Semantics equivalences

Massimo Merro

4 December 2017

Massimo Merro

Semantics equivalences

1 / 14

・ロト ・日・・日・・日・・日・・

A formal semantics of a programming language allows us to reason about program properties of that language.

Intuition:

Two program phrases P_1 and P_2 are said to be semantically equivalent, $P_1 \simeq P_2$, if either can be replaced by the other, in any program context.

With a good semantic equivalence \simeq we can:

- understand what a program is
- prove whether some particolar expression (say an efficient algorithm) is equivalent to another (say a clear specification); that operation is called program verification!
- prove that some compiler optimizations are sound
- understand semantic differences between programs.

イロト イポト イヨト イヨト

Some examples

How about the following two fragments of code?

 $(l := 0; 4) \simeq (l := 1; 3 + !!)$???

The two fragment will produce the same results in any starting store. Can we replace one by the other in any arbitrary program contexts? No! For example, let

$$C[\cdot] \stackrel{\text{def}}{=} [\cdot] + !1$$

then

$$C[1 := 0; 4] \stackrel{?}{\simeq} C[1 := 1; 3 + !1]$$

$$= =$$

$$(1 := 0; 4) + !1 \not\simeq (1 := 1; 3 + !1) + !1$$

In fact, C[l := 0; 4] returns 4 while C[l := 1; 3 + !!] returns 5. How about

$$(l := !l + 1); (l := !l - 1) \simeq l := !l ???$$

Massimo Merro

= 900

Both examples were for particolar expressions. We may want to know whether some general laws are valid for all e_1, e_2, \ldots How about these?

$$e_1; (e_2; e_3) \simeq (e_1; e_2); e_3$$
?

(if e_1 then e_2 else e_3); $e \simeq$ if e_1 then e_2 ; e else e_3 ; e?

e; (if e_1 then e_2 else e_3) \simeq if e_1 then e; e_2 else e; e_3 ?

e; (if e_1 then e_2 else e_3) \simeq if e; e_1 then e_2 else e_3

Massimo Merro

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のくぐ

What does it mean for \simeq to be "good"?

programs that results in observably-different values (starting from some initial store) must not be equivalent:
 ∃s, s₁, s₂, v₁, v₂. ⟨e₁, s⟩ →* ⟨v₁, s₁⟩ ∧ ⟨e₂, s⟩ →* ⟨v₂, s₂⟩ ∧ v₁ ≠ v₂ implies e₁ ≠ e₂

- Programs that terminates must not be equivalent to programs that don't
- \odot \simeq must be an equivalence relation:

 $e\simeq e, \qquad e_1\simeq e_2 \ \Rightarrow \ e_2\simeq e_1, \qquad e_1\simeq e_2\simeq e_3 \ \Rightarrow \ e_1\simeq e_3$

- \simeq must be a congruence, i.e. preserved by program contexts: if $e_1 \simeq e_2$ then for any context $C[\cdot]$ we must have $C[e_1] \simeq C[e_2]$
- $\mathbf{O} \simeq \mathbf{S}$ should relate as many programs as possible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○

Program context

- A program context $C[\cdot]$ is a program which is not completely defined.
- Roughly speaking C[·] denotes a program with a "hole" [·] that needs to be instantiated with some program phrase P
- We write *C*[*P*] to denote such a program obtained by instantiating the missing code in *C*[·] with *P*.

As an example, in the language *While* program contexts are defined via the following grammar:

$$C[\cdot] \in Cxt \quad ::= \quad [\cdot] \quad | \quad C[\cdot] \text{ op } e_2 \quad | \quad e_1 \text{ op } C[\cdot] \quad | \quad I := C[\cdot]$$

$$| \quad \text{if } C[\cdot] \text{ then } e_2 \text{ else } e_3 \quad | \quad \text{if } e_1 \text{ then } C[\cdot] \text{ else } e_3$$

$$| \quad \text{if } e_1 \text{ then } e_2 \text{ else } C[\cdot] \quad | \quad C[\cdot]; e_2 \quad | \quad e_1; C[\cdot]$$

$$| \quad \text{while } e_1 \text{ do } C[\cdot] \quad | \quad \text{while } C[\cdot] \text{ do } e_2$$

For example, if $C[\cdot]$ is the context while !! = 0 do $[\cdot]$ then C[l := !l + 1] is while !l = 0 do l := !l + 1.

