In this paper, we propose a timed broadcasting calculus for wireless networks,
called TCWS, in which all wireless devices are assumed to be synchronised (rely-
ing on some clock-correction synchronisation protocol). Thus, TCWS is a process
calculus with absolute timing, where all timing refers to an absolute clock. Time

1An excellent survey of existing clock synchronisation protocols for sensor networks (and
more generally for ad-hoc networks) can be found in [46].

2

proceeds in discrete steps represented by occurrences of a simple action σ, in the
style of Hennessy and Regan’s TPL [20], to denote idling until the next clock
cycle. The calculus is value-passing and message transmission is time-consuming.
As usual for wireless networks, the communication mechanism is (local) broad-
cast. As in Hennessy and Regan’s TPL [20] and Prasad’s TCBS [39], our calculus
enjoys three basic time properties:

• time determinism: the passage of time is deterministic, i.e. a network can
reach at most one new state by performing the action σ;

• patience: nodes will wait indefinitely until they can communicate;

• maximal progress : data transmissions cannot be delayed, they must occur
as soon as a possibility for communication arises.

The operational semantics of our calculus is given in terms of a labelled tran-
sition system (LTS) in the SOS style of Plotkin.

We provide a notion of network well-formedness to take into account node-
uniqueness, network connectivity, transmission exposure, and transmission con-
sistency. Then, we prove that our labelled transition semantics preserves network
well-formedness.

We use our calculus to model and study MAC-layer protocols, such as CSMA
and CSMA/CA [22], and a wireless network security protocol, called MiniSec [28].

A central concern in process calculi is to establish when two terms have the
same observable behaviour, that is, they are indistinguishable in any context. Be-
havioural equivalences are fundamental for justifying program transformations.
Our program equivalence is a timed variant of (weak) reduction barbed con-
gruence, a branching-time contextually-defined program equivalence. Barbed
equivalences [32] are intuitive but difficult to use due to the quantification on
all contexts. Simpler proof techniques are based on labelled bisimilarities [30],
which are co-inductive relations that characterise the behaviour of processes us-
ing a labelled transition system. We define a labelled bisimilarity which is a proof
method for timed reduction barbed congruence. We then apply our bisimulation
proof-technique to prove a number of algebraic laws.

We end this introduction with an outline of the paper. In Section 2, we provide
both syntax and operational semantics of our calculus. In the same section we
propose a notion of network well-formedness to rule out inconsistent networks.
In Section 3, we prove that TCWS enjoys time determinism, maximal progress
and patience. In Section 4, we use an extended version of our calculus to specify
and study a number of protocols. In Section 5, we equip TCWS with a notion
of observational equivalence along the lines of Milner and Sangiorgi’s barbed
congruence. In Section 6, we propose a labelled bisimilarity as a proof method

3

Table 1 The Syntax

Networks:
M, N ::= 0 empty network∣∣ M | N parallel composition∣∣ n[W]νt node

Processes:
W ::= P inactive process∣∣ A active process

P, Q ::= nil termination∣∣ !〈u〉.P broadcast∣∣ b?(x).P cQ receiver with timeout∣∣ bτ.P cQ internal with timeout∣∣ σ.P delay∣∣ [u1 = u2]P, Q matching∣∣ H〈ũ〉 recursion

A ::= 〈v〉t.P active sender∣∣ (x)v.P active receiver

for our observations equivalence. More precisely, we prove that our bisimilarity is
a congruence and that it implies our observational equivalence. We then use our
bisimilarity to prove a number of algebraic laws. Finally, in Section 7 we present,
in some detail, future and related works.

2 The Calculus

In Table 1, we define the syntax of TCWS in a two-level structure, a lower one
for processes and an upper one for networks. We use letters a, b, c, . . . for logical
names, x, y, z for variables, u for values, and v and w for closed values, i.e. values
that do not contain variables. Closed values actually denote messages that are
transmitted as TCP/IP packets. We write ũ to denote a tuple u1, . . . , uk of values.

Networks are collections of nodes (which represent devices) running in parallel
and using a unique common channel to communicate with each other. We use
the symbol 0 to denote the empty network, while M1 | M2 represents the parallel
composition of two sub-networks M1 and M2. The communication paradigm is
local broadcast ; only nodes located in the range of the transmitter may receive
data. We write n[W]νt for a node named n (the device network address) executing

4

the sequential process W . The variable t is a semantic tag ranging over positive
integers to represent node exposure. Thus, a node n[W]νt , with t > 0, is exposed
to a transmission (or more transmissions) for the next t instants of time. The
tag ν denotes the set of (the names of) the neighbours of n. Said in other words,
ν contains all nodes in the transmission cell of n, except for n itself (n 6∈ ν).2

Our wireless networks have a fixed topology where nodes cannot be created or
destroyed. Furthermore all nodes have the same transmission range.3

Processes are sequential and live within the nodes. For convenience, we dis-
tinguish between non-active and active processes. An active process is a process
which is currently transmitting or receiving. An active node is a node with an
active process inside. The symbol nil denotes the skip process. The sender pro-
cess !〈v〉.P allows to broadcast the value v. Once the transmission starts the
process evolves into the active sender process 〈v〉δv .P which transmits the mes-
sage v for the next δv time units, the time necessary to transmit v. The process
b?(x).P cQ denotes a receiver with timeout. Intuitively, this process either starts
receiving a value w in the current instant of time, evolving into an active receiver
(x)w.P , or it idles for one time unit, and then continues as Q. Notice that only
when the reception terminates and the channel becomes free the active receiver
does the Cyclic Redundancy Check (CRC) to verify the integrity of the received
packets. Upon successful reception the variable x of P is instantiated with the
transmitted message w. The process bτ.P cQ either performs an internal action,
in the current time interval, and then continues as P , or it idles for one time unit,
and then continues as Q. The process σ.P models sleeping for one time unit.
Process [v1 = v2]P, Q is the standard “if then else” construct: it behaves as P if
v1 = v2, and as Q otherwise. In processes σ.P , bτ.P cQ, b?(x).P cQ, and !〈v〉.P
the occurrence of processes P and Q are said to be guarded. We write H〈ṽ〉 to
denote a process defined by means of an equation of the form H(x̃) = P , with
| x̃ |=| ṽ |, where x̃ contains all variables that appear free in P . Defining equa-
tions provide guarded recursion, since P may only contain guarded occurrences
of process identifiers, such as H itself.

Remark 2.1 The recursion construct allows us to define a persistent listener,
i.e. a receiver which waits indefinitely for an incoming message. With an abuse
of notation, we will write ?(x).P to indicate such listener process, defined via the
following recursive equation Rcv = b?(x).P cRcv. Similarly, we will write τ.P as
an abbreviation for the process defined as Tau = bτ.P cTau.

In the terms b?(x).P cQ and (x)v.P the variable x is bound in P . This gives rise

2We could have represented the topology in terms of a restriction operator à la CCS over
node names; we preferred our notation to keep at hand the neighbours of a node.

3These assumptions are discussed in the last section of the paper.

5

Table 2 Structural Congruence

n[[v = v]P, Q]νt ≡ n[P]νt (Struct Then)
n[[v1 = v2]P, Q]νt ≡ n[Q]νt if v1 6= v2 (Struct Else)
n[A〈ṽ〉]νt ≡ n[{ṽ/̃x}P]νt if A(x̃) = P ∧ | x̃ |=| ṽ | (Struct Rec)
M | N ≡ N | M (Struct Par Comm)
(M | N) | M ′ ≡ M | (N | M ′) (Struct Par Assoc)
M | 0 ≡ M (Struct Zero Par)
M ≡ M (Struct Refl)
M ≡ N implies N ≡ M (Struct Symm)
M ≡ M ′ ∧M ′ ≡ M ′′ implies M ≡ M ′′ (Struct Trans)
M ≡ N implies M | M ′ ≡ N | M ′ , for all M ′ (Struct Ctx Par)

to the standard notion of α-conversion. We identify processes and networks up to
α-conversion. We assume there are no free variables in our networks. The absence
of free variables in networks is trivially maintained as the network evolves. We
write {v/x}P for the substitution of the variable x with the value v in P . We
define structural congruence, written ≡, as the smallest congruence induced by
the laws in Table 2, which is a commutative monoid with respect to the parallel
operator. For convenience, structural congruence includes equalities to deal with
matching and recursion. We use a number of notational conventions.

∏
i∈I Mi

means the parallel composition of all sub-networks Mi, for i ∈ I. We identify∏
i∈I Mi = 0 if I = ∅. We write !〈v〉 for !〈v〉.nil, and 〈v〉δ for 〈v〉δ.nil. We recall

that in the active sender process 〈v〉t.P it holds that t > 0. However, sometimes,
for convenience, we write 〈v〉0.P assuming the syntactic equality 〈v〉0.P = P .

Here are some definitions that will be useful in the remainder of the paper.
Given a network M , nds(M) returns the names of the nodes which constitute
the network M . For any network M , actsnd(M) and actrcv(M) return the set
of active senders and active receivers of M , respectively. Thus, for instance,
for N = m[!〈w〉]νt | n[〈v〉r.P]ν

′

t′ we have nds(N) = {m, n} and actsnd(N) = {n}.
Given a network M and an active sender n ∈ actsnd(M), the function active(n, M)
says for how long the node n will be transmitting. For instance, if N is the
network defined as before, active(n, N) = r. If n is not an active sender then
active(n, N) = 0. Finally, given a network M and a node m ∈ nds(M), the
function ngh(m, M) returns the set of neighbours of m in M . Thus, for N defined
as above ngh(m, N) = ν.

6

Table 3 LTS - Synchronisation and internal actions

(Snd)
−

m[!〈v〉.P]νt
m!v−−−→ m[〈v〉δv .P]νt

(Rcv)
m ∈ ν

n[b?(x).P cQ]ν0
m?v−−−−→ n[(x)v.P]νδv

(RcvPar)
M

m?v−−−−→ M ′ N
m?v−−−−→ N ′

M | N m?v−−−−→ M ′ | N ′
(Sync)

M
m!v−−−→ M ′ N

m?v−−−−→ N ′

M | N m!v−−−→ M ′ | N ′

(Coll)
m ∈ ν t′:=max(t,δv)

n[(x)w.P]νt
m?v−−−−→ n[(x)⊥.P]νt′

(Exp)
m∈ν W 6=(x)w.P t′:=max(t,δv)

n[W]νt
m?v−−−−→ n[W]νt′

(OutRng)
m 6∈ ν m 6= n

n[W]νt
m?v−−−−→ n[W]νt

(Zero)
−

0
m?v−−−−→ 0

(Tau)
−

m[bτ.P cQ]νt
τ−−→ m[P]νt

(TauPar)
M

τ−−→ M ′

M | N τ−−→ M ′ | N

2.1 The Operational Semantics

We have divided our LTS in two sets of rules corresponding to the two main
phases of a wireless transmission. Table 3 contains the rules to model both initial
synchronisations between a sender and its neighbours, and internal computations
within single nodes. Table 4 contains the rules for modelling time passing and
transmission ending.

Let us comment on the rules of Table 3. The metavariable λ ranges over the
set of labels {τ,m!v, m?v} denoting internal action, broadcasting and reception,
respectively. Rule (Snd) models a node starting a broadcast of message v to its
neighbours in ν. By maximal progress, a node which is ready to transmit will
not be delayed. A transmission fires even if there are no listeners: sending is
a non-blocking action. Rule (Rcv) models the beginning of the reception of a
message v transmitted by a station m. This happens only when the receiver is
not exposed to other transmissions i.e. when the exposure indicator is equal to
zero. The exposure indicator is then updated because node n will be exposed
for the next δv instants of time. The reception will finish only when the receiver
senses the channel free for a whole time interval (see rule (RcvEnd) of Table 4).
Rule (RcvPar) serves to synchronise different receivers on the same transmission
originating from a node m. Rule (Sync) serves to synchronise a broadcasting node

7

Figure 1 Network topology of Example 2.2

k m

l

n

m with receivers. In rule (Coll) an active receiver n is exposed to a transmission
originating from a node m. This transmission gives rise to a collision at n. Rule
(Exp) models the exposure of a node n (which is not an active receiver) to a
transmission originating from a transmitter m. In this case, n does not take part
in the transmission. Notice that a node n[b?(x).P cQ]ν0 might execute rule (Exp)
instead of (Rcv). This is because a potential (synchronised) receiver might miss
the synchronisation with the sender for several reasons (internal misbehaving,
radio signals problems, etc). Such a situation will give rise to a failure in reception
at n (see rule (σ-Fail) in Table 4). Rule (OutRng) regards nodes which are out of
the range of a transmission originating from a node m. Rule (Zero) is similar but
regards empty networks. Rule (Tau) models local computations. Rule (TauPar)
serves to propagate internal computations on parallel components. Rules (Sync)
and (TauPar) have their symmetric counterpart.

Let us explain the rules in Table 3 with an example.

Example 2.2 Consider the network

Net
def
= k[!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

with the following communication topology: νk = {l,m, l′}, νl = {k,m}, νm =
{k, l, n, l′, m′} and νn = {m} (see Figure 1). There are two possible broadcast
communications originating from stations k and m, respectively. Let us suppose
k starts broadcasting. By applying rules (Snd), (Rcv), (Exp), (OutRng), (RcvPar)
and (Sync) we have:

Net
k!v−−−→ k[〈v〉δv .?(x).P]νk

0

∣∣ l[(x)v.Q]νl

δv

∣∣ m[!〈w〉]νm

δv

∣∣ n[?(y).R]νn

0

= Net1 .

8

Table 4 LTS - Time passing/End transmission

(σ-Nil)
−

n[nil]νt
σ−−→ n[nil]νt−1

(Sleep)
−

n[σ.P]νt
σ−−→ n[P]νt−1

(σ-Rcv)
−

n[b?(x).P cQ]ν0
σ−−→ n[Q]ν0

(σ-Fail)
t > 0

n[b?(x).P cQ]νt
σ−−→ n[(x)⊥.P]νt−1

(σ-Tau)
−

n[bτ.P cQ]νt
σ−−→ n[Q]νt−1

(ActSnd)
r > 0

n[〈v〉r.P]νt
σ−−→ n[〈v〉r−1.P]νt−1

(ActRcv)
t > 0

n[(x)v.P]νt
σ−−→ n[(x)v.P]νt−1

(RcvEnd)
−

n[(x)v.P]ν0
σ−−→ n[{v/x}P]ν0

(σ-Zero)
−

0
σ−−→ 0

(σ-Par)
M

σ−−→ M ′ N
σ−−→ N ′

M | N σ−−→ M ′ | N ′

By maximal progress, m can not delay its transmission. Supposing δv < δw we
have:

Net1
m!w−−−−→ k[〈v〉δv .?(x).P]νk

δw

∣∣ l[(x)⊥.Q]νl

δw

∣∣ m[〈w〉δw]νm

δv

∣∣ n[(y)w.R]νn

δw

= Net2 .

