Semantics equivalences

Massimo Merro

4 December 2017

Massimo Merro **[Semantics equivalences](#page-13-0)** 1 / 14

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q

A formal semantics of a programming language allows us to reason about program properties of that language.

Intuition:

Two program phrases P_1 and P_2 are said to be semantically equivalent, $P_1 \simeq P_2$, if either can be replaced by the other, in any program context.

With a good semantic equivalence \simeq we can:

- understand what a program is
- **•** prove whether some particolar expression (say an efficient algorithm) is equivalent to another (say a clear specification); that operation is called program verification!
- **•** prove that some compiler optimizations are sound
- **o** understand semantic differences between programs.

 $2Q$

イロト イ伊 トイヨ トイヨト

Some examples

How about the following two fragments of code?

 $(l := 0; 4) \simeq (l := 1; 3 + 1!)$???

The two fragment will produce the same results in any starting store. Can we replace one by the other in any arbitrary program contexts? No! For example, let

$$
C[\cdot] \stackrel{\text{def}}{=} [\cdot] + \cdot
$$

then

$$
C[1 := 0; 4] \stackrel{?}{\simeq} C[1 := 1; 3 + 1!]
$$

=
(1 := 0; 4) + 1! \simeq (1 := 1; 3 + 1!) + 1!

In fact, $C[1 := 0; 4]$ returns 4 while $C[1 := 1; 3 + 1]$ returns 5. How about

$$
(l := l! + 1); (l := l! - 1) \simeq l := l! \tbinom{?}?
$$

Both examples were for particolar expressions. We may want to know whether some general laws are valid for all e_1, e_2, \ldots How about these?

$$
e_1; (e_2; e_3) \simeq (e_1; e_2); e_3 ?
$$

(if e_1 then e_2 else e_3); $e \simeq$ if e_1 then e_2 ; e else e_3 ; $e ?$
 e ; (if e_1 then e_2 else e_3) \simeq if e_1 then e ; e_2 else e ; $e_3 ?$
 e ; (if e_1 then e_2 else e_3) \simeq if e ; e_1 then e_2 else e_3

 ORO

 $\mathbf{E} = \mathbf{A} \in \mathbf{F} \times \mathbf{A} \in \mathbf{F} \times \mathbf{A} \oplus \mathbf{F} \times \mathbf{A} \oplus \mathbf{F}$

What does it mean for \simeq to be "good"?

1 programs that results in observably-different values (starting from some initial store) must not be equivalent: $\exists s, s_1, s_2, v_1, v_2.\langle e_1, s \rangle \rightarrow^* \langle v_1, s_1 \rangle \land \langle e_2, s \rangle \rightarrow^* \langle v_2, s_2 \rangle \land v_1 \neq v_2$ implies $e_1 \not\approx e_2$

- **2** programs that terminates must not be equivalent to programs that don't
- $\bullet \simeq$ must be an equivalence relation:

 $e \simeq e$, $e_1 \simeq e_2 \Rightarrow e_2 \simeq e_1$, $e_1 \simeq e_2 \simeq e_3 \Rightarrow e_1 \simeq e_3$

- $\bullet \simeq$ must be a congruence, i.e. preserved by program contexts: if $e_1 \simeq e_2$ then for any context $C[\cdot]$ we must have $C[e_1] \simeq C[e_2]$
- $\bullet \simeq$ should relate as many programs as possible.

KORK EX KEY KEY KORA

Program context

- A program context $C[\cdot]$ is a program which is not completely defined.
- Roughly speaking $C[\cdot]$ denotes a program with a "hole" $[\cdot]$ that needs to be instantiated with some program phrase P
- We write $C[P]$ to denote such a program obtained by instantiating the missing code in $C[\cdot]$ with P.

As an example, in the language While program contexts are defined via the following grammar:

$$
C[\cdot] \in Cxt \quad ::= \quad [\cdot] \quad | \quad C[\cdot] \text{ op } e_2 \quad | \quad e_1 \text{ op } C[\cdot] \quad | \quad l := C[\cdot]
$$
\n
$$
\quad | \quad \text{if } C[\cdot] \text{ then } e_2 \text{ else } e_3 \quad | \quad \text{if } e_1 \text{ then } C[\cdot] \text{ else } e_3
$$
\n
$$
\quad | \quad \text{if } e_1 \text{ then } e_2 \text{ else } C[\cdot] \quad | \quad C[\cdot]; e_2 \quad | \quad e_1; C[\cdot]
$$
\n
$$
\quad | \quad \text{while } e_1 \text{ do } C[\cdot] \quad | \quad \text{while } C[\cdot] \text{ do } e_2
$$

For example, if C[·] is the context while $= 0$ do [·] then $C[1] = 1 + 1$ is while $!l = 0$ do $l := 1 + 1$. **KORK EX KEY KEY KORA**