Massimo Merro

On congruences

- It is very important that for program equivalence be a congruence!
- Suppose you have a big program *Sys* governing some big system and containing some sub-program *P*.
- We could write Sys $\stackrel{\text{def}}{=} C[P]$, for some appropriate context $C[\cdot]$.
- And suppose your boss asks you to write down an optimised version P_{fast} of P, with better performances.
- How can you be sure, apart for performances, whether the behaviour of the whole system remains unchanged when replacing the sub-program *P* with *P*_{fast}?
- You would have to check whether $C[P] \simeq C[P_{\text{fast}}]!$
- But the two systems C[P] and $C[P_{fast}]$ may be VERY LARGE!!! This means that their comparison may take months perhaps years!!!
- Solution: if the equality \simeq is a congruence then it suffices to prove that the two sub-programs are equivalent: $P \simeq P_{\text{fast}}$. The equality of the whole systems, i.e. $C[P] \simeq C[P_{\text{fast}}]$ follows for free!

Massimo Merro

A trace-based semantic equivalence for the language While

Let us consider our typed language While without functions, etc.

Trace equivalence \simeq_{Γ}^{T}

Define $e_1 \simeq_{\Gamma}^{T} e_2$ to hold iff for all stores s such that dom $(\Gamma) \subseteq$ dom(s), we have $\Gamma \vdash e_1 : T, \Gamma \vdash e_2 : T$, and

•
$$\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle$$
 implies $\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle$

•
$$\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle$$
 implies $\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle$.

Congruence property

The equivalence relation \simeq_{Γ}^{T} enjoys the congruence property because whenever $e_{1} \simeq_{\Gamma}^{T} e_{2}$ we have, for all contexts C and types T', if $\Gamma \vdash C[e_{1}] : T'$ and $\Gamma \vdash C[e_{2}] : T'$ then $C[e_{1}] \simeq_{\Gamma}^{T'} C[e_{2}]$.

▲日▼▲□▼▲□▼▲□▼ □ ● ●

On the trace equivalence \simeq_{Γ}^{T}

Let $e_1 \simeq_{\Gamma}^{T} e_2$, then:

- If one of the two configurations diverges form some store *s* then also the other configuration must diverge with the same store.
- Given a store *s*, if the two configurations converges then it must be on the same value and the same store.

Suppose that given a store *s* the two configurations $\langle e_1, s \rangle$ and $\langle e_2, s \rangle$ converges, respectively, to $\langle v, s_1 \rangle$ and $\langle v, s_2 \rangle$, with $s_1(l) \neq s_2(l)$, for some *l*, and *v* of type *T*. Then a distinguishing context would be the following:

• If
$$T =$$
unit then $C[\cdot] \stackrel{\text{def}}{=} [\cdot]; !]$

• If
$$T = \text{bool then } C[\cdot] \stackrel{\text{def}}{=} \text{ if } [\cdot] \text{ then } !] \text{ else } !]$$

• If
$$T = \text{int then } C[\cdot] \stackrel{\text{def}}{=} l_1 := [\cdot]; !]$$

Where $\langle C[e_1], s \rangle \twoheadrightarrow^* \langle v_1, s'_1 \rangle$ and $\langle C[e_2], s \rangle \twoheadrightarrow^* \langle v_2, s'_2 \rangle$, with $v_1 \neq v_2$.