Now, node l is exposed to a collision and its reception is doomed to fail. Notice
that, although node m was already exposed when it started transmitting, node n
will receive correctly the message w from m.

Let us comment on rules of Table 4. Rule (σ-Nil) is straightforward: it simply
decreases the exposure tag of the node. This updating of the exposure tag appears
in all rules of Table 4, where we assume an arithmetic for positive integers such
that 0 − 1 = 0. Rule (Sleep) models sleeping for one time unit. In rule (σ-Rcv)
a timeout fires if no reception has started. Rule (σ-Fail) models a failure of an
exposed receiver. This may happen, for instance, when a receiver wakes up in the
middle of an ongoing transmission. In rule (σ-Tau) a timeout can fire if no internal
actions are executed. Rules (ActSnd) and (ActRcv) represent the passage of time
for active senders and active receivers, respectively. When the transmission is
over, active senders simple evolve to the next state (we recall that, by convention,
〈v〉0.P = P). On the other hand, active receivers stop receiving only when the

9

Table 5 LTS - Matching and recursion

(Then)
n[P]νt

λ−−→ n[P ′]νt′

n[[v = v]P, Q]νt
λ−−→ n[P ′]νt′

(Else)
n[Q]νt

λ−−→ n[Q′]νt′ v1 6= v2

n[[v1 = v2]P, Q]νt
λ−−→ n[Q′]νt′

(Rec)
n[{ṽ/̃x}P]νt

λ−−→ n[P ′]νt′ H(x̃)
def
= P

n[H〈ṽ〉]νt
λ−−→ n[P ′]νt′

channel becomes idle. The end of a reception of a message v is modelled in rule
(RcvEnd). As the communication is half-duplex this happens when the receiver
senses the channel idle for one time unit. Rule (σ-Zero) is straightforward. Rule
(σ-Par) models time synchronisation among the devices.

Example 2.3 Let us continue with the previous example. Let us show how the
system evolves after δv and δw time units. We recall that 0 < δv < δw. For
simplicity let us define δ := δw − δv:

Net2 (
σ−−→)δv k[?(x).P]νk

δ

∣∣ l[(x)⊥.Q]νl

δ

∣∣ m[〈w〉δ]νm

0

∣∣ n[(y)w.R]νn

δ

σ−−→ k[(x)⊥.P]νk

δ−1

∣∣ l[(x)⊥.Q]νl

δ−1

∣∣ m[〈w〉δ−1]νm

0

∣∣ n[(y)w.R]νn

δ−1

(
σ−−→)δ−1 k[(x)⊥.P]νk

0

∣∣ l[(x)⊥.Q]νl

0

∣∣ m[nil]νm

0

∣∣ n[(y)w.R]νn

0

σ−−→ k[{⊥/x}P]νk

0

∣∣ l[{⊥/x}Q]νl

0

∣∣ m[nil]νm

0

∣∣ n[{w/y}R]νn

0 .

Notice that, after δv instants of time, node k will start a reception in the middle
of an ongoing transmission (the transmitter being m). This will lead to a failure
at k.

In Table 5 we report the obvious rules for nodes containing matching and
recursive processes (we recall that only guarded recursion is allowed).

In the remainder of this article we will use the notion of execution trace. A
trace is a sequence of labelled transitions. If Λ is a sequence of labels λ1λ2 . . . λn,

with λi 6= τ for 1≤i≤n, we write M
Λ

==⇒ N to mean

M(
τ−−→)∗

λ1−−→ (
τ−−→)∗ . . . (

τ−−→)∗
λn−−−→ (

τ−−→)∗N

where (
τ−−→)∗ denotes the reflexive and transitive closure of

τ−−→.
Below, we report a number of basic properties of our LTS.

Proposition 2.4 Let M , M1 and M2 be networks.

10

1. m 6∈ nds(M) if and only if M
m?v−−−−→ M ′, for some network M ′.

2. M1 | M2
m?v−−−−→ N if and only if there are N1 and N2 such that M1

m?v−−−−→
N1, M2

m?v−−−−→ N2 and N = N1 | N2.

3. If M
m!v−−−→ M ′ then M ≡ m[!〈v〉.P]νt | N , for some ν, t, P and N ,

and there is N ′ such that m[!〈v〉.P]νt
m!v−−−→ m[〈v〉δv .P]νt , N

m?v−−−−→ N ′ and
M ′ ≡ m[〈v〉δv .P]νt | N ′.

4. If M
τ−−→ M ′ then M ≡ m[bτ.P cQ]νt | N , for some m, ν, t, P , Q and N

such that m[bτ.P cQ]νt
τ−−→ m[P]νt and M ′ ≡ m[P]νt | N .

5. M1 | M2
σ−−→ N if and only if there are N1 and N2 such that M1

σ−−→ N1,

M2
σ−−→ N2 and N = N1 | N2.

Proof See the Appendix. �

2.2 Well-formedness

The syntax presented in Table 1 allows us to derive inconsistent networks, i.e.
networks that do not have a realistic counterpart. Below we give a number of
definitions to rule out ill-formed networks. We recall that ≡ denotes structural
congruence.

As network addresses are unique, we assume that there cannot be two nodes
with the same name in the same network.

Definition 2.5 (Node uniqueness) A network M is said to be node-unique if

whenever M ≡ M1 | m[W1]
ν
t | n[W2]

ν′

t′ it holds that m 6= n.

We also assume network connectivity, i.e. all nodes are connected to each
other, although not always directly. This is because time synchronisation can be
achieved only in connected networks. Moreover, in our networks, all nodes have
the same transmission range. Formally,

Definition 2.6 (Network connectivity) A network M is said to be connected
if

• whenever M ≡ N | m[W1]
ν
t | n[W2]

ν′

t′ with m ∈ ν ′ it holds that n ∈ ν;

• for all m, n ∈ nds(M) there is a sequence of nodes m1, . . . ,mk ∈ nds(M),
with neighbouring ν1, . . . , νk, respectively, such that m=m1, n=mk and mi ∈
νi+1, for 1 ≤ i ≤ k−1.

11

The next definition is about the consistency of exposure indicators of nodes.
Intuitively, the exposure indicators of active senders and active receivers must
be consistent with their current activity (transmission/reception). Moreover, the
neighbours of active senders must have their exposure indicators consistent with
the duration of the transmission.

Definition 2.7 (Exposure consistency) A network M is said to be exposure-
consistent if the following conditions are satisfied.

1. If M ≡ N | m[(x)v.P]νt , with v 6= ⊥, then 0 ≤ t ≤ δv.

2. If M ≡ N | m[〈v〉r.P]νt , then r ≤ δv.

3. If M ≡ N | m[〈v〉r.P]νt | n[W]ν
′

t′ , with m ∈ ν ′, then 0 < r ≤ t′.

4. Let M ≡ N | n[W]νt with t>0. If active(k,N) 6= t for all k in ν∩actsnd(N),

then there is k′ in ν\nds(N) such that whenever N ≡ N ′ | l[W ′]ν
′

t′ , with
k′ ∈ ν ′, then t′ ≥ t.

The next definition is about the consistency of transmitting stations. The
first and the second part are about successful transmissions, while the third part
is about collisions.

Definition 2.8 (Transmission consistency) A network M is said to be tran-
smission-consistent if the following conditions are satisfied.

1. If M ≡ N | n[(x)v.Q]νt and v 6= ⊥, then | actsnd(N) ∩ ν | ≤ 1.

2. If M ≡ N | m[〈w〉r.P]νt | n[(x)v.Q]ν
′

t′ , with m ∈ ν ′ and v 6= ⊥, then (i)
v = w, and (ii) r = t′.

3. If M ≡ N | n[(x)v.P]νt , with | actsnd(N) ∩ ν |> 1, then v = ⊥.

Definition 2.9 (Well-formedness) A network M is said to be well-formed if
it is node-unique, connected, exposure-consistent and transmission-consistent.

We prove that network well-formedness is preserved at runtime. In partic-
ular, the preservation of exposure- and transmission-consistency are the more
interesting and delicate results.

Theorem 2.10 (Subject reduction) If M is a well-formed network, and M
λ−−→

M ′ for some label λ and network M ′, then M ′ is well-formed as well.

Proof By transition induction. �

12

3 Time Properties

We start proving three desirable time properties of TCWS: time determinism,
patience and maximal progress.

Theorem 3.1 formalises the deterministic nature of time passing: a network
can reach at most one new state by executing the action σ.

Theorem 3.1 (Time Determinism) Let M be a well-formed network. If M
σ−−→

M ′ and M
σ−−→ M ′′ then M ′ and M ′′ are syntactically the same.

Proof By induction on the length of the proof of M
σ−−→ M ′. �

In [20, 39], the maximal progress property says that processes communicate
as soon as a possibility of communication arises. However, unlike [20, 39], in
our calculus message transmission requires a positive amount of time. So, we
generalise the property saying that transmissions cannot be delayed.

Theorem 3.2 (Maximal Progress) Let M be a well-formed network. If there

is N such that M
m!v−−−→ N then M

σ−−→ M ′ for no network M ′.

Proof Because sender nodes cannot perform σ-actions. �

The last time property is patience. In [20, 39] patience guarantees that a
process will wait indefinitely until it can communicate. In our setting, this means
that if no transmission can start then it must be possible to execute a σ-action
to let time pass.

Theorem 3.3 (Patience) Let M be a well-formed network. If M
m!v−−−→ M ′ for

no network M ′ then there is a network N such that M
σ−−→ N .

Proof By contradiction and then by induction on the structure of M . �

4 Case studies

The calculus defined in Section 2 should be considered as a core language for the
specification of wireless systems. As many other process calculi, TCWS can be
extended with useful constructs (basically, syntactic sugar) which do not intro-
duce new concepts. We report below the extensions we are interested in. For
commodity, values are extended with functions.4 We adopt a polyadic version
of the calculus where tuple of values are transmitted. Thus, for instance, the
process !〈v, v′, w〉.P denotes the broadcast of a tuple containing three values. We

4Functions are already implicitly used in the core calculus when writing δv to denote the
time necessary to transmit value v: δ() is a function that given a data value v returns an integer.

13

assume standard tuple destructors fst(), snd(), etc. returning the corresponding
component of a tuple, if it exists, and the value ⊥ otherwise. The matching
construct [u = w]P, Q is extended to check the conjunction and/or disjunction
of more equalities. Last but not least, in the process definition we assume also
process variables; this is not a big extension as values in TCWS represent data
packets, so they can also contain code. We call extended TCWS the calculus
obtained by extending the syntax of TCWS with the just mentioned constructs.
The operational semantics of these constructs is completely standard.

The goal of this section is to show the expressiveness of our extended TCWS
by defining a number protocols/applications. We start with MAC-layer protocols,
such as CSMA and CSMA/CA then we pass to study a sensor network link layer
security protocol, called MiniSec.

4.1 Carrier Sense Multiple Access

The Carrier Sense Multiple Access (CSMA) scheme [22] is a widely used MAC-
layer protocol in which a device senses the channel (physical carrier sense) before
transmitting. More precisely, if the channel is sensed free, the sender starts
transmitting immediately (i.e. in the next instant of time 5); if the channel is busy
(i.e. some other station is transmitting) the device keeps listening the channel
until it becomes idle and then starts transmitting immediately. This strategy
is called 1-persistent CSMA. More generally, in a p-persistent CSMA strategy
(where p is a probability) the sender transmits with probability p, and waits for
the next available time slot, with probability 1− p.

In our calculus, we can easily model the 1-persistent CSMA scheme using
receivers with timeout where the sender process !〈v〉.P is replaced by the process
defined below:

!!〈v〉.P def
= b?(x).!〈v〉.P c!〈v〉.P .

The next example shows how 1-persistent CSMA affects the behaviour of a
wireless system. Let us consider the network:

Net
def
= k[!!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[σ.!!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

with the following communication topology: νk = {l,m, l′}, νl = {k,m}, νm =
{k, l, n, l′, m′} and νn = {m} (see Figure 1 at page 8). Here, node k senses the
channel free and, according to the CSMA scheme, in the next instant of time, it
will start transmitting. Thus,

Net
σ−−→ k[!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[!!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

= Net1 .

5We recall that in wireless systems channels are half-duplex.

14

In Net1, node m is currently listening the channel to check whether it is free.
By applying rules (Snd), (Rcv), (Exp), (OutRng), (RcvPar) and (Sync) node k can
start transmitting:

Net1
k!v−−−→ k[〈v〉δv .?(x).P]νk

0

∣∣ l[(x)v.Q]νl

δv

∣∣ m[(x)v.!〈w〉]νm

δv

∣∣ n[?(y).R]νn

0

= Net2 .

Now, since k has already started its transmission, node m senses the channel
busy and it must wait until the channel becomes free. Notice that in this manner
there are no collisions at l and/or k. In fact, after δv instants of time we have:

Net2 (
σ−−→)δv k[?(x).P]νk

0

∣∣ l[(x)v.Q]νl

0

∣∣ m[(x)v.!〈w〉]νm

0

∣∣ n[?(y).R]νn

0
σ−−→ k[?(x).P]νk

0

∣∣ l[{v/x}Q]νl

0

∣∣ m[!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

= Net3

where node l has successfully received value v from k. Notice that after δv instants
of time node m senses the channel free, and by maximal progress it will start
transmitting in the next instant of time.

However, using a CSMA scheme, there is always a chance of stations starting
transmitting at exactly the same time, caused by the fact that different stations
sensed the medium free and decided to transmit at once. As an example, consider
the network:

Net′
def
= k[!!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[!!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

with the same communication topology as before. In this scenario, both nodes k
and m want to start transmitting. And since both of them sense the channel free,
they will start transmitting in the next instant of time. Thus, assuming δv < δw,
we have:

Net′
σ−−→ k[!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

k!v−−−→ k[〈v〉δv .?(x).P]νk

0

∣∣ l[(x)v.Q]νl

δv

∣∣ m[!〈w〉]νm

δv

∣∣ n[?(y).R]νn

0

m!w−−−−→ k[〈v〉δv .?(x).P]νk

δw

∣∣ l[(x)⊥.Q]νl

δw

∣∣ m[〈w〉δw]νm

δv

∣∣ n[(y)w.R]νn

δw
.

In this situation, node l is exposed to a collision caused by the two transmissions.
It should be pointed out that the CSMA scheme is not always a good idea.

Let us consider, for instance, the previous network Net where nodes l and m are
not neighbours anymore, that is νl = {k} and νm = {k, n, l′, m′} (see the first

15

Figure 2 Exposed and Hidden terminal problem

k m

l

n

k m

l

n

picture in Figure 2). Now, suppose that m wants to send a message to n. Then,
the CSMA scheme delays the transmission without any reason, only because m
is exposed to the transmission originating from k. This is a well-known problem,
introduced by CSMA, called exposed terminal problem.