On congruences

- It is very important that for program equivalence be a congruence!
- Suppose you have a big program Sys governing some big system and containing some sub-program P.
- We could write $S_{\gamma S} \stackrel{\text{def}}{=} C[P]$, for some appropriate context C[·].
- And suppose your boss asks you to write down an optimised version P_{fast} of P, with better performances.
- How can you be sure, apart for performances, whether the behaviour of the whole system remains unchanged when replacing the sub-program P with P_{fast} ?
- You would have to check whether $C[P] \simeq C[P_{\text{fast}}]!$
- But the two systems $C[P]$ and $C[P_{fast}]$ may be VERY LARGE!!! This means that their comparison may take months perhaps years!!!
- Solution: if the equality \simeq is a congruence then it suffices to prove that the two sub-programs are equivalent: $P \simeq P_{\text{fast}}$. The equality of the whole [s](#page-7-0)ystems,i.e. $C[P] \simeq C[P_{\text{fast}}]$ $C[P] \simeq C[P_{\text{fast}}]$ $C[P] \simeq C[P_{\text{fast}}]$ foll[ow](#page-5-0)s f[o](#page-5-0)[r](#page-7-0) fr[ee!](#page-0-0) 2990

A trace-based semantic equivalence for the language While

Let us consider our typed language *While* without functions, etc.

Trace equivalence \simeq^7_\sqcap

Define $e_1 \simeq^T_{\Gamma} e_2$ to hold iff for all stores s such that dom(Γ) \subseteq dom(s), we have $\Gamma \vdash e_1 : T, \Gamma \vdash e_2 : T$, and

•
$$
\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle
$$
 implies $\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle$

•
$$
\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle
$$
 implies $\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle$.

Congruence property

The equivalence relation $\simeq_{\mathsf{F}}^{\mathcal{T}}$ enjoys the congruence property because whenever $e_1 \simeq_{\mathsf{F}}^{\mathcal{T}} e_2$ we have, for all contexts ${\mathcal{C}}$ and types ${\mathcal{T}}'$, if $\Gamma \vdash C[e_1] : T'$ and $\Gamma \vdash C[e_2] : T'$ then $C[e_1] \simeq^{T'}_F C[e_2]$.

KORK EX KEY KEY KORA

On the trace equivalence \simeq^7_\sqcap

Let $e_1 \simeq^T_{\Gamma} e_2$, then:

- **If one of the two configurations diverges form some store s then also** the other configuration must diverge with the same store.
- **Given a store s, if the two configurations converges then it must be** on the same value and the same store.

Suppose that given a store s the two configurations $\langle e_1, s \rangle$ and $\langle e_2, s \rangle$ converges, respectively, to $\langle v, s_1 \rangle$ and $\langle v, s_2 \rangle$, with $s_1(l) \neq s_2(l)$, for some l, and v of type T . Then a distinguishing context would be the following:

• If
$$
T = \text{unit}
$$
 then $C[\cdot] \stackrel{\text{def}}{=} [\cdot]; \text{!}$

• If
$$
T
$$
 = bool then $C[\cdot]$ $\stackrel{\text{def}}{=}$ if $[\cdot]$ then $!\mid$ else $!\mid$

• If
$$
\mathcal{T} = \text{int}
$$
 then $C[\cdot] \stackrel{\text{def}}{=} \mathbf{l}_1 := [\cdot]; \mathbf{l}$

Where $\langle C[e_1], s \rangle \rightarrow^* \langle v_1, s_1' \rangle$ and $\langle C[e_2], s \rangle \rightarrow^* \langle v_2, s_2' \rangle$, with $v_1 \neq v_2$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

Back to Examples

\n- \n
$$
2 + 2 \approx^{\text{int}}_{\Gamma} 4
$$
, for any Γ \n
\n- \n $(l := 0; 4) \approx^{\text{int}}_{\Gamma} (l := 1; 3 + l)$, for any Γ \n
\n- \n $(l : ll + 1); (l : ll - 1) \approx^{\text{unit}}_{\Gamma} (l := l)$, for any $\Gamma \supseteq \{l : \text{intref}\}$ \n
\n- \n $(l := ll + 1; k := l; j + 1) \approx^{\text{unit}}_{\Gamma} (k := l; j + 1; l := l + 1)$, for any $\Gamma \supseteq \{k : \text{intref}, j : \text{interf}, l : \text{interf}\}$ \n
\n

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q

General laws (1)

