
Semantics equivalences

Massimo Merro

4 December 2017

Massimo Merro Semantics equivalences 1 / 14



Semantic equivalence

A formal semantics of a programming language allows us to reason about
program properties of that language.

Intuition:

Two program phrases P1 and P2 are said to be semantically equivalent,
P1 ' P2, if either can be replaced by the other, in any program context.

With a good semantic equivalence ' we can:

understand what a program is

prove whether some particolar expression (say an efficient algorithm)
is equivalent to another (say a clear specification); that operation is
called program verification!

prove that some compiler optimizations are sound

understand semantic differences between programs.

Massimo Merro Semantics equivalences 2 / 14



Some examples

How about the following two fragments of code?

(l := 0; 4) ' (l := 1; 3 + !l) ???

The two fragment will produce the same results in any starting store.

Can we replace one by the other in any arbitrary program contexts?

No! For example, let

C [·] def
= [·] + !l

then

C [l := 0; 4]
?' C [l := 1; 3 + !l]

= =

(l := 0; 4) + !l 6' (l := 1; 3 + !l) + !l

In fact, C [l := 0; 4] returns 4 while C [l := 1; 3 + !l] returns 5. How about

(l := !l + 1); (l := !l− 1) ' l := !l ???

Massimo Merro Semantics equivalences 3 / 14



Equational reasoning

Both examples were for particolar expressions. We may want to know
whether some general laws are valid for all e1, e2, . . .. How about these?

e1; (e2; e3) ' (e1; e2); e3 ?

(if e1 then e2 else e3); e ' if e1 then e2; e else e3; e ?

e; (if e1 then e2 else e3) ' if e1 then e; e2 else e; e3 ?

e; (if e1 then e2 else e3) ' if e; e1 then e2 else e3

Massimo Merro Semantics equivalences 4 / 14



What does it mean for ' to be “good”?

1 programs that results in observably-different values (starting from
some initial store) must not be equivalent:
∃s, s1, s2, v1, v2.〈e1, s〉 _∗ 〈v1, s1〉 ∧ 〈e2, s〉 _∗ 〈v2, s2〉 ∧ v1 6= v2

implies e1 6' e2

2 programs that terminates must not be equivalent to programs that
don’t

3 ' must be an equivalence relation:
e ' e, e1 ' e2 ⇒ e2 ' e1, e1 ' e2 ' e3 ⇒ e1 ' e3

4 ' must be a congruence, i.e. preserved by program contexts:
if e1 ' e2 then for any context C [·] we must have C [e1] ' C [e2]

5 ' should relate as many programs as possible.

Massimo Merro Semantics equivalences 5 / 14



Program context

A program context C [·] is a program which is not completely defined.

Roughly speaking C [·] denotes a program with a “hole” [·] that needs
to be instantiated with some program phrase P

We write C [P] to denote such a program obtained by instantiating
the missing code in C [·] with P.

As an example, in the language While program contexts are defined via
the following grammar:

C [·] ∈ Cxt ::= [·]
∣∣ C [·] op e2

∣∣ e1 op C [·]
∣∣ l := C [·]∣∣ if C [·] then e2 else e3

∣∣ if e1 then C [·] else e3∣∣ if e1 then e2 else C [·]
∣∣ C [·]; e2

∣∣ e1;C [·]∣∣ while e1 do C [·]
∣∣ while C [·] do e2

For example, if C [·] is the context while !l = 0 do [·] then C [l := !l + 1] is
while !l = 0 do l := !l + 1.

Massimo Merro Semantics equivalences 6 / 14



On congruences

It is very important that for program equivalence be a congruence!

Suppose you have a big program Sys governing some big system and
containing some sub-program P.

We could write Sys
def
= C [P], for some appropriate context C [·].

And suppose your boss asks you to write down an optimised version
Pfast of P, with better performances.

How can you be sure, apart for performances, whether the behaviour
of the whole system remains unchanged when replacing the
sub-program P with Pfast?

You would have to check whether C [P] ' C [Pfast]!

But the two systems C [P] and C [Pfast] may be VERY LARGE!!! This
means that their comparison may take months perhaps years!!!

Solution: if the equality ' is a congruence then it suffices to prove
that the two sub-programs are equivalent: P ' Pfast. The equality of
the whole systems, i.e. C [P] ' C [Pfast] follows for free!

Massimo Merro Semantics equivalences 7 / 14



A trace-based semantic equivalence for the language While

Let us consider our typed language While without functions, etc.

Trace equivalence 'T
Γ

Define e1 'T
Γ e2 to hold iff for all stores s such that dom(Γ) ⊆ dom(s),

we have Γ ` e1 : T , Γ ` e2 : T , and

〈e1, s〉 _∗ 〈v , s ′〉 implies 〈e2, s〉 _∗ 〈v , s ′〉
〈e2, s〉 _∗ 〈v , s ′〉 implies 〈e1, s〉 _∗ 〈v , s ′〉.