The CSMA scheme suffers another well-known problem called hidden termi-
nal problem. This happens when two transmitters sense the channel free, because
they are not in each other’s transmission cell, and start transmitting causing a
collision to a third node lying in the transmission cells of both. As an example,
you can consider, for instance, the previous network Net with the following com-
munication topology: νk = {l, l′}, νl = {k,m}, νm = {l, n, l′, m′} and νn = {m}
(see the second picture in Figure 2). In this case, both transmissions at k and m
will fire causing (after two instants of time) an interference at l.

4.1.1 Collision Avoidance

In unicast communications , to reduce the number of collisions due to the hidden
terminal problem, the CSMA scheme may be used with a Collision Avoidance
(CA) mechanism together with a Positive Acknowledgement Scheme. With the
latter, receivers check the integrity of the data frame and if no errors occur they
send an acknowledgement (ack) to the sender. Reception of the ack ensures the
transmitter that the data frame has been successfully received. If the sender does
not receive the ack frame, then the receiver might have not received the data. In
this case, the sender will try to retransmit the data frame for a given number of
times.

The Collision Avoidance mechanism is achieved by distributing reservation
information announcing the impending use of the medium. This mechanism is
also called virtual carrier sense. A device wishing to transmit a data frame will
first transmit a short control packet RTS (request to send), which will include the

16

source, the destination, and the duration of the whole transaction (i.e. the trans-
mission of the data frame together with the returning ack frame). If the medium
is free, the destination station will respond with a control packet called CTS
(clear to send), which will include the same duration information. All stations
receiving either the RTS (from the sender) and/or the CTS (from the receiver),
will learn of the medium reservation. More precisely, they will set their network
allocation vector (NAV) register to the maximum among the current value stored
in their NAV and the duration time carried in the RTS/CTS frame. The NAV
may be thought of as a counter, which counts down to zero at a uniform rate.
When the NAV is zero, the virtual carrier sense indication is that the medium
is idle; when nonzero, the medium is supposed to be busy and the station must
remain silent. Upon receiving an RTS, a node returns a CTS frame only if its
NAV value is zero, otherwise no CTS is sent. Thus, a sender will see no CTS
if its RTS packet has collided with another transmission at the receiver, or if
the receiver’s NAV indicates that the network is not available. In this case, the
transmitter will repeat the process according to some backoff algorithm.

The goal of the RTS/CTS mechanism is to reduce the probability of a collision
at the receiver to the short duration of the RTS transmission. In fact, if a
station hears the CTS then it “reserves” the medium as busy until the end of the
transmission. The duration field in the RTS frame also protects the transmitter
area from potential collisions during the reception of the ack (by stations that
are out of range from the acknowledging station).

Notice that the virtual carrier sense cannot be applied to multicast and broad-
cast packets because there would be multiple recipients for the RTS, and thus
potentially multiple concurrent senders of the corresponding CTS. Notice also
that the virtual carrier sense works correctly under the assumption that all de-
vices have the same transmission range. In order to understand that, think of
two nodes m and n such that n is in the transmission range of m but not vice
versa. Suppose that n receives a RTS frame from another node and sends it back
the CTS frame starting the reception of the data frame. In this scenario, since
the node m did not hear the CTS frame it could start transmitting causing an
interference at n.

In Table 6, we provide an encoding of a sender and a receiver process, written
in our extended TCWS, and respecting the CSMA/CA protocol. For brevity, in
sub-terms of the form ?(x).P , instead of using the standard tuple destructors, we
write xi in P to mean the i-th component of the tuple that will be received at x,
if this component is defined, and ⊥ otherwise.

The process SND(m, v, n, P) runs at node m and tries to transmit the value v to
node n, being P the continuation. The sending takes into account both physical
and virtual carrier sense. If the channel is sensed free the process sends an RTS

17

Table 6 CSMA/CA

Sender at m:

SND(m, v, n, P)
def
= b?(x). Do physical carrier sense,

[x1 = rts ∨ x1 = cts] If a RTS/CTS is received
NAV〈x4, SND〈m, v, n, P 〉〉, update the NAV,
SND〈m, v, n, P 〉c otherwise, restart.

!〈rts, m, n, δ〉.σ.CTS〈m, v, n, P 〉 If channel is free send RTS.

CTS(m, v, n, P)
def
= b?(x).

[x = (cts, m, n, ·)] If the right CTS is received
!〈v〉.σ.ACK〈m, v, n, P 〉, then start transmitting v,
NAV〈bo(m), SND〈m, v, n, P 〉〉c if not then wait for bo(m)

NAV〈bo(m), SND〈m, v, n, P 〉〉 If timeout wait for bo(m).

ACK(m, v, n, P)
def
= b?(x).[x = (ack, m, n)]P, If ACK is received then P

SND〈m, v, n, P 〉c else, restart transmission.
SND〈m, v, n, P 〉 If timeout restart transmission.

NAV(δ,Q)
def
= [δ = 0]Q, b?(x). If NAV is zero then Q, else

[x1 = rts ∨ x1 = cts] if a RTS/CTS is received,
NAV〈max(x4, δ)−δx−1, Q〉, then update the NAV
NAV〈δ−δx−1, Q〉c else decrease the NAV.

NAV〈δ−1, Q〉 If timeout decrease the NAV.

Receiver at n:

RCV(n, y, R)
def
= b?(x).

[x1 = rts] If a RTS packet is received
[x3 = n] with destination n

!〈cts, x2, n, x4〉.σ.R′, then reply with a CTS pkt
NAV〈x4, RCV〈n, y, R〉〉, otherwise, update the NAV

[x1 = cts] if a CTS is received
NAV〈x4, RCV〈n, y, R〉〉, update the NAV,
RCV〈n, y, R〉c otherwise restart.

RCV〈n, y, R〉 If timeout then restart.

R′ def
= b?(y).[y = ⊥] Receive data and check it

RCV〈n, y, R〉, if there is a collision restart
!〈ack, x4, n〉.σ.Rc otherwise, ack and continue.

RCV〈n, y, R〉 If timeout restart reception.

18

packet and then, in the next time interval, move to process CTS〈m, v, n, P 〉 to wait
for the CTS packet. If the CTS packet is not received in the current instant of
time, the process will remain silent for an amount of time calculated by means of a
backoff algorithm/function bo(). For simplicity, our backoff function depends on
the logical address of the node; thus, different nodes have different backoff periods.
When the CTS is received the value v is transmitted. Then, the sender moves to
state ACK〈m, v, n, P 〉 and waits for an ACK. The process NAV(δ,Q) takes care of
the virtual carrier sense by updating the NAV register with the delays contained
in the control packets RTS/CTS. In this process, δx denotes the time required
to receive the current packet (we recall that δ() is a function). Thus, when x is
instantiated with v, δx becomes δv. We recall that since the communication is
half-duplex the time required to receive a packet v is actually δv + 1.

The receiver process RCV(n, y, R) is supposed to run at node n waiting for a
control packet. If a CTS packet is received then the NAV register is updated.
Otherwise, if a RTS packet is received, with destination n, the receiver replies
with a CTS packet and then waits for the data. If the data is received correctly
an ACK is sent to the transmitter.

Let us write down some simple systems where nodes adopt the CSMA/CA
protocol. The goal of these examples is to show that the CSMA/CA protocol
may fail in avoiding communication collisions in different ways. For simplicity,
we assume that the RTS/CTS packets require one time interval for their trans-
mission.

Let us start with the following system:

Sys
def
= l[SND〈l, w, n, Q〉]νl

0

∣∣ m[SND〈m, v, n, P 〉]νm

0

∣∣ n[RCV〈n, y, R〉]νn

0

with n ∈ νl, n ∈ νm and {l,m} ⊆ νn. Here, the following execution trace

Sys
σ−−→ l!rts−−−→ m!rts−−−−→ σ−−→ σ−−→

denotes a collision at n caused by the transmission of two different RTS packets,
transmitted by l and m, respectively. As a consequence, according to the protocol,
the two RTS packets will be resend in two different instants of time by using the
backoff algorithm and relying on the fact that bo(l) 6= bo(m). The same problem
would occur if the process running at l would be σ.SND〈l, w, n, Q〉, with l not in
the transmission range of m, i.e. m 6∈ νl and l 6∈ νm. In this case, the physical
carrier sense at l could not hear the RTS packet of m.

Let us consider now a slightly different system:

Sys1
def
= l[σ.σ.SND〈l, w, n, Q〉]νl

0

∣∣ m[SND〈m, v, n, P 〉]νm

0

∣∣ n[RCV〈n, y, R〉]νn

0

19

where {m, n} ⊆ νl, {l, n} ⊆ νm and {l,m} ⊆ νn. Here, the following execution
trace

Sys1

σ−−→ m!rts−−−−→ σ−−→ σ−−→ n!cts−−−−→ l!rts−−−→ σ−−→ σ−−→

describes a collision at m caused by the simultaneous transmissions of the CTS
packet of n and the RTS packet of l. Also in this case the protocol will restart by
relying on the backoff algorithm. The same problem would occur if the process
running at l would be σ.σ.σ.SND〈l, w, n, Q〉, with l in the transmission range of m
but not in that of n. In this case, the physical carrier sense at l would not help
in hearing the CTS packet of n.

A different situation emerges in the following system:

Sys2
def
= l[σ.σ.σ.σ.SND〈l, w, n, Q〉]νl

0

∣∣ m[SND〈m, v, n, P 〉]νm

0

∣∣ n[RCV〈n, y, R〉]νn

0

with again {m, n} ⊆ νl, {l, n} ⊆ νm and {l,m} ⊆ νn. Here, the following
execution trace is possible:

Sys2

σ−−→ m!rts−−−−→ σ−−→ σ−−→ n!cts−−−−→ σ−−→ σ−−→ m!v−−−→ l!rts−−−→

This denotes a more serious collision at n on the transmission of data v. This
collision is more problematic as it requires at least δv+1 time units to be detected
at destination. The collision is due to the fact that the node l sleeps while the
RTS/CTS packets are exchanged. Then, after four time intervals, l wakes up,
senses the channel free, and starts transmitting its RTS packet in the next time
interval. Notice that if l would have slept for a longer period then the physical
carrier sense at l would have heard the transmission originating from m, thus
preventing the collision.

Finally, let us consider the system

Sys3
def
= l[σi.SND〈l, w, n, Q〉]νl

0

∣∣ m[SND〈m, v, n, P 〉]νm

0

∣∣ n[RCV〈n, y, R〉]νn

0

with 4 ≤ i ≤ δv+6 and l not in the transmission range of m, hence n ∈ νl, m 6∈ νl,
n ∈ νm, l 6∈ νm, and {l,m} ⊆ νn. In this case, l misses the RTS/CTS packets
because it is sleeping. When it wakes up, it senses the channel free and it starts
transmitting its RTS by causing a collision at n on the transmission of the data
v (assuming δv > 1). As an example, for i = 5, the execution trace is:

Sys3

σ−−→ m!rts−−−−→ σ−−→ σ−−→ n!cts−−−−→ σ−−→ σ−−→ m!v−−−→ σ−−→ l!rts−−−→

4.2 The MiniSec protocol

MiniSec [28] is a secure network layer protocol for wireless sensor networks. Ba-
sically, it improves on two well-known sensor network link layer protocols such

20

as TinySec [23] and ZigBee [3]. MiniSec obtains the best of both protocols by
achieving three basic goals: data secrecy , authentication and protection against
replay attacks (when the attacker replay packets at a later time).

The first two goals are obtained by using pre-deployed shared keys: a receiver
can always authenticate (and thus access) a packet using a group-key kG. More
precisely, in order to achieve secrecy and authentication, MiniSec adopts Offset
CodeBook (OCB) [42], a block-cipher operation mode well-suited for sensor net-
works. OCB operates as follows. Let v be an arbitrary message that needs to
be encrypted and authenticated, k be the encryption key (which is the key used
by the underlying block cipher), and N be a non-repeating nonce. Then, OCB
takes in v, k, and N and generates the ciphertext core C. After that, by using
the plaintext v, and the ciphertext C, OCB generates a tag. Thus, the final out-
put of OCB(k, v,N) is the pair (C, tag). To decrypt a ciphertext C, the receiver
performs the reverse process OCB−1(k, C, N) trying to obtain the plaintext v. If
the receiver computes a pair (v′, tag ′) with tag ′ = tag then v′ = v, otherwise the
ciphertext is considered to be invalid.

Protection against replay attacks is achieved by adopting a loosely time syn-
chronisation between sender and receiver(s) following a sliding-windows approach.
The nodes of the network agree on the passage of time intervals called epochs:
when a sender builds a packet it includes as a nonce the current epoch, so that
a receiver can know at which epoch the received packet was sent. An epoch is
defined as the maximum time required to complete a local broadcast. If ∆N
represents the maximum network latency and ∆T the maximum clock synchro-
nisation error, then the length of each epoch is exactly E = 2∆T + ∆N . By
using the current epoch number as the nonce for OCB-encryption, the protocol
defends against replay attacks from older epochs. Unfortunately, because of time
synchronisation errors and network latency, such a scheme experiences many false
positives at epoch transitions, as legitimate packets sent from the previous epoch
will be discarded. The solution proposed by MiniSec is to perform decryption
with two possible candidate epoch values for the nonce. Thus, if a valid packet
had been sent at the beginning of an epoch, an attacker can replay that packet
for at most the remainder of the epoch as well as ∆T + ∆N time units of the
next epoch. As a consequence, the maximum window of vulnerability for replay
attacks is 3∆T + 2∆N , which intuitively represents the maximum packet delay
between its dispatch and its retrieval.

MiniSec has two operating modes: unicast and broadcast, henceforth known
as MiniSec-U and MiniSec-B. In this article, we focus on the latter because the
unicast variant does not present particular modelling interest.

In Table 7, we provide a specification of MiniSec in TCWS with some sim-
plifications. We extend the values of our calculus with a few simple functions.

21

Table 7 MiniSec specification

Sender:

Sj
i = bτ. Encrypt payload and epoch

!〈OCB(kG, p, i)〉.OK SNDc broadcast ciphertext,

[j + 1 = E]S0
i+1, S

j+1
i if timeout go to next state.

Receiver:

Rj
i = b?(x).[j+δx+1 ≥ E]P j+δx+1−E

i+1 , P j+δx+1
i c Start reception

[j+1 = E]R0
i+1, R

j+1
i if timeout then restart.

P j
i = [snd(x) = snd(OCB−1(kG, fst(x), i))] If msg comes from epoch i

!〈authi〉.OK RCV , signal msg authentication
[snd(x) = snd(OCB−1(kG, fst(x), i−1))] if msg comes from epoch i−1
!〈authi−1〉.OK RCV , signal msg authentication

Rj
i otherwise restart.