▲日▼▲□▼▲□▼▲□▼ □ ● ●

Back to Examples

• $2 + 2 \simeq_{\Gamma}^{int} 4$, for any Γ • $(l := 0; 4) \not\simeq_{\Gamma}^{int} (l := 1; 3 + !l)$, for any Γ • $(l : !l + 1); (l : !l - 1) \simeq_{\Gamma}^{unit} (l := !l)$, for any $\Gamma \supseteq \{l : intref\}$ • $(l := !l + 1; k := !j + 1) \simeq_{\Gamma}^{unit} (k := !j + 1; l := !l + 1)$, for any $\Gamma \supseteq \{k : intref, j : intref, l : intref\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

General laws (1)

Associativity of ;

$$e_1; (e_2; e_3) \simeq^{\mathcal{T}}_{\Gamma} (e_1; e_2); e_3$$

for any Γ , T, e_1 , e_2 and e_3 such that $\Gamma \vdash e_1$: unit, $\Gamma \vdash e_2$: unit and $\Gamma \vdash e_3$: T.

skip removal

$$\begin{array}{l} -e_2 \simeq_{\Gamma_2}^T skip; e_2 \\ -e_1; skip \simeq_{\Gamma_1}^{\text{unit}} e_1 \\ \text{for any } \Gamma_1, \Gamma_2, T, e_1, e_2 \text{ such that } \Gamma_2 \vdash e_2 : T \text{ and } \Gamma_1 \vdash e_1 : \text{unit.} \end{array}$$

if true

if *true* then e_1 else $e_2 \simeq_{\Gamma}^{T} e_1$

for any Γ , T, e_1 and e_2 such that $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$.

Massimo Merro

Semantics equivalences

11 / 14

General laws (2)

if false

if false then
$$e_1$$
 else $e_2 \simeq_{\Gamma}^{T} e_2$

for any Γ , T, e_1 and e_2 such that $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$.

Distributivity of 'if' wrt ;

(if e_1 then e_2 else e_3); $e \simeq_{\Gamma}^{T}$ (if e_1 then e_2 ; e else e_3 ; e) for any Γ , T, e_1 , e_2 and e_3 such that $\Gamma \vdash e_1$: bool, $\Gamma \vdash e_2$: unit, $\Gamma \vdash e_3$: unit and $\Gamma \vdash e : T$.

Distributivity of ; wrt 'if'

e; (if
$$e_1$$
 then e_2 else e_3) $\simeq_{\Gamma}^{\mathcal{T}}$ (if e ; e_1 then e_2 else e_3)

for any Γ , T, e_1 , e_2 and e_3 such that $\Gamma \vdash e :$ unit, $\Gamma \vdash e_1 :$ bool, $\Gamma \vdash e_2 : T$, $\Gamma \vdash e_3 : T$.

Massimo Merro

(e; if e_1 then e_2 else e_3) $\not\simeq_{\Gamma}^{T}$ (if e_1 then $e; e_2$ else $e; e_3$)

Take:

- *e* to be l := 1
- *e*₁ to be !l = 0
- e₂ to be skip
- e₃ to be while true do *skip* (loop)

Then, in any store s, where location l is associated to 0, the expression on the left diverges whereas that one on the right converges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Semantic equivalence: a simulation approach

Simulation

We say that e_1 is simulated by e_2 , written $e_1 \sqsubseteq_{\Gamma}^{T} e_2$, iff

- $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$, for some T
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_1, s \rangle \rightarrow \langle e'_1, s'_1 \rangle$ then there is e'_2 such that $\langle e_2, s \rangle \rightarrow^* \langle e'_2, s'_2 \rangle$, with $e'_1 \sqsubseteq_{\Gamma}^{T} e'_2$ and $s'_1 = s'_2$.

Bisimulation

We say that e_1 is bisimilar to e_2 , written $e_1 \approx_{\Gamma}^{T} e_2$, iff

- $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$, for some T
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_1, s \rangle \rightarrow \langle e'_1, s'_1 \rangle$ then there is e'_2 such that $\langle e_2, s \rangle \rightarrow^* \langle e'_2, s'_2 \rangle$, with $e'_1 \approx_{\Gamma}^{T} e'_2$ and $s'_1 = s'_2$
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_2, s \rangle \rightarrow \langle e'_2, s'_2 \rangle$ then there is e'_1 such that $\langle e_1, s \rangle \rightarrow^* \langle e'_1, s'_1 \rangle$, with $e'_1 \approx_{\Gamma}^{T} e'_2$ and $s'_1 = s'_2$.