Congruence property

The equivalence relation 'T
Γ enjoys the congruence property because

whenever e1 'T
Γ e2 we have, for all contexts C and types T ′, if

Γ ` C [e1] : T ′ and Γ ` C [e2] : T ′ then C [e1] 'T ′
Γ C [e2].

Massimo Merro Semantics equivalences 8 / 14



On the trace equivalence 'T
Γ

Let e1 'T
Γ e2, then:

If one of the two configurations diverges form some store s then also
the other configuration must diverge with the same store.

Given a store s, if the two configurations converges then it must be
on the same value and the same store.

Suppose that given a store s the two configurations 〈e1, s〉 and 〈e2, s〉
converges, respectively, to 〈v , s1〉 and 〈v , s2〉, with s1(l) 6= s2(l), for some
l, and v of type T . Then a distinguishing context would be the following:

If T = unit then C [·] def
= [·]; !l

If T = bool then C [·] def
= if [·] then !l else !l

If T = int then C [·] def
= l1 := [·]; !l

Where 〈C [e1], s〉 _∗ 〈v1, s
′
1〉 and 〈C [e2], s〉 _∗ 〈v2, s

′
2〉, with v1 6= v2.

Massimo Merro Semantics equivalences 9 / 14



Back to Examples

2 + 2 'int
Γ 4, for any Γ

(l := 0; 4) 6'int
Γ (l := 1; 3 + !l), for any Γ

(l : !l + 1); (l : !l− 1) 'unit
Γ (l := !l), for any Γ ⊇ {l : intref}

(l := !l + 1; k := !j + 1) 'unit
Γ (k := !j + 1; l := !l + 1),

for any Γ ⊇ {k : intref, j : intref, l : intref}

Massimo Merro Semantics equivalences 10 / 14



General laws (1)

Associativity of ;

e1; (e2; e3) 'T
Γ (e1; e2); e3

for any Γ, T , e1, e2 and e3 such that Γ ` e1 : unit, Γ ` e2 : unit and
Γ ` e3 : T .

skip removal

- e2 'T
Γ2

skip; e2

- e1; skip 'unit
Γ1

e1

for any Γ1, Γ2, T , e1, e2 such that Γ2 ` e2 : T and Γ1 ` e1 : unit.

if true

if true then e1 else e2 'T
Γ e1

for any Γ, T , e1 and e2 such that Γ ` e1 : T and Γ ` e2 : T .
Massimo Merro Semantics equivalences 11 / 14



General laws (2)

if false

if false then e1 else e2 'T
Γ e2

for any Γ, T , e1 and e2 such that Γ ` e1 : T and Γ ` e2 : T .

Distributivity of ’if’ wrt ;

(if e1 then e2 else e3); e 'T
Γ (if e1 then e2; e else e3; e)

for any Γ, T , e1, e2 and e3 such that Γ ` e1 : bool, Γ ` e2 : unit,
Γ ` e3 : unit and Γ ` e : T .

Distributivity of ; wrt ’if’

e; (if e1 then e2 else e3) 'T
Γ (if e; e1 then e2 else e3)

for any Γ, T , e1, e2 and e3 such that Γ ` e : unit, Γ ` e1 : bool,
Γ ` e2 : T , Γ ` e3 : T .

Massimo Merro Semantics equivalences 12 / 14



Wrong laws

(e; if e1 then e2 else e3) 6'T
Γ (if e1 then e; e2 else e; e3)

Take:

e to be l := 1

e1 to be !l = 0

e2 to be skip

e3 to be while true do skip (loop)

Then, in any store s, where location l is associated to 0, the expression on
the left diverges whereas that one on the right converges.

Massimo Merro Semantics equivalences 13 / 14



Semantic equivalence: a simulation approach

Simulation

We say that e1 is simulated by e2, written e1 vT
Γ e2, iff

Γ ` e1 : T and Γ ` e2 : T , for some T

for any s with dom(Γ) ⊆ dom(s), if 〈e1, s〉 _ 〈e ′
1, s

′
1〉 then there is e ′

2

such that 〈e2, s〉 _∗ 〈e ′
2, s

′
2〉, with e ′

1 vT
Γ e ′

2 and s ′
1 = s ′

2.

Bisimulation

We say that e1 is bisimilar to e2, written e1 ≈T
Γ e2, iff

Γ ` e1 : T and Γ ` e2 : T , for some T

for any s with dom(Γ) ⊆ dom(s), if 〈e1, s〉 _ 〈e ′
1, s

′
1〉 then there is e ′

2

such that 〈e2, s〉 _∗ 〈e ′
2, s

′
2〉, with e ′

1 ≈T
Γ e ′

2 and s ′
1 = s ′

2

for any s with dom(Γ) ⊆ dom(s), if 〈e2, s〉 _ 〈e ′
2, s

′
2〉 then there is e ′

1

such that 〈e1, s〉 _∗ 〈e ′
1, s

′
1〉, with e ′

1 ≈T
Γ e ′

2 and s ′
1 = s ′

2.

Massimo Merro Semantics equivalences 14 / 14