In particular, OCB() and OCB−1() represent the OCB encoding and its reverse,
respectively. We split an epoch in E time intervals. The protocol contemplates
a sender and a receiver process. The sender process Sj

i is very simple: it builds
a tuple with the payload p, the current epoch i, which acts as a nonce, and
then encrypts this information using the OCB algorithm and the group-key kG.
The resulting ciphertext is broadcast. The transmission of a packet v takes δv

instants of time, with 1 ≤ δv ≤ ∆N . Moreover, message loss can affect a trans-
mission for at most ∆T instants of time, which represents the maximum clock
synchronisation error. In process Sj

i the variable j denotes the offset counting
σ-actions within an epoch. As our epochs consists of E time intervals, we have
0 ≤ j ≤ E−1. The receiver is a bit more complicated. Upon successful reception,
a receiver decrypts the information using the group-key kG, and then proceeds
to verify the epoch of the received packet. As said above, a receiver accepts
packets sent during the current epoch or the previous one. This is indirectly
done by checking the tags returned by encryption and decryption. If a packet is
accepted then an authentication message is sent and the receiver process restart
by updating the epoch counter and the offset.

For simplicity our specification of MiniSec considers only two nodes, to yield
an easier to read model:

MiniSec
def
= m[S0

0]
νm

0 | n[R0
0]

νn

0

where m is the sender and n is the receiver, with m ∈ νn and n ∈ νm. This does
not lose any generality with respect to the case where there are more receivers.

22

Let us formalise now a few properties on the behaviour of MiniSec. Let
#σ(Λ) be the occurrences of σ actions in the execution trace Λ. Let pi be an
abbreviation for OCB(kG, p, i), the packet sent by the sender m at epoch i. We
assume standard Dolev-Yao assumptions for the attacker.

The next result says that only fresh packets are authenticated.

Proposition 4.1 (Packet freshness) If node n authenticates a packet pi in
epoch k then pi was sent by m either in the current epoch k or in the previous
one, i.e. i ≤ k ≤ i + 1.

Proof See the Appendix. �

The following proposition says that if there is a replay attack then it must
occur within a vulnerability window. In fact, if node n receives the packet pi a
number of instants of time later than it was originally transmitted by m, then pi

has been replayed by the attacker. In this case, pi will be authenticated only if
the attack occurred in the vulnerability window.

Proposition 4.2 (Vulnerability window) If the protocol evolves as

MiniSec
Λ1===⇒ m!pi−−−−→ Λ2===⇒ n?pi−−−−→ Λ3===⇒ n!authi−−−−−−→

then #σ(Λ2) ≤ 2∆N + 3∆T .

Proof See the Appendix. �

5 Observational semantics

In this section we propose a notion of timed behavioural equivalence for our
wireless networks. Our starting point is Milner and Sangiorgi’s barbed congru-
ence [32], a standard contextually-defined program equivalence. Intuitively, two
terms are barbed congruent if they have the same observables, in all possible con-
texts, under all possible evolutions. The definition of barbed congruence strongly
relies on two crucial concepts: a reduction semantics to describe how a system
evolves, and a notion of observable which says what the environment can observe
in a system.

From the operational semantics given in Section 2.1 it should be clear that the
evolution of our wireless networks depends on message transmission and internal
actions within nodes. Thus, we can define the reduction relation _ between
networks using the following inference rule:

(Red1) M
m!v−−−→ N

M _ N
(Red2) M

τ−−→ N
M _ N

23

We write _∗ for the reflexive and transitive closure of _.
Now, let us focus on the definition of an appropriate notion of observable. In

our calculus, as in CCS [30] and in π-calculus [31], we have both transmission
and reception of messages. However, in broadcast calculi only the transmis-
sion of messages may be observed [40, 29]. In fact, an observer cannot detect
whether a given node actually receives a broadcast value. In particular, if the
node m[!〈v〉.P]νt evolves into m[〈v〉r.P]νt we do not know whether some of the
neighbours have actually synchronised for receiving the message v. On the other
hand, if a non-exposed node n[b?(x).P cQ]ν0 evolves into n[(x)v.P]νt , then we can
be sure that some node in ν has started transmitting. Notice that a node n can
certify the reception of a message v only if it receives the whole message without
collisions.

Following Milner and Sangiorgi [32] we use the term “barb” as synonymous
of observable.

Definition 5.1 (Barbs) Let M be a well-formed network. We write M ↓n, if
M ≡ N | m[〈v〉r.P]νt , for some m, v, r, P, t and ν, such that n ∈ ν and n /∈
nds(N). We write M ⇓n if there is M ′ such that M _∗ M ′ ↓n.

The barb M ⇓n says that there is an ongoing transmission at M reaching the
node n of the environment. The observer can easily detect such a transmission
placing a receiver with timeout at n of the form n[b?(x).0c!〈w〉.0]νt where the
system M | n[b?(x).0c!〈w〉.0]νt is well-formed, and f ∈ ν, for some fresh node
f . In this manner, if n is currently exposed to a transmission then, after a σ-
action, the fresh barb at f is definitely lost. One may wonder whether the barb
should mention the name m of the transmitter. Notice that, in general, due
to communication collisions, the observer may receive incomprehensible packets
without being able to identify the transmitter. In fact, if M ↓n there might be
several nodes in M which are currently transmitting to n. So, in our setting, it
does not make sense to put the name of the transmitter in the barb.

Now, everything is in place to define our timed notion of barbed congruence.
In the sequel, we write R to denote binary relations over well-formed networks.

Definition 5.2 (Barb preserving) A relation R is said to be barb preserving
if whenever M R N it holds that M ↓n implies N ⇓n.

Definition 5.3 (Reduction closure) A relation R is said to be reduction-closed
if M R N and M _ M ′ imply there is N ′ such that N _∗ N ′ and M ′ R N ′.

As we are interested in weak behavioural equivalences, the definition of reduction
closure is given in terms of weak reductions.

24

Definition 5.4 (σ-closure) A relation R is said to be σ-closed if M R N and

M
σ−−→ M ′ imply there is a network N ′ such that N _∗ σ−−→_∗ N ′ and M ′ R N ′.

When comparing two networks M and N , time must pass in the same manner
for M and N .

Definition 5.5 (Contextuality) A relation R is said contextual if M R N ,
for M and N well-formed, implies M | O R N | O for all networks O such that
M | O and N | O are well-formed.

Finally, everything is in place to define timed reduction barbed congruence.

Definition 5.6 (Timed reduction barbed congruence) Timed reduction barbed
congruence, written ∼=, is the largest symmetric relation over well-formed net-
works which is barb preserving, reduction-closed, σ-closed and contextual.

6 A bisimulation proof method

The definition of timed reduction barbed congruence is simple and intuitive. How-
ever, due to the universal quantification on parallel contexts, it may be quite
difficult to prove that two terms are barbed congruent. Simpler proof techniques
are based on labelled bisimilarities. In this section, we propose an appropriate
notion of bisimulation between networks. As a main result, we prove that our
labelled bisimilarity is a proof-technique for timed reduction barbed congruence.

First of all we have to distinguish between transmissions which may be ob-
served and transmissions which may not be observed by the environment. Thus,
we extend the set of labelled transitions with the following two rules:

(Shh) M
m!v−−−→ N ngh(m,M)⊆nds(M)

M
τ−−→ N

(Out)
M

m!v−−−→ N ν:=ngh(m,M)\nds(M) 6=∅

M
!v.ν−−−−→ N

Rule (Shh) models transmissions that cannot be detected by the environment.
This happens if none of the potential receivers is in the environment. Rule (Out)
models a transmission of a message that may be potentially received by the
nodes ν of the environment. Notice that this transmission can be really observed
at some node n ∈ ν only if no collisions arise at n during the transmission of
v. In rule (Out) the name of the transmitter is removed from the action. This
is motivated by the fact that nodes may refuse to reveal their identities, e.g.,
for security reasons, or limited sensory capabilities in perceiving these identities.
Actually, in a hostile scenario the identity of the transmitter can only be ensured
by using appropriate authentication protocols.

25

In the sequel, we use the metavariable α to range over the following actions:
τ , σ, m?v and !v.ν. Since we are interested in weak behavioural equivalences,
that abstract over τ -actions, we introduce a standard notion of weak action: =⇒
denotes the reflexive and transitive closure of

τ−−→;
α

==⇒ denotes =⇒ α−−→ =⇒;
α̂

==⇒
denotes =⇒ if α = τ and

α
==⇒ otherwise.

Definition 6.1 (Bisimilarity) A relation R over well-formed networks is a

simulation if M R N implies that whenever M
α−−→ M ′ there is N ′ such that

N
α̂

==⇒ N ′ and M ′ R N ′. A relation R is called bisimulation if both R and its
converse are simulations. We say that M and N are bisimilar, written M ≈ N ,
if there is some bisimulation R such that M R N .

It is worth noticing that whenever two networks are bisimilar then they must
have the same set of nodes.

Proposition 6.2 If M ≈ N then nds(M) = nds(M).

Proof By contradiction. Suppose there is a node m such that m ∈ nds(M) and
m 6∈ nds(N). Then, by Proposition 2.4(1) (implication left to right) there is N ′

such that N
m?v−−−−→ N ′. Since M ≈ N there must be M ′ such that M

m?v
====⇒ M ′

with M ′ ≈ N ′. However, since m ∈ nds(M), by Proposition 2.4(1) (implication

right to left) there is no way to deduce a weak transition of the form M
m?v

====⇒ M ′,
as a node m[W]νt can not perform an action m?v. �

In order to prove that our labelled bisimilarity implies timed reduction barbed
congruence we have to show its contextuality.

Theorem 6.3 (≈ is contextual) Let M and N be two well-formed networks
such that M ≈ N . Then M | O ≈ N | O for all networks O such that M | O and
N | O are well-formed.

Proof See the Appendix. �

Theorem 6.4 (Soundness) Let M and N be two well-formed networks such
that M ≈ N . Then M ∼= N .

Proof We have to prove that the labelled bisimilarity is contextual, barb pre-
serving, reduction- and σ-closed. Contextuality follows from Theorem 6.3. Re-
duction and σ-closure follow by definition. As to barb preservation we reason by

contradiction, if M ↓n we can choose O
def
= n[b?(x).0c!〈w〉.0]νt such that M | O

and N | O are well-formed, and f ∈ ν, for some fresh name f . Since M ↓n the
network M | O will never (even in the future) perform an output action !w.ν.

On the other hand, if N 6⇓n by Theorem 3.3 we would have N | O _∗ σ−−→ N ′,

26

for some network N ′. This implies N | O _∗ σ−−→_∗ !w.ν−−−−→. However, by Theo-
rem 6.3 it follows that M | O ≈ N | O. So, it must be N ⇓n. �

In Theorem 6.5, we report a number of algebraic laws on well-formed networks
that can be proved using our bisimulation proof-technique. The first and the
second law show different but equivalent nodes that do not interact with the rest
of the network. The third law is about exposed sleeping nodes. The fourth law
is about successful reception. Here, node n will receive correctly because all its
neighbours will not interfere during the current transmission. The fifth and the
sixth law are about collisions: in both cases the transmission at m will cause
a collision at n. The seventh law tells about the blindness of receivers exposed
to collisions. In particular, if all neighbours of a transmitter are exposed, then
the content of the transmission is irrelevant as all recipients will fail. Only the
duration of the transmission may be important as the exposure indicators of the
neighbours may change.

Theorem 6.5 All networks below are assumed to be well-formed.

1. n[nil]νt ≈ n[Sleep]νt , where Sleep
def
= σ.Sleep.

2. n[nil]νt ≈ n[P]νt , if P does not contain sender processes.

3. n[σr.P]νs ≈ n[σr.P]νt if s ≤ r and t ≤ r.

4. m[〈v〉r.P]νt | n[(x)v.Q]ν
′

r | M ≈ m[〈v〉r.P]νt | n[σr.{v/x}Q]ν
′

r | M , if m ∈
ν ′ ⊆ nds(M) and whenever M

A
==⇒ !w.µ−−−−→, with n ∈ µ, then #σ(A) ≥ r+1.

5. m[!〈v〉.P]νs | n[(x)w.Q]ν
′

t ≈ m[!〈v〉.P]νs | n[(x)⊥.Q]ν
′

t , if m ∈ ν ′.

6. m[〈v1〉r.!〈v2〉.P]νs | n[(x)w.Q]ν
′

t ≈ m[〈v1〉r.!〈v2〉.P]νs | n[(x)⊥.Q]ν
′

t , if m ∈ ν ′.

7. m[!〈v〉.P]νt | N ≈ m[!〈w〉.P]νt | N , if δv = δw, and for all n ∈ ν it holds that

N ≡ n[W]ν
′

t′ | N ′, with t′ > 0.

Proof By exhibiting the appropriate bisimulations. Let us prove, for instance,
Laws 5 and 7. Let us start with Law 5. For convenience, let us define:

• A
def
= m[!〈v〉.P]νs | n[(x)w.Q]ν

′

t

• B
def
= m[!〈v〉.P]νs | n[(x)⊥.Q]ν

′

t .

Let
S def

= {(A, B) | for all s and t} ∪ Id

27

where Id is the identity relation over network terms. We prove that S is a
bisimulation up to ≡. We proceed by case analysis on the possible transitions of
A. Notice that by maximal progress, no σ-actions may be performed.

• If A
h?v′

−−−−→ A′. The most interesting case is when h ∈ ν∩ν ′. In this case, by
an application of rules (Coll), (Exp) and (RcvPar) we have A′ = m[!〈v〉.P]νs′ |
n[(x)⊥.Q]ν

′

t′ , where t′ = max(t, δv′) and s′ = max(s, δv′). Similarly, we have

B
h?v′

−−−−→ A′ and we are done.

• If A
!v.ν̂−−−−→ A′, with ν̂ = ν \ {n} 6= ∅, then since m ∈ ν ′, by an application

of rules (Snd), (Coll), (Sync) and (Out) it follows that A′ = m[〈v〉δv .P]νs |
n[(x)⊥.Q]ν

′

t′ with t′ = max(t, δv). Similarly, we have B
!v.ν̂−−−−→ A′ and we are

done.

• If A
τ−−→ A′, because A

m!v−−−→ A′ and ν = {n}. This case is similar to the
previous one.

As regards the proof of Law 7, let us define:

• A1
def
= m[!〈v〉.P]νt | N , where for all n ∈ ν it holds that N ≡ n[W]ν

′

t′ | N ′,
with t′ > 0

• B1
def
= m[!〈w〉.P]νt | N , where for all n ∈ ν it holds that N ≡ n[W]ν

′

t′ | N ′,
with t′ > 0

• A2
def
= m[〈v〉r.P]νt | N , with r ≤ δv, where for all n ∈ ν it holds that

N ≡ n[W]ν
′

t′ | N ′, with t′ ≥ r

• B2
def
= m[〈v〉r.P]νt | N , with r ≤ δw, where for all n ∈ ν it holds that

N ≡ n[W]ν
′

t′ | N ′, with t′ ≥ r

where δv = δw. Now, let

S def
= {(A1, B1) : for all P, t, ν, . . .} ∪ {(A2, B2) : for all P, t, ν, . . .)} ∪ Id

where Id is the identity relation between network terms. We prove that S is a
bisimulation. We proceed by case analysis on the possible transitions.