Associativity of ;

$$
e_1; (e_2; e_3) \, \simeq^T_{\Gamma} \, (e_1; e_2); e_3
$$

for any Γ, T, e_1 , e_2 and e_3 such that $\Gamma \vdash e_1$: unit, $\Gamma \vdash e_2$: unit and $Γ ⊢ e_3 : T.$

skip removal

-
$$
e_2 \simeq_{\Gamma_2}^T skip
$$
; e_2
\n- e_1 ; $skip \simeq_{\Gamma_1}^{unit} e_1$
\nfor any Γ_1 , Γ_2 , T , e_1 , e_2 such that $\Gamma_2 \vdash e_2 : T$ and $\Gamma_1 \vdash e_1 : unit$.

if true

if true then
$$
e_1
$$
 else $e_2 \simeq^T$ e_1

for any Γ , Γ , e_1 e_1 and e_2 e_2 such that $\Gamma \vdash e_1 : \Gamma$ $\Gamma \vdash e_1 : \Gamma$ $\Gamma \vdash e_1 : \Gamma$ and $\Gamma \vdash e_2 : \Gamma$ [.](#page-13-0) Massimo Merro **Massimo Merro [Semantics equivalences](#page-0-0)** 11 / 14

General laws (2)

if false

if *false* then e_1 else $e_2 \simeq^T_{\Gamma} e_2$

for any Γ , Γ , e_1 and e_2 such that $\Gamma \vdash e_1 : \Gamma$ and $\Gamma \vdash e_2 : \Gamma$.

Distributivity of 'if' wrt;

(if e_1 then e_2 else e_3); $e \simeq^T$ (if e_1 then e_2 ; e else e_3 ; e)

for any Γ, T, e_1 , e_2 and e_3 such that $\Gamma \vdash e_1$: bool, $\Gamma \vdash e_2$: unit, $\Gamma \vdash e_3$: unit and $\Gamma \vdash e : T$.

Distributivity of ; wrt 'if'

$$
e; (\text{if } e_1 \text{ then } e_2 \text{ else } e_3) \simeq_{\Gamma}^{\mathcal{T}} (\text{if } e; e_1 \text{ then } e_2 \text{ else } e_3)
$$
\n
$$
\text{for any } \Gamma, \ T, \ e_1, \ e_2 \text{ and } e_3 \text{ such that } \Gamma \vdash e : \text{unit, } \Gamma \vdash e_1 : \text{bool,}
$$
\n
$$
\Gamma \vdash e_2 : \ T, \ \Gamma \vdash e_3 : \ T.
$$

 $(e; \text{if } e_1 \text{ then } e_2 \text{ else } e_3) \not\cong^T_{\sqcap}$ (if e_1 then $e; e_2 \text{ else } e; e_3)$

Take:

- \bullet e to be $l := 1$
- e_1 to be $l = 0$
- $e₂$ to be skip
- \bullet e_3 to be while true do skip (loop)

Then, in any store s , where location l is associated to 0, the expression on the left diverges whereas that one on the right converges.

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ 「글 → K) Q (^

Semantic equivalence: a simulation approach

Simulation

We say that e_1 is simulated by e_2 , written $e_1 \sqsubseteq_{\mathsf{\Gamma}}^{\mathsf{\Gamma}}\, e_2$, iff

- \bullet $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$, for some T
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_1, s \rangle \to \langle e_1', s_1' \rangle$ then there is e_2'
such that $\langle e_1, e_2 \rangle \to \langle e_1', e_2' \rangle$ with $e_2' \sqsubset \Gamma$ of and $e_1' = e_1'$ such that $\langle e_2, s \rangle \rightarrow^* \langle e'_2, s'_2 \rangle$, with $e'_1 \sqsubseteq^T_1 e'_2$ and $s'_1 = s'_2$.

Bisimulation

We say that e_1 is bisimilar to e_2 , written $e_1 \approx_{\Gamma}^T e_2$, iff

- $\Gamma \vdash e_1 : T$ and $\Gamma \vdash e_2 : T$, for some T
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_1, s \rangle \to \langle e_1', s_1' \rangle$ then there is e_2'
such that $\langle e_1, e_2 \rangle \to \langle e_1', e_2' \rangle$ with $e_2' \to e_1'$ and $e_2' = e_2'$ such that $\langle e_2, s \rangle \rightarrow^* \langle e'_2, s'_2 \rangle$, with $e'_1 \approx^T_1 e'_2$ and $s'_1 = s'_2$
- for any s with dom(Γ) \subseteq dom(s), if $\langle e_2, s \rangle \to \langle e_2', s_2' \rangle$ then there is e_1'
such that $\langle e_1, e_2 \rangle \to^* \langle e_1', e_2' \rangle$ with $e_1' \to e_1'$ and $e_1' = e_1'$ such that $\langle e_1, s \rangle \rightarrow^* \langle e_1', s_1' \rangle$, with $e_1' \approx^T_1 e_2'$ and $s_1' = s_2'$.