• Let us examine the most interesting transitions of A1. The reasoning for
the other transitions of A1 is simpler. Notice that by maximal progress the
term A1 cannot perform σ-actions.

28

– Let A1
τ−−→ A2 = m[〈v〉δv .P]νt | N̂ , because A1

m!v−−−→ A2 by an ap-
plication of rule (Shh). This is possible only by an application of rule
(Sync) with

∗ m[!〈v〉.P]νt
m!v−−−→ m[〈v〉δv .P]νt

∗ N
m?v−−−−→ N̂ , where if n ∈ ν then N̂ ≡ n[Ŵ]ν

′

t̂ | N̂ ′, with t̂ ≥ δv

(by definition of rules (Coll) and (Exp)).

Notice that since all nodes in ν ∩ nds(N) are exposed, it follows that
if Ŵ is an active receiver then it will be of the form (x)⊥.P , for some

P . Now, A2
τ−−→ B2 = m[〈w〉δw .P]νt |

ˆ̂
N , because A2

m!v−−−→ B2 by an
application of rule (Shh). This is possible only by an application of
rule (Sync) with

∗ m[!〈w〉.P]νt
m!w−−−−→ m[〈w〉δw .P]νt

∗ N
m?w−−−−→ ˆ̂

N , where if n ∈ ν then
ˆ̂
N ≡ n[

ˆ̂
W]ν

′

ˆ̂t
| ˆ̂
N ′, with ˆ̂t ≥ δv

(by definition of rules (Coll) and (Exp)).

Again, since all nodes in ν ∩ nds(N) are exposed, it follows that if
ˆ̂
W

is an active receiver then it will be of the form (x)⊥.P , for some P .

Moreover, since δv = δw it follows t̂ = ˆ̂t. As a consequence, N̂ =
ˆ̂
N

and (A2, B2) ∈ S.

• Let us examine the most interesting transitions of A2. The reasoning for
the other transitions is simpler.

– Let A2
σ−−→ A′

2 = m[〈v〉r−1.P]νt−1 | N̂ by an application of rule (Par-σ)
because

∗ m[〈v〉r.P]νt
σ−−→ m[〈v〉r−1.P]νt−1

∗ N
σ−−→ N̂ .

In this case we have B2
σ−−→ B′

2 = m[〈w〉r−1.P]νt−1 | N̂ . Now, indepen-
dent of whether r > 1 or not we have (A′

2, B
′
2) ∈ S.

�

7 Conclusions, future and relate work

We have proposed a broadcasting timed process calculus for wireless networks
with time-consuming transmissions. We have equipped our calculus with a for-
mal operational semantics which has been used to formally analyse communi-
cation collisions. We have used an extended version of TCWS to describe a

29

number of protocols at different levels of abstraction. Then, we have developed
a bisimulation-based semantic theory which has been used to prove a number of
algebraic laws.

In TCWS we have modelled wireless networks with a unique channel. How-
ever, new techniques have been developed in the last years to provide several vir-
tual channels. The most known techniques are Frequency Division Multiplexing
(FDM), which involves assigning non-overlapping frequency ranges to different
signals, and Time Division Multiplexing (TDM), in which the time domain is
divided into several recurrent time slots of fixed length, one for each sub-channel.

Frequency Division Multiplexing, where a channel is divided into several non-
interfering sub-channels, can be easily implemented in a generalisation of TCWS
with multiple channels (à la CCS).

Time Division Multiplexing can be represented in TCWS as well. For instance,
Time Division Multiple Access (TDMA) is a type of Time Division Multiplexing,
where instead of having one transmitter connected to one receiver, there are
multiple transmitters. TDMA is used in the digital 2G cellular systems such as
Global System for Mobile Communications (GSM). TDMA allows several users to
share the same frequency channel by dividing the signal into different time slots.
The users transmit in rapid succession, one after the other, each using his own
time slot. This allows multiple stations to share the same transmission medium
(e.g. radio frequency channel) while using only a part of its channel capacity.
TDMA is easy to model in our TCWS calculus. To have an idea let us consider a
simple system in which the channel is divided in two sub-channels taking ∆ time
units each:

Sys
def
= m1[P]

νm1
0

∣∣ n1[R]
νn1
0

∣∣ m2[σ
∆.P]

νm2
0

∣∣ n2[σ
∆.R]

νm1
0

where P
def
=σ∆.P and R

def
=σ∆.R are two synchronised processes.

Intuitively, the pair of nodes m1 and n1 use the channel in odd time slots, while
m2 and n2 use the channel in even time slots.

In TCWS we have assumed that all nodes have the same transmission range;
this is a quite common assumption in models for ad hoc networks [33] and actually
it is required in some MAC-layer protocols such as CSMA/CA (see Section 4.1.1
for details).

As in Lanese and Sangiorgi’s CWS [25], our calculus does not deal with node
mobility, i.e. nodes are assumed to be immobile. This is mainly for two reasons.
First, as noticed in [25] node mobility is an orthogonal issue, which does not af-
fect the formulation of our semantics and the treatment of interference (the main
topic of this paper). Second, movement is not relevant in important classes of
wireless systems, most notably sensor networks [2] (not all sensor networks are
stationary, but the stationary case is predominant). Nevertheless, it is possible

30

to adopt in our calculus some techniques developed in [14, 15] to allow disci-
plined forms of mobility, where neighbouring relations may change provided that
network connectivity is maintained.

In Section 4.1, we have seen that the CSMA scheme (even in its p-persistent
form) suffers of several problems such as the exposed terminal problem and the
hidden terminal problem. Clearly, in a broadcast environment where there is
no direct way to infer the loss of information owing to collisions, it is impor-
tant to indirectly and accurately determine the probability of packet collisions.
We believe that our calculus represents a solid basis to develop a probabilistic
calculus where transmitters start transmitting with a certain probability p (in-
dependently whether the channel is free) and with probability 1− p waits before
transmitting. The goal would be that of developing verification techniques such
as probabilistic model checking [24] to guarantee the absence of collisions with a
certain probability. This will be one of the directions of our research.

Last but not least, we believe that our timed calculus can be used as a basis to
develop trust models for wireless systems. Trust establishment in ad hoc networks
is an open and challenging field. In fact, without a centralised trusted authority
it is not obvious how to build and maintain trust. Nevertheless, the notion of
time seems to be important to represent credentials’ expiration.

Let us examine now the most relevant related works.
We start with the literature on process calculi for wireless systems. Nanz and

Hankin [36] have introduced a calculus for Mobile Wireless Networks (CBS]),
relying on graph representation of node localities. The main goal of the paper is
to present a framework for specification and security analysis of communication
protocols for mobile wireless networks. Merro [29] has proposed a process calculus
for Mobile Ad Hoc Networks with a labelled characterisation of reduction barbed
congruence. Godskesen [16] has proposed a calculus for mobile ad hoc networks
(CMAN). The paper proves a characterisation of reduction barbed congruence in
terms of a contextual bisimulation. It also contains a formalisation of an attack
on the cryptographic routing protocol ARAN. Singh, Ramakrishnan and Smolka
[44] have proposed the ω-calculus, a conservative extension of the π-calculus. A
key feature of the ω-calculus is the separation of a node’s communication and
computational behaviour from the description of its physical transmission range.
The authors provide a labelled transition semantics and a bisimulation in “open”
style. The ω-calculus is then used for modelling the AODV routing protocol.
Ghassemi et al. [14] have proposed a process algebra for mobile ad hoc networks
(RBPT) where, topology changes are implicitly modelled in the (operational)
semantics rather than in the syntax. The authors propose a notion of bisimu-
lation for networks parameterised on a set of topology invariants that must be
respected by equivalent networks. This work in then refined in [15] where the

31

authors propose an equational theory for an extension of RBPT. All the previous
calculi abstract from the presence of interferences. Lanese and Sangiorgi [25] have
instead proposed the CWS calculus, a lower level untimed calculus to describe
interferences in wireless systems. In their LTS there is a separation between
transmission beginning and transmission ending. Our work is definitely inspired
by [25]. More recently, Godskesen and Nanz [18] have proposed a simple timed
calculus for wireless systems to express a wide range of mobility models.

None of the calculi mentioned above, except for [18], deals with time, although
there is an extensive literature on timed process algebra. From a purely syntactic
point of view, the earliest proposals are extensions of the three main process
algebras, ACP, CSP and CCS. For example, [4] presents a real-time extension
of ACP, [41] contains a denotational model for a timed extension of CSP, while
CCS is the starting point for [35]. In [4] and [41] time is real-valued, and at
least semantically, associated directly with actions. The other major approach
to representing time is to introduce special actions to model the passage of time,
which the current paper shares with [19, 7, 35, 37] and [47, 48], although the
basis for all those proposals may be found in [9]. The current paper shares many
of the assumptions of the languages presented in these papers. For example, all
the papers above assume that actions are instantaneous and only the extension of
ACP presented in [19] does not incorporate time determinism; however maximal
progress is less popular and patience is even rarer.

More recent works on timed process algebra include the following papers.
Aceto and Hennessy [1] have presented a simple process algebra where time
emerges in the definition of a timed observational equivalence, assuming that
beginning and termination of actions are distinct events which can be observed.
Hennessy and Regan [20] have proposed a timed version of CCS enjoying time
determinism, maximal progress and patience. Our action σ takes inspiration
from theirs. The authors have developed a semantic theory based on testing and
characterised in terms of a particular kind of ready traces. Prasad [39] has pro-
posed a timed variant of his CBS [38], called TCBS. In TCBS a time out can
force a process wishing to speak to remain idle for a specific interval of time;
this corresponds to have a priority. TCBS also assumes time determinism and
maximal progress. Corradini et al. [11] deal with durational actions proposing
a framework relying on the notions of reduction and observability to naturally
incorporate timing information in terms of process interaction. Our definition
of timed reduction barbed congruence takes inspiration from theirs. Corradini
and Pistore [12] have studied durational actions to describe and reason about the
performance of systems. Actions have lower and upper time bounds, specifying
their possible different durations. Their time equivalence refines the untimed one.
Baeten and Middelburg [5] have proposed several timed process algebras treated

32

in a common framework, and related by embeddings and conservative extensions
relations. These process algebras, ACPsat, ACPsrt, ACPdat and ACPdrt, allow the
execution of two or more actions consecutively at the same point in time, separate
the execution of actions from the passage of time, and consider actions to have no
duration. The process algebra ACPsat is a real-time process algebra with absolute
time, ACPsrt is a real-time process algebra with relative time. Similarly, ACPdat

and ACPdrt are discrete-time process algebras with absolute time and relative
time, respectively. In these process algebra the focus is on unsuccessful termina-
tion or deadlock. In [6] Baeten and Reniers extend the framework of [5] to model
successful termination for the relative-time case. Laneve and Zavattaro [26] have
proposed a timed extension of π-calculus where time proceeds asynchronously
at the network level, while it is constrained by the local urgency at the process
level. They propose a timed bisimilarity whose discriminating is weaker when
local urgency is dropped.

Acknowledgements The referees have provided many useful suggestions. We
thank Sebastian Nanz for a preliminary discussion on timed calculi for wireless
networks. Davide Quaglia for insightful discussions on the IEEE 802.11 standard.
Many thanks to Matthew Hennessy for his precious comments on an early draft
of the paper. We thank Andrea Cerone for suggesting us to use receivers with
timeout to model the CSMA protocol.

References

[1] L. Aceto and M. Hennessy. Towards action-refinement in process algebras.
Information and Computation, 103(2):204–269, 1993.

[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. Wireless sensor networks: a survey. Computer Networks, 38(4),
2002.

[3] ZigBee Alliance. Zigbee specification, version 1.0. Technical Report
053474r06, ZigBee Alliance, 2005.

[4] J. Baeten and J. Bergstra. Real Time Process Algebra. Formal Aspects of
Computing, 3(2):142–188, 1991.

[5] J. Baeten and C. Middelburg. Process Algebra with Timing. EATCS Series.
Springer-Verlag, 2002.

33

[6] J. C. M. Baeten and M. A. Reniers. Timed Process Algebra (With a Focus
on Explicit Termination and Relative-Timing). In SFM, volume 3185 of
Lecture Notes in Computer Science, pages 59–97. Springer-Verlag, 2004.

[7] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal
Aspects of Computing, 8(2):188–208, 1996.

[8] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60:109–137, 1984.

[9] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Lan-
guage and its Mathematical Semantics. Technical Report 842, INRIA,
Sophia-Antipolis, 1988.

[10] L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[11] F. Corradini, G. Ferrari, and M. Pistore. On the semantics of durational
actions. Theoretical Computer Science, 269(1-2):47–82, 2001.

[12] F. Corradini and M. Pistore. Closed interval process algebra versus interval
process algebra. Acta Informatica, 37(7):467–509, 2001.

[13] S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-Sync Protocol for Sensor
Networks. In SenSys, pages 138–149. ACM Press, 2003.

[14] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted Broadcast Process
Theory. In SEFM, pages 345–354. IEEE Computer Society, 2008.

[15] F. Ghassemi, W. Fokkink, and A. Movaghar. Equational Reasoning on Ad
Hoc networks. In FSEN, To appear in Lecture Notes in Computer Science.
Springer, 2009.

[16] J.C. Godskesen. A Calculus for Mobile Ad Hoc Networks. In COORDINA-
TION, volume 4467 of Lecture Notes in Computer Science, pages 132–150.
Springer Verlag, 2007.

[17] J.C. Godskesen. A Calculus for Mobile Ad-hoc Networks with Static Loca-
tion Binding. To appear in the Prooceedings of EXPRESS, 2008.

[18] Jens Chr. Godskesen and Sebastian Nanz. Mobility Models and Behavioural
Equivalence for Wireless Networks. In COORDINATION, volume 5521 of
Lecture Notes in Computer Science, pages 106–122. Springer, 2009.

34

[19] J.F. Groote. Specification and Verification of Real Time Systems in acp. In
PSTV, pages 261–274. North-Holland, 1990.

[20] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117(2):221–239, 1995.

[21] M. Hennessy and J. Riely. A typed language for distributed mobile processes.
In Proc. 25th POPL. ACM Press, 1998.

[22] IEEE 802.11 WG. ANSI/IEEE standard 802.11: Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications. IEEE Computer
Society, 2007.

[23] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link layer secu-
rity architecture for wireless sensor networks. In Proceedings of SenSys’04,
pages 162–175. ACM, 2004.

[24] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic model
checking for performance and reliability analysis. ACM SIGMETRICS Per-
formance Evaluation Review, 36(4):40–45, 2009.

[25] Ivan Lanese and Davide Sangiorgi. An operational semantics for a calcu-
lus for wireless systems. Theoretical Computer Science, 411(19):1928–1948,
2010.

[26] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS,
volume 3441 of Lecture Notes in Computer Science, pages 282–298. Springer,
2005.

[27] Q. Li and D. Rus. Global Clock Synchronization in Sensor Networks. IEEE
Transactions on Computers, 55(2):214–226, 2006.

[28] M. Luk, G. Mezzour, A. Perrig, and V.D. Gligor. Minisec: a secure sensor
network communication architecture. In IPSN, pages 479–488, 2007.

[29] M. Merro. An Observational Theory for Mobile Ad Hoc Networks (full
paper). Information and Computation, 207(2):194–208, 2009.

[30] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[31] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts
I and II). Information and Computation, 100:1–77, 1992.

[32] R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP, volume 623 of
Lecture Notes in Computer Science, pages 685–695. Springer Verlag, 1992.

35

[33] S Misra and I Woungag. Guide to Wireless Ad Hoc Networks. Computer
Communications and Networks. Springer London, 2009.

[34] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous Clock Synchro-
nization in Wireless Real-Time Applications. In SRDS, pages 125–133. IEEE
Computer Society, 2000.

[35] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems.
In CONCUR, volume 458 of Lecture Notes in Computer Science, pages 401–
415. Springer Verlag, 1990.

[36] S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wire-
less Networks. Theoretical Computer Science, 367(1-2):203–227, 2006.

[37] X. Nicollin and J. Sifakis. The Algebra of Timed Processes, ATP: Theory
and Application. Information and Computation, 114(1):131–178, 1994.

[38] K.V.S. Prasad. A Calculus of Broadcasting Systems. Science of Computer
Programming, 25(2-3), 1995.

[39] K.V.S. Prasad. Broadcasting in Time. In COORDINATION, volume 1061
of Lecture Notes in Computer Science, pages 321–338. Springer Verlag, 1996.

[40] J. Rathke, V. Sassone, and P. Sobocinski. Semantic Barbs and Biorthog-
onality. In FoSSaCS, volume 4423 of Lecture Notes in Computer Science,
pages 302–316. Springer, 2007.

[41] G.M. Reed. A Hierarchy of Domains for Real-Time Distributed Computing.
Technical Report, Oxford, 1988.

[42] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a
block-cipher mode of operation for efficient authenticated encryption. In
ACM Conference on Computer and Communications Security, pages 196–
205, 2001.

[43] M. L. Sichitiu and C. Veerarittiphan. Simple, Accurate Time Synchroniza-
tion for Wireless Sensor Networks. In WCNC, pages 1266–1273. IEEE Com-
puter Society, 2003.

[44] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A Process Calculus for
Mobile Ad Hoc Networks. In COORDINATION, volume 5052 of Lecture
Notes in Computer Science, pages 296–314, 2008.

36

[45] W. Su and I. Akyildiz. Time-Diffusion Synchronization Protocols for Sensor
Networks. IEEE/ACM Transactions on Networking, 13(2):384–397, 2005.

[46] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization
for wireless sensor networks: a survey. Ad Hoc Networks, 3(3):281–323, 2005.

[47] W. Yi. Real-Time Behaviour of Asynchronous Agents. In CONCUR, volume
458 of Lecture Notes in Computer Science, pages 502–520. Springer Verlag,
1990.

[48] W. Yi. A Calculus of Real Time Systems. Ph.D Thesis, Chalmers University,
1991.

[49] S. Yoon, C. Veerarittiphan, and M. L. Sichitiu. Tiny-sync: Tight time syn-
chronization for wireless sensor networks. ACM Transactions on Sensor
Networks, 3(2):81–118, 2007.

A Proofs
Proof of Proposition 2.4
Let us prove the single items of the proposition.
1. Let us prove first the implication from left to right. If m 6∈ nds(M) then

M
m?v−−−−→ M ′, for some network M ′.

Let us proceed by induction on the structure of M .

• Let M = 0. By an application of rule (Zero) we have M
m?v−−−−→ M .

• Let M = n[W]νt . Let us proceed by induction on the structure of W .

– Let W = nil. There are two cases.

∗ If m 6∈ ν then by an application of rule (OutRng) we have M
m?v−−−−→

M .

∗ If m ∈ ν then by an application of rule (Exp) we have M
m?v−−−−→ M ′

with M ′ = n[nil]νt′ , where t′ = max(t, δv).

– Let W = !〈v〉.P . This case is similar to the previous one.

– W = σ.P . This case is similar to the previous one.

– W = 〈v〉r.P . This case is similar to the previous one.

– Let W = bτ.P cQ. This case is similar to the previous one.

– Let W = b?(x).P cQ. There are three sub-cases.

37

∗ If m 6∈ ν then by an application of rule (OutRng) we have M
m?v−−−−→

M .

∗ If m ∈ ν and t = 0 then there are two possibilities:

· by an application of rule (Rcv) we can derive M
m?v−−−−→ M ′,

with M ′ = n[(x)v.P]νδv ;

· by an application of rule (Exp) we can derive M
m?v−−−−→ M ′,

with M ′ = n[b?(x).P cQ]νδv .

∗ If m ∈ ν and t > 0 then by an application of rule (Exp) we have

M
m?v−−−−→ M ′, with M ′ = n[b?(x).P cQ]νt′ and t′ = max(t, δv).

– Let W = (x)w.P . There are two sub-cases.

∗ If m ∈ ν then by an application of rule (Coll), it holds that

M
m?v−−−−→ M ′ = n[(x)⊥.P]νt′ with t′ := max(t,δv).

∗ If m /∈ ν then by an application of rule (OutRng) we have M
m?v−−−−→

M .

– Let W = [v = v]P1, P2. By an application of rule (Then) we can apply
the inductive hypothesis to conclude that the statement holds.

– Let W = [v1 = v2]P1, P2, with v1 6= v2. By an application of rule
(Else), this case is similar to the previous one.

– Let W = H〈ṽ〉. The constraint on guarded recursion ensures us that
by an application of rule (Rec) we can apply the inductive hypothesis
to conclude that the statement holds.

• Let M = M1 | M2. By inductive hypothesis it holds that M1
m?v−−−−→ M ′

1

and M2
m?v−−−−→ M ′

2, for some M ′
1, M

′
2. By an application of rule (RcvPar) it

holds that M
m?v−−−−→ M ′, for M ′ = M ′

1 | M ′
2.

The implication from right to left says the following: if M
m?v−−−−→ M ′ for some

M ′, then m 6∈ nds(M). The proof is by straightforward rule induction.

2. Let us consider first the implication from left to right. If M1 | M2
m?v−−−−→ N then

there are N1 and N2 such that M1
m?v−−−−→ N1, M2

m?v−−−−→ N2 and N = N1 | N2.
Here, the proof follows by noticing that the only rule for deriving the action m?v
from M1 | M2 is (RcvPar). In its premises this rule requires exactly that the
two parallel components M1 and M2 must perform an action m?v. The other
implication is an easy application of rule (RcvPar).

38

3. If M
m!v−−−→ M ′ then M ≡ m[!〈v〉.P]νt | N , for some ν, t, P and N ,

and there is N ′ such that m[!〈v〉.P]νt
m!v−−−→ m[〈v〉δv .P]νt , N

m?v−−−−→ N ′ and
M ′ ≡ m[〈v〉δv .P]νt | N ′. The proof of this result follows by a straightforward

induction on why M
m!v−−−→ M ′.

4. If M
τ−−→ M ′ then M ≡ m[bτ.P cQ]νt | N , for some m, ν, t, P , Q and N

such that m[bτ.P cQ]νt
τ−−→ m[P]νt and M ′ ≡ m[P]νt | N . Again, the proof is by a

straightforward transition induction.

5. Let us consider first the implication from left to right. If M1 | M2
σ−−→ N then

there are N1 and N2 such that M1
σ−−→ N1, M2

σ−−→ N2 and N = N1 | N2. Here,
the proof follows by noticing that the only rule for deriving the action σ from
M1 | M2 is (σ-Par). In its premises this rule requires exactly that the two parallel
components M1 and M2 must perform an action σ. The other implication is an
easy application of rule (σ-Par). �

Now, we prove that our operational semantics preserves network well-formedness.

Proposition A.1 Let M be a node-unique network. If M
λ−−→ M ′ then M ′ is

node-unique.

Proof By transition induction. �

Proposition A.2 Let M be a connected network. If M
λ−−→ M ′ then M ′ is

connected.

Proof By transition induction. Notice that no inference rule changes the
network topology. �

Next, we prove that our labelled transition semantics preserves exposure con-
sistency. For that we need the two following technical lemmas.

Lemma A.3 Let M
λ−−→ M ′ with λ ∈ {m!v, m?v} such that M ≡

∏
i∈ ni[Wi]

νi

ti
and M ′ ≡

∏
i∈I ni[W

′
i]

νi

t′i
.

1. If λ = m?v then m 6= ni, for all i.

2. If λ = m!v then there is i ∈ I such that m = ni, Wi = !〈v〉.Pi and W ′
i =

〈v〉δv .Pi.

3. If m 6∈ νi, for some i, then t′i = ti; if also m 6= ni, then W ′
i = Wi.

4. If m ∈ νi, for some i, then t′i = max(ti, δv).

39

5. If m ∈ νi and W ′
i=(x)w.Pi, for some i, and w 6=⊥, then w = v, ti = 0,

t′i = δv, and Wi is not an active sender process,

6. If Wi = 〈w〉r.Pi, for some i, then W ′
i = Wi.

7. If m 6= ni and W ′
i = 〈w〉r.Pi, for some i, then W ′

i = Wi.

Proof By transition induction. �

Lemma A.4 Let M
σ−−→ M ′ such that M ≡

∏
i∈ ni[Wi]

νi

ti
and M ′ ≡

∏
i∈I ni[W

′
i]

νi

t′i
.

1. For all i, t′i = ti − 1, if ti > 0 and 0 otherwise.

2. If W ′
i = (x)v.P , for some i, then

• either Wi = W ′
i

• or Wi is not an active receiver and v = ⊥

3. If W ′
i = 〈w〉r.P , for some i, then Wi = 〈w〉r+1.P .

Proof By transition induction. �

Now, we can prove the preservation of exposure consistency.

Proposition A.5 (Exposure consistency) Let M be an exposure consistent

network. If M
λ−−→ M ′ then M ′ is exposure consistent.

Proof The proof proceeds by transition induction on the derivation of M
λ−−→

M ′, for λ ∈ {m!v, m?v, σ, τ}. We show the most significant cases, derived by an
application of rules (Sync), (RcvPar) and (σ-Par). The other cases are straightfor-
ward.

• Let M
m!v−−−→ M ′ by an application of rule (Sync) with M = M1 | M2,

M1
m!v−−−→ M ′

1 and M2
m?v−−−−→ M ′

2, and M ′ = M ′
1 | M ′

2, where M ′
1 and M ′

2

are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 2.7.

– Clauses 1-2. In these cases the result follows directly by inductive
hypothesis.

– Clause 3. Let M ′ ≡
∏

i ni[W
′
i]

νi

t′i
| h[〈v〉r.P]νh

t′h
| n[W ′]νn

t′n
, with h ∈ νn.

We have to prove that r ≤ t′n. We only consider the case when h ∈
nds(M1) and n ∈ nds(M2) (or vice versa). The other cases are easier.
There are two possibilities.

40

∗ h 6= m. By Lemma A.3(7) we have

M ≡
∏

i

ni[Wi]
νi

ti
| h[〈v〉r.P]νh

th
| n[W]νn

tn

for appropriate processes and tags. Now, if m ∈ νn by Lemma
A.3(4) we have t′n = max(tn, δv). As M is exposure consistent it
holds that r ≤ tn and hence also r ≤ t′n. On the other hand, if
m 6∈ νn by an application of Lemma A.3(3) we have t′n = tn. As
M is exposure consistent it follows that r ≤ tn = t′n.

∗ h = m. By Lemma A.3(2) it follows that

M ≡
∏

i

ni[Wi]
νi

ti
| h[!〈v〉.P]νh

th
| n[W]νn

tn

for appropriate processes and tags, with r = δv. Since h ∈ νn,
by Lemma A.3(4) we have t′n = max(tn, δv). As a consequence,
r ≤ t′n.

– Clause 4. Let

M ≡ N | n[W]νt =
∏

i

ni[Wi]
νi

ti
| n[W]νt

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W
′
i]

νi

t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have
to prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i,
then t′i ≥ t′. We can distinguish two cases:

∗ If m 6∈ ν by Lemma A.3(3) we have t′ = t. By Lemma A.3(6),
it follows that actsnd(N) ⊆ actsnd(N ′). As a consequence, ν ∩
actsnd(N) ⊆ ν ∩ actsnd(N ′). Since t′ = t we can derive that
for all k ∈ ν ∩ actsnd(N) it holds that active(k,N ′) 6= t. By
Lemma A.3(6) and Lemma A.3(7) if k 6= m then active(k,N) =
active(k,N ′). Since m 6∈ ν it follows that for all k ∈ ν ∩ actsnd(N)
it holds active(k,N) 6= t. Since M is exposure consistent it follows
that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then
ti ≥ t. Notice that ν \ nds(N) = ν \ nds(N ′). Moreover, by
Lemma A.3(3) and A.3(4) we have ti ≤ t′i, for all i. This allows
us to derive that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for
some i, then t′i ≥ ti ≥ t = t′.

41

∗ If m ∈ ν then by Lemma A.3(4) we have t′ = max(t, δv). By
definition of neighbouring of a node m ∈ ν implies m 6= n. By
Lemma A.3(2) it follows that m 6∈ actsnd(N), m ∈ actsnd(N ′)
and active(m, N ′) = δv. Since active(k′, N ′) 6= t′ for all k′ ∈ ν ∩
actsnd(N ′), and m ∈ ν ∩ actsnd(N ′), it follows that t′ 6= δv. Since
t′ = max(t, δv), it follows that t′ = t. By Lemma A.3(6), it follows
that actsnd(N) ⊆ actsnd(N ′). As a consequence, ν ∩ actsnd(N) ⊆
ν ∩ actsnd(N ′). Since t′ = t we can derive that for all k ∈ ν ∩
actsnd(N) it holds that active(k,N ′) 6= t. By Lemma A.3(6) and
Lemma A.3(7) if k 6= m then active(k,N) = active(k,N ′). Since
m 6∈ actsnd(N) it follows that for all k ∈ ν ∩ actsnd(N) it holds
active(k,N) 6= t. Since M is exposure consistent it follows that
there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then ti ≥ t.
Notice that ν\nds(N) = ν\nds(N ′). Moreover, by Lemmas A.3(3)
and A.3(4) we have ti ≤ t′i, for all i. This allows us to derive that
there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ ti ≥ t = t′.

• Let M
m?v−−−−→ M ′ by an application of rule (RcvPar) with M = M1 | M2,

M1
m?v−−−−→ M ′

1, M2
m?v−−−−→ M ′

2, and M ′ = M ′
1 | M ′

2, where both M ′
1 and M ′

2

are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 2.7.

– Clauses 1-2. We reason as in the case of the the sending action m!v
examined above.

– Clause 3. Let M ′ ≡
∏

i ni[W
′
i]

νi

t′i
| h[〈v〉r.P]νh

t′h
| n[W ′]νn

t′n
, with h ∈ νn.

We have to prove that r ≤ t′n. We only consider the case when h ∈
nds(M1) and n ∈ nds(M2) (or vice versa). The other cases are easier.
By Lemma A.3(1) it holds that m 6∈ nds(M ′). By A.3(7) it follows:

M ≡
∏

i

ni[Wi]
νi

ti
| h[〈v〉r.P]νh

th
| n[W]νn

tn

for appropriate processes and tags. Now, if m ∈ νn by Lemma A.3(4)
we have t′n = max(tn, δv). As M is exposure consistent it holds that
r ≤ tn and hence also r ≤ t′n. On the other hand, if m 6∈ νn by
an application of Lemma A.3(3) we have t′n = tn; as M is exposure
consistent it follows that r ≤ tn = t′n.

– Clause 4. Let

M ≡ N | n[W]νt =
∏

i

ni[Wi]
νi

ti
| n[W]νt

42

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W
′
i]

νi

t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have
to prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i,
then t′i ≥ t′. There are two cases.

∗ Let m 6∈ ν. By Lemma A.3(3) we have t′ = t. By Lemma A.3(6),
it follows that actsnd(N) ⊆ actsnd(N ′). As a consequence, ν ∩
actsnd(N) ⊆ ν ∩ actsnd(N ′). Since t′ = t we can derive that
for all k ∈ ν ∩ actsnd(N) it holds that active(k,N ′) 6= t. By
Lemma A.3(6) and Lemma A.3(7) if k 6= m then active(k,N) =
active(k,N ′). Since m 6∈ ν it follows that for all k ∈ ν ∩ actsnd(N)
it holds active(k,N) 6= t. Since M is exposure consistent it follows
that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then
ti ≥ t. Notice that ν \ nds(N) = ν \ nds(N ′). Moreover, by
Lemma A.3(3) and A.3(4) we have ti ≤ t′i, for all i. This allows
us to derive that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for
some i, then t′i ≥ ti ≥ t = t′.

∗ Let m ∈ ν. By Lemma A.3(1) we have m 6∈ nds(M). By Lem-
mas A.3(6) and A.3(7) for all k ∈ nds(N) it holds that active(k,N) =
active(K, N ′). As a consequence, actsnd(N) = actsnd(N ′), and
hence ν ∩ actsnd(N) = ν ∩ actsnd(N ′). By Lemma A.3(4) we have
t′ = max(t, δv). So, there are two cases.

· Let δv ≤ t. Then t′ = t and for all k ∈ ν ∩ actsnd(N) it holds
active(k,N) 6= t. Since M is exposure consistent it follows
that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i,
then ti ≥ t. Notice that ν \ nds(N) = ν \ nds(N ′). Moreover,
by Lemmas A.3(3) and A.3(4) we have ti ≤ t′i, for all i. This
allows us to derive that there is k̂ ∈ ν \ nds(N ′) such that if
k̂ ∈ νi, for some i, then t′i ≥ ti ≥ t = t′.

· Let δv > t. Then t′ = δv. In this case, there is m ∈ ν \nds(N ′)
such that if m ∈ νi, for some i, then by Lemma A.3(4) it holds
that t′i = max(ti, δv). Thus, t′i ≥ δv = t′.

• Let M
σ−−→ M ′ by an application of rule (σ-Par) with M = M1 | M2,

M1
σ−−→ M ′

1 and M2
σ−−→ M ′

2, and M ′ = M ′
1 | M ′

2, where both M ′
1 and M ′

2

are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 2.7.

43

– Clauses 1-2. It is easy to show that M ′ is exposure consistent. The
results follow by inductive hypothesis.

– Clause 3. Let

M ′ ≡
∏

i

ni[W
′
i]

νi

t′i
| h[〈v〉r.P]νh

t′h
| n[W ′]νn

t′n

with h ∈ νn. We have to prove that r ≤ t′n. We only consider the case
when h ∈ nds(M1) and n ∈ nds(M2) (or vice versa). The other cases
are easier. By Lemma A.4(1) and A.4(3) we have

M ≡
∏

i

ni[Wi]
νi

ti
| h[〈v〉r+1.P]νh

th
| n[W]νn

t′n+1

for appropriate processes and tags. As M is exposure consistent, it
follows that r ≤ t′n.

– Clause 4. Let

M ≡ N | n[W]νt =
∏

i

ni[Wi]
νi

ti
| n[W]νt

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W
′
i]

νi

t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have
to prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some
i, then t′i ≥ t′. By Lemma A.4(1) we have t′ = t − 1. Since t′ > 0
it follows that t > 1. Moreover, by Lemma A.4(3), if W ′

i = 〈w〉r′
.Q,

for some i, then Wi = 〈w〉r.Q, with r′ = r − 1. As a consequence,
actsnd(N ′) ⊆ actsnd(N). By Lemma A.4(3) if active(k′, N ′) 6= t′ then
active(k′, N) 6= t′ + 1 = t. Notice also that active(k,N) = 1 for all
k ∈ actsnd(N)\actsnd(N ′). Thus, since t > 1 for all k ∈ ν∩actsnd(N)
it holds that active(k,N) 6= t. Since M is exposure consistent it follows
that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then ti ≥ t.
Notice that ν \ nds(M) = ν \ nds(M ′). Moreover, by Lemma A.4(1)
we have t′i = ti − 1, for all i. This allows us to derive that there is
k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then t′i ≥ t′.

• Let M
τ−−→ M ′ by an application of rule (τ -Par). It follows immediately by

an application of the inductive hypothesis.
�

44

Let us prove now that our LTS preserves transmission consistency.

Proposition A.6 (Transmission consistency) Let M be both an exposure con-

sistent and a transmission consistent network. If M
λ−−→ M ′ then M ′ is trans-

mission consistent.

Proof Let us consider all the possible values of λ.

• Let M
m!v−−−→ M ′. We have to prove that M ′ respects the clauses of Defini-

tion 2.8. Let examine the three clauses one by one.

– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.Q]νn

t′n

with w 6= ⊥. We have to prove that | actsnd(N ′) ∩ ν |≤ 1. By
Lemma A.3(2) we have

M ′ ≡ N ′ | n[(x)w.Q]νn

t′n
≡

∏
j

nj[W
′
j]

νj

t′j
| m[〈v〉δv .P]νm

t′m
| n[(x)w.Q]νn

t′n

and

M ≡ N | n[W]νn

t′n
=

∏
j

nj[Wj]
νj

tj
| m[!〈v〉.P]νm

tm
| n[W]νn

tn

for appropriate processes and tags.

There are two possibilities.

∗ If m /∈ νn then by Lemma A.3(3) we have W = (x)w.Q. By
Lemmas A.3(6) and A.3(7) we have actsnd(N ′) = actsnd(N)∪{m}.
Since M is transmission consistent, we have | actsnd(N)∩νn |≤ 1.
Since m /∈ νn it follows that | actsnd(N ′) ∩ νn |≤ 1.

∗ If m ∈ ν then by Lemma A.3(5) it follows that W is not ac-
tive sender and tn = 0. By Lemmas A.3(6) and A.3(7) we have
actsnd(N ′) = actsnd(N) ∪ {m}. Since tn = 0, m ∈ νn, and M
is exposure consistent, clause 3 of Definition 2.7 allows to derive
that actsnd(N ′) ∩ νn = {m}. Hence, | actsnd(N ′) ∩ νn |≤ 1.

– Clause 2. Let

M ′ ≡
∏

i

ni[W
′
i]

νi

t′i
| h[〈w1〉r.P]νh

t′h
| n[(x)w2 .Q]νn

t′n

with h ∈ νn and w2 6= ⊥. We have to show that w2 = w1 and r = t′n.
There are two cases.

45

1. Suppose h 6= m. In this case, by Lemma A.3(2) we have the
following situation:

M ′ ≡
∏

j

nj[W
′
j]

νj

t′j
| m[〈v〉δv .R]νm

t′m
| h[〈w1〉r.P]νh

t′h
| n[(x)w2 .Q]νn

t′n

and

M ≡
∏

j

nj[Wj]
νj

tj
| m[!〈v〉.R]νm

tm
| h[〈w1〉r.P]νh

th
| n[W]νn

tn

for appropriate processes and tags.
Now, there are two sub-cases.

(a) If m /∈ νn then by Lemma A.3(3) we have W = (x)w2 .Q and
t′n = tn. Since M is transmission consistent we derive w2 = w1

and r = t′n.

(b) If m ∈ νn then by Lemma A.3(5) we have tn = 0. However,
since M is exposure consistent by clause 3 of Definition 2.7 it
must be tn > 0. So, this case is not possible.

2. Suppose h = m. This case easily follows by an application of
Lemma A.3(2) and Lemma A.3(5).

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.P]νn

t′n

with | actsnd(N ′) ∩ νn |> 1. We want to show that w = ⊥. By an
application of Lemma A.3(2) it holds that

M ′ ≡
∏

j

nj[W
′
j]

νj

t′j
| m[〈v〉δv .Q]νm

t′m
| n[(x)w.P]νn

t′n

and
M ≡

∏
j

nj[Wj]
νj

tj
| m[!〈v〉.Q]νm

tm
| n[W]νn

tn

for appropriate processes and tags. Since | actsnd(N ′) ∩ νn |> 1, it
must be W ′

j = 〈wj〉r.Pj, for some j. By Lemma A.3(6) we derive
that Wj = W ′

j . At this point we reason by contradiction. Suppose
w 6= ⊥. Then, by Lemma A.3(5) we have tn = 0. However, since M
is exposure consistent, by clause 3 of Definition 2.7 it must be tn > 0.
This contradiction allows us to conclude that w = ⊥.

46

• Let M
m?v−−−−→ M ′. We have to prove that M ′ respect the clauses of Defini-

tion 2.8.

– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.Q]νn

t′n

with w 6= ⊥. We have to prove that | actsnd(N ′) ∩ νn |≤ 1. There are
two possibilities.

∗ If m /∈ νn then by Lemma A.3(3) we have

M ≡ N | n[(x)w.Q]νn

tn
=

∏
i

ni[Wi]
νi

ti
| n[(x)w.Q]νn

tn
.

Since M is transmission consistent, we have | actsnd(N)∩νn |≤ 1.
By Lemmas A.3(6) and A.3(7) we derive actsnd(N ′) = actsnd(N).
This allows us to derive that | actsnd(N ′) ∩ νn |≤ 1.

∗ If m ∈ νn, since w 6= ⊥, by Lemma A.3(5) we have

M ≡ N | n[W]νn

0 =
∏

i

ni[Wi]
νi

ti
| n[W]νn

0

where t′n = δv and W is not an active receiver. By Lemmas A.3(6)
and A.3(7) we derive actsnd(N ′) = actsnd(N). Since M is expo-
sure consistent, by clause 3 of Definition 2.7 we derive | actsnd(N)∩
νn |= 0. As a consequence, | actsnd(N ′) ∩ νn |= 0.

– Clause 2. Let

M ′ ≡
∏

i

ni[W
′
i]

νi

t′i
| h[〈w1〉r.P]νh

t′h
| n[(x)w2 .Q]νn

t′n

with h ∈ νn and w2 6= ⊥. We have to show that w2 = w1 and r = t′n.
By Lemma A.3(1) we have h 6= m. By Lemmas A.3(7) we have

M ≡
∏

i

ni[Wi]
νi

ti
| h[〈w1〉r.P]νh

th
| n[W]νn

tn

for appropriate processes and tags. Now, there are two cases.

∗ If m 6∈ νn then by Lemma A.3(3) we have W = (x)w2 .Q and
t′n = tn. Since M is transmission consistent it follows that w2 = w1

and t′n = r.

47

∗ If m ∈ νn then by Lemma A.3(5) we have tn = 0. Since M
is exposure consistent, by clause 3 of Definition 2.7 it should be
tn > 0. This contradiction shows that this case is not possible.

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.P]νn

t′n

with | actsnd(N ′) ∩ νn |> 1. We have to show that w = ⊥. By
Lemma A.3 we have

M ≡
∏

i

ni[Wi]
νi

ti
| n[W]νn

tn

for appropriate processes and tags. Since | actsnd(N ′) ∩ νn |> 1 it
follows that W ′

j = 〈wj〉rj .Pj and W ′
k = 〈wk〉rk .Pk, for some j and

k such that {nj, nk} ⊆ νn. By Lemma A.3(1) and Lemma A.3(7) we
have Wj = W ′

j and Wk = W ′
k. At this point we reason by contradiction.

Suppose w 6= ⊥. Then, by Lemma A.3(5) we have tn = 0. However,
since M is exposure consistent, by clause 3 of Definition 2.7 it must
be tn > 0. This contradiction allows us to derive that w = ⊥.

• Let M
σ−−→ M ′. We have to prove that M ′ respects the clauses of Defini-

tion 2.8. Let us examine the three clauses one by one.

– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.Q]νn

t′n

with w 6= ⊥. We have to prove that | actsnd(N ′) ∩ νn |≤ 1. By
Lemma A.4(2), since w 6= ⊥, it must be

M ≡ N | n[(x)w.Q]νn

tn
=

∏
i

ni[Wi]
νi

ti
| n[(x)w.Q]νn

tn

Since M is transmission consistent it follows that | actsnd(N)∩ν |≤ 1.
By Lemma A.4(3) it follows that actsnd(N ′) ⊆ actsnd(N). This implies
| actsnd(N ′) ∩ ν |≤ 1.

– Clause 2. Let

M ′ ≡
∏

i

ni[W
′
i]

νi

t′i
| h[〈w1〉r.P]νh

t′h
| n[(x)w2 .Q]νn

t′n

48

with h ∈ νn and w2 6= ⊥. We have to show that w2 = w1 and r = t′n.
Since w2 6= ⊥, by Lemmas A.4(1), A.4(2) and A.4(3)

M ≡
∏

i

ni[Wi]
νi

ti
| h[〈w1〉r+1.P]νh

th
| n[(x)w2 .Q]νn

t′n+1 .

Since M is transmission consistent we have w2 = w1 and r+1 = t′n+1.
As a consequence, r = t′n.

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P]νn

t′n
=

∏
i

ni[W
′
i]

νi

t′i
| n[(x)w.P]νn

t′n

with | actsnd(N ′) ∩ νn |> 1. We have to show that w = ⊥. By an
application of Lemma A.4(2) there are two possibilities:

∗ Either

M ≡ N | n[(x)w.P]νn

tn
=

∏
i

ni[Wi]
νi

ti
| n[(x)w.P]νn

tn
.

In this case, by Lemma A.4(3) it follows that actsnd(N ′) ⊆ actsnd(N).
Thus | actsnd(N ′) ∩ νn |> 1 implies | actsnd(N) ∩ νn |> 1. Since
M is transmission consistent it follows that w = ⊥.

∗ Or
M ≡ N | n[W]νn

tn
=

∏
i

ni[Wi]
νi

ti
| n[W]νn

tn

where W is not an active receiver and w = ⊥.

• Let M
τ−−→ M ′ by an application of rule (τ -Par). It follows immediately by

an application of Proposition 2.4(4).
�

Finally, every thing is in place to prove that network well-formedness is pre-
served at run time.

Proof of Theorem 2.10
The proof follows by an application of Propositions A.1, A.2, A.5, and A.6. �

49

Proof of Theorem 3.1
By induction on the length of the proof of M

σ−−→ M ′. The base cases are when
the transition is derived by the application of one of the rules of Table 4 but rule
(σ-Par). It is straightforward to prove that the statement holds for these rules. As

to the inductive case, let M
σ−−→ M ′ by an application of rule (σ-Par). This implies

that M = M1 | M2, for some M1 and M2, with M1
σ−−→ M ′

1, M2
σ−−→ M ′

2 and

M ′ = M ′
1 | M ′

2. As M = M1 | M2, the transition M
σ−−→ M ′′ can be derived only

by applying rule (σ-Par) where M1
σ−−→ M ′′

1 , M2
σ−−→ M ′′

2 and M ′′ = M ′′
1 | M ′′

2 .
By inductive hypothesis it holds that M ′

i and M ′′
i are syntactically the same, for

i ∈ {1, 2}. This implies that M ′ and M ′′ are syntactically the same. �

Proof of Theorem 3.2
By induction on the structure of M . If M = 0 the statement does not apply. Let

M be composed by only one node with M
m!v−−−→ N . In this case the transition

can only be derived by an application of rule (Snd) where M = m[!〈v〉.P]νt , for
some P , ν and t, and N = m[〈v〉δv .P]νt . Because sender nodes cannot perform

σ-actions, there is no network M ′ such that M
σ−−→ M ′. Let M be composed

by at least two nodes. If M
m!v−−−→ N then by an application of rule (Sync) we

have M = M1 | M2 for some M1 and M2, with M1
m!v−−−→ M ′

1, M2
m?v−−−−→ M ′

2 and
N = M ′

1 | M ′
2 (the converse is similar). In this case the only rule for deriving

a σ-transition from M is (σ-Par). However, the inductive hypothesis guarantees

that M1
σ−−→ M̂ for no network M̂ ; thus M

σ−−→ M ′ for no network M ′. �

In order to prove Theorem 3.3 on the Patience property, we use the following
auxiliary lemma.

Lemma A.7 Let M be a well-formed network. If M
m!v−−−→ M ′ then for all

network N such that M | N is a well-formed network it holds that M | N
m!v−−−→

M ′ | N ′ for some network N ′.

Proof The result follows by Proposition 2.4(1) and an application of rule
(Sync).

�

Proof of Theorem 3.3
By contradiction and then by induction on the structure of M . We prove that

if M
σ−−→ N for no network N then M

m!v−−−→ M ′ for some network M ′. Let us
proceed by induction on the structure of M .

• Let M = 0. Then M
σ−−→ M by an application of rule (σ-Zero). So, the

statement does not apply.

50

• Let M = n[W]νt . We proceed by induction on the structure of W .

– If W = nil then M
σ−−→ n[nil]νt−1 by an application of rule (σ-Nil).

Thus, the statement does not apply.

– If W = σ.P then M
σ−−→ n[P]νt−1 by an application of rules (Sleep).

Then, the statement does not apply.

– If W = !〈v〉.P then by inspection on the rules of Table 4 M
σ−−→ N

for no network N . However, M
m!v−−−→ m[〈v〉δv .P]νt , by an application

of rule (Snd), as expected.

– If W = b?(x).P cQ and t = 0 then M
σ−−→ n[Q]ν0, by an application of

rule (σ-Rcv). Then, the statement does not apply.

– If W = b?(x).P cQ and t > 0 then M
σ−−→ n[(x)⊥.P]νt−1, by an appli-

cation of rule (σ-Fail). Then, the statement does not apply.

– If W = bτ.P cQ then M
σ−−→ n[Q]νt−1, by an application of rule (σ-Tau).

Then, the statement does not apply.

– If W = [v = v]P1, P2 then by an application of rule (Then) we can
apply the inductive hypothesis to conclude that we fall in one of the
previous cases.

– If W = [v1 = v2]P1, P2, with v1 6= v2, by an application of rule (Else)
we can apply the inductive hypothesis to conclude that we fall in one
of the previous cases.

– If W = H〈ṽ〉 the constraint of guarded recursion ensures us that by
an application of rule (Rec) we can apply the inductive hypothesis and
we fall in one of the previous cases.

– If W = 〈v〉r.P (by definition r > 0) then by an application of rule

(ActSnd) we have M
σ−−→ n[〈v〉r−1.P]νt−1 and the statement does not

apply.

– If W = (x)v.P , with t > 0, then by an application of rule (ActRcv) we

have M
σ−−→ n[(x)v.P]νt−1 and the statement does not apply.

– If W = (x)v.P , with t = 0, then by an application of rule (RcvEnd) we

have M
σ−−→ n[{v/x}P]ν0 and the statement does not apply.

• Let M = M1 | M2. A transition of the form M
σ−−→ M ′ can be derived only

by an application of rule (σ-Par). Thus if M cannot perform a σ-action
then at least one of the premises of rule (σ-Par) does not hold:

51

– If M1
σ−−→ M ′

1 for no network M ′
1, then by inductive hypothesis we

have M1
m!v−−−→ M ′

1, for some M ′
1. As M = M1 | M2 is a well-formed

network, by Lemma A.7 it holds that M
m!v−−−→ M ′

1 | M ′
2, for some M ′

2,
in contradiction with the hypothesis.

– If M2
σ−−→ M ′

2 for no network M ′
2, then we can reason as in the previous

sub-case.
�

Proof of Proposition 4.1
By inspection of the code, if the receiver node n[P j

k]
νn

t sends a message authi

to authenticate packet pi in a generic epoch k then either k = i or k = 1 + i.
By definition, the packet pi is (originally) sent by the sender m at epoch i (the
attacker may replay the same packet later on). This suffices to conclude the
proof. �

Proof of Proposition 4.2
The proof proceeds by contradiction. We show that if #σ(Λ2) > 2∆N+3∆T then
the packet pi sent by m can not be authenticated by n. Suppose the sender node
m[Sj

i]
νm

t sends its ciphertext pi at epoch i and offset j. Without loss of generality,
we can suppose 1 ≤ ∆T ≤ δpi

≤ ∆N . Since #σ(Λ2) > 2∆N + 3∆T , the receiver
process Rj

i must miss the synchronisation with Sj
i . Then, after #σ(Λ2) instants of

time the receiver node n[Rj′

i′]
νn

t′ starts receiving the packet pi (from the attacker),
with i′ = i + 1 and j′ = j + #σ(Λ2)− E, if j + #σ(Λ2)− E < E, and i′ = i + 2
and j′ = j + #σ(Λ2)− 2E, if j + #σ(Λ2)−E ≥ E. The receiver node terminates

receiving the packet pi, in some state of the form P j′′

i′′ . Since #σ(Λ2) > 2∆N+3∆T
and 1 ≤ ∆T ≤ δpi

. It follows that i′′ ≥ i+2. However, by inspection of the code,
in an epoch greater than or equal as i + 2 the receiver node can not send the
message authi to authenticate a packet of epoch i. This concludes the proof. �

Proof of Theorem 6.3
We prove that the relation

S def
= {

(
M | O , N | O

)
: M ≈ N, M | O and N | O well-formed }

is a bisimulation. We proceed by case analysis on why M | O
α−−→ Z. The

interesting cases are when the transition is due to an interaction between M and
O. The remaining cases are simpler.

• Let M | O !v.ν−−−−→ M̂ , by an application of rule (Out) because M | O m!v−−−→
M̂ , with ν = ngh(m, M | O)\nds(M | O) and ν 6= ∅. There are two possible
cases:

52

– M | O
m!v−−−→ M̂ is derived by an application of rule (Sync) because

M
m!v−−−→ M ′ and O

m?v−−−−→ O′, with M̂ = M ′ | O′. Since M
m!v−−−→ M ′,

by Proposition 2.4(3) it follows that m ∈ nds(M). As M | O is well-
formed, by node-uniqueness, it follows that m 6∈ nds(O), and hence
ngh(m, M | O) = ngh(m, M). As nds(M | O) = nds(M) ∪ nds(O), it
follows that ν = (ngh(m, M)\nds(M))\nds(O). Let ν ′ = ngh(m, M)\
nds(M). Since ν 6= ∅ it follows that ν ′ 6= ∅. Since ν ′ 6= ∅ and M

m!v−−−→
M ′, by an application of rule (Out) we have M

!v.ν′

−−−−→ M ′. Now, since

M ≈ N there is N ′ such that N
!v.ν′

====⇒ N ′ with M ′ ≈ N ′. Since the
action !v.ν ′ can be generated only by an application of rule (Out), there

is h ∈ nds(N) such that N
h!v

===⇒ N ′ and ν ′ = ngh(h,N) \ nds(N) 6= ∅.
We recall that N | O is well-formed. This implies:

∗ h /∈ nds(O), by node-uniqueness;

∗ ν ′ ⊆ ngh(h,N);

∗ If k ∈ ν ′ ∩ nds(O) then h ∈ ngh(k,O), because the neighbouring
relation is symmetric (by Definition 2.6).

This implies that O
h?v−−−→ O′. By an application of rule (Sync) and

several applications of rule (TauPar) we have N | O
h!v

===⇒ N ′ | O′.
Since h 6∈ nds(O) it follows that ngh(h,N | O) = ngh(h,N). We recall
that ν ′ = ngh(h,M) \ nds(M) = ngh(h,N) \ nds(N). Thus, we have
the following sequence of equalities:

ν = ngh(m, M | O) \ nds(M | O)
= ngh(m, M) \ nds(M | O)
= (ngh(m, M) \ nds(M)) \ nds(O)
= (ngh(h,N) \ nds(N)) \ nds(O)
= ngh(h,N | O) \ nds(N | O)
6= ∅ .

As ν 6= ∅, by an application of rule (Out) we have N | O !v.ν
====⇒ N ′ | O′.

By Theorem 2.10, both M ′ | O′ and N ′ | O′ are well-formed. As
M ′ ≈ N ′ it follows that

(
M ′ | O′ , N ′ | O′) ∈ S.

– M | O m!v−−−→ M̂ , by an application of rule (Sync), because M
m?v−−−−→ M ′

and O
m!v−−−→ O′, with M̂ = M ′ | O′. Since O

m!v−−−→ O′, by Proposi-
tion 2.4(3) it follows that m ∈ nds(O), and hence ν = (ngh(m, O) \
nds(O)) \ nds(M). Since M ≈ N there is N ′ such that N

m?v
====⇒ N ′

with M ′ ≈ N ′. By several applications of rule (TauPar) and one

53

application of rule (Sync) (in its symmetric version) it follows that

N | O
m!v

====⇒ N ′ | O′. By Proposition 6.2, M ≈ N implies that
nds(M) = nds(N). Moreover, since M | O and N | O are well-formed
and m ∈ nds(O), by node uniqueness it follows that m 6∈ nds(M) and
m 6∈ nds(N). Thus,

ngh(m, N | O) \ nds(N | O) = (ngh(m, O) \ nds(O)) \ nds(N)
= (ngh(m, O) \ nds(O)) \ nds(M)
= ngh(m, M | O) \ nds(M | O)
= ν
6= ∅ .

With this premise, by an application of rule (Out) we can derive N |
O

!v.ν
====⇒ N ′ | O′. By Theorem 2.10, both M ′ | O′ and N ′ | O′ are

well-formed. As M ′ ≈ N ′ it follows that
(
M ′ | O′ , N ′ | O′) ∈ S.

• Let M | O τ−−→ M̂ , by an application of rule (Shh), because M | O m!v−−−→ M̂
and ngh(m, M | O) ⊆ nds(M | O). There are two possible cases:

– Let M | O m!v−−−→ M̂ , by an application of rule (Sync), because M
m!v−−−→

M ′ and O
m?v−−−−→ O′, with M̂ = M ′ | O′. As m ∈ nds(M) and M | O

is well-formed it follows that m 6∈ nds(O). Thus,

ngh(m, M | O) \ nds(M | O) = (ngh(m, M) \ nds(M)) \ nds(O) = ∅ .

Again there are two possibilities:

∗ Let ngh(m, M) \ nds(M) = ∅. Then, since M
m!v−−−→ M ′, by an

application of rule (Shh) we have M
τ−−→ M ′. Since M ≈ N

there is N ′ such that N =⇒ N ′ and M ′ ≈ N ′. We know that
O

m?v−−−−→ O′. Let us assume O 6= 0 (the case when O = 0 is
simple). By definition of our networks there are ni, Wi, νi and ti,

for 1 ≤ i ≤ k, such that O =
∏k

i=1 ni[Wi]
νi

ti
. Since O

m?v−−−−→ O′ by
Proposition 2.4(2), for all i, 1 ≤ i ≤ k, there are W ′

i , ν ′i, and t′i
such that

ni[Wi]
νi

ti

m?v−−−−→ ni[W
′
i]

ν′
i

t′i

and O′ =
∏k

i=1 ni[W
′
i]

ν′
i

t′i
. Since M | O is well-formed, by node-

uniqueness it follows that ni 6∈ nds(M) for all i, 1 ≤ i ≤ k. Now,
since

54

· ngh(m, M) \ nds(M) = ∅
· ni 6∈ nds(M), for all i

· M | O is connected and the neighbouring relation is symmetric
(see clause 2 of Definition 2.6)

it follows that m 6∈ νi, for all i, 1 ≤ i ≤ k. This implies that the
transitions

ni[Wi]
νi

ti

m?v−−−−→ ni[W
′
i]

ν′
i

t′i

can only be derived by applying rule (OutRng) with W ′
i = Wi,

ν ′i = νi and t′i = ti. This implies O′ = O. Now, since N =⇒ N ′,
by several applications of rule (TauPar) it follows that N | O =⇒
N ′ | O = N ′ | O′. By Theorem 2.10, both M ′ | O′ and N ′ | O′ are
well-formed. As M ′ ≈ N ′ it follows that

(
M ′ | O′ , N ′ | O′) ∈ S.

∗ Let ν ′ = ngh(m, M) \ nds(M) 6= ∅. The reasoning in this sub-case
is very similar to that done in the first case (when α = !v.ν) of
this proof.

– Let M | O m!v−−−→ M̂ , by an application of rule (Sync) because M
m?v−−−−→

M ′ and O
m!v−−−→ O′, with M̂ = M ′ | O′. This case is similar to a

previous one.

• Let M | O m?v−−−−→ M̂ , by an application of rule (RcvPar), because M
m?v−−−−→

M ′, O
m?v−−−−→ O′ and M̂ = M ′ | O′. This case is easy.

• Let M | O
σ−−→ M̂ by an application of rule (σ-Par) because M

σ−−→ M ′,

O
σ−−→ O′ and M̂ = M ′ | O′. This case is easy.

�

55

