
A Semantic Theory of the Internet of Things
(extended abstract)

Ruggero Lanotte1 and Massimo Merro2

1 Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy
2 Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract. We propose a process calculus for modelling and reasoning on
systems in the Internet of Things paradigm. Our systems interact both
with the physical environment, via sensors and actuators, and with smart
devices, via short-range and Internet channels. The calculus is equipped
with a standard notion of labelled bisimilarity which represents a fully
abstract characterisation of a well-known contextual equivalence. We use
our semantic proof-methods to prove run-time properties of a non-trivial
case study as well as system equalities.

1 Introduction

In the Internet of Things (IoT) paradigm, smart devices, such as smartphones,
automatically collect information from shared resources (e.g. Internet access or
physical devices) and aggregate them to provide new services to end users [13].
The “things” commonly deployed in IoT systems are: RFID tags , for unique iden-
tification, sensors , to detect physical changes in the environment, and actuators ,
to pass information to the environment.

The research on IoT is currently focusing on practical applications such as
the development of enabling technologies, ad hoc architectures, semantic web
technologies, and cloud computing [13]. However, as pointed out by Lanese
et al. [16], there is a lack of research in formal methodologies to model the
interactions among system components, and to verify the correctness of the
network deployment before its implementation.

The main goal of this paper is to propose a process calculus with a clearly-
defined semantic theory, for specifying and reasoning on IoT applications. De-
signing a calculus for modelling a new paradigm requires understanding and
distilling, in a clean algebraic setting, the main features of the paradigm. Let us
try to figure out what the main ingredients of IoT are, by means of an example.

Suppose a simple smart home (see Fig. 1) in which the user can use her
smartphone to remotely control the heating boiler of her house, and automatically
turn on lights when entering a room. The house consists of an entrance and a
lounge, separated by a patio. Entrance and lounge have their own lights (actuators)
which are governed by different light manager processes, LightMng. The boiler
is in the patio and is governed by a boiler manager process, BoilerMng. This
process senses the local temperature (via a sensor) and decides whether to turn
on/off the boiler, setting a proper actuator to signal the state of the boiler.

2

Fig. 1 A simple smart home

LightMng BoilerMng

LightMng

The smartphone executes two concurrent processes: BoilerCtrl and LightCtr.
The first one reads user’s commands, submitted via the phone touchscreen (a
sensor), and forward them to the process BoilerMng, via an Internet channel.
Whereas, the process LightCtrl interacts with the processes LightMng, via
short-range wireless channels (e.g. Bluetooth), to automatically turn on lights
when the smartphone physically enters either the entrance or the lounge.

The whole system is given by the parallel composition of the smartphone (a
mobile device) and the smart home (a stationary entity).

On this kind of systems one may wish to prove interesting run-time properties.
Think of a fairness property saying that the boiler will be eventually turned
on/off whenever specific conditions are satisfied. Or consistency properties, saying
the smartphone will never be in two rooms at the same time. Even more, one
may be interested in understanding whether our system has the same observable
behaviour of another system. Let us consider a variant of our smart home, where
lights functionality depends on GPS coordinates of the smartphone (localisation
is a common feature of today smartphones). Intuitively, the smartphone sends
its GPS position to a centralised light manager, CLightMng (possibly placed in
the patio), via an Internet channel. The process CLightMng will then interact
with the two processes LightMng, via short-range channels, to switch on/off
lights, depending on the position of the smartphone. Here comes an interesting
question: Can these two implementations of the smart home, based on different
light management mechanisms, be actually distinguished by an end user?

In the paper at hand we develop a fully abstract semantic theory for a
process calculus of IoT systems, called CaIT. We provide a formal notion of
when two systems in CaIT are indistinguishable, in all possible contexts, from
the point of view of the end user. Formally, we adopt the approach of [15, 24],
often called reduction (closed) barbed congruence, which relies on two crucial
concepts: a reduction semantics to describe system computations, and the basic
observables to represent what the environment can directly observe of a system.
In CaIT, there are at least two possible observables: the ability to transmit along
channels, logical observation, and the capability to diffuse messages via actuators,
physical observation. We have adopted the second form as our contextual equality
remains invariant when adding logical observation. However, the right definition
of physical observation is far from obvious as it involves some technical challenges
in the definition of the reduction semantics (see the discussion in Sec. 2.3).

Our calculus is equipped with two labelled transition semantics (LTS) in the
SOS style of Plotkin: an intensional semantics and an extensional semantics. The
adjective intensional is used to stress the fact that the actions here correspond to

3

activities which can be performed by a system in isolation, without any interaction
with the external environment. While, the extensional semantics focuses on those
activities which require a contribution of the environment. We prove that the
reduction semantics coincides with the intensional semantics (Harmony Theorem),
and that they satisfy some desirable time properties such as time determinism,
patience, maximal progress and well-timedness [14].

However, the main result of the paper is that weak bisimilarity in the exten-
sional LTS is sound and complete with respect to our contextual equivalence,
reduction barbed congruence. This required a non-standard proof of the con-
gruence theorem (Thm. 2). Finally, in order to show the effectiveness of our
bisimulation proof method, we prove a number of non-trivial system equalities.

In this extended abstract proofs are omitted; full details can be found in [7].

Outline Sec. 2 contains the calculus together with the reduction semantics, the
contextual equivalence, and a discussion on design choices. Sec. 3 gives the details
of our smart home example, and proves desirable run-time properties for it.
Sec. 4 defines both the intensional and the extensional LTS. In Sec. 5 we define
bisimilarity for IoT-systems, and prove the full abstraction result together with
a number of non-trivial system equalities. Sec. 6 discusses related work.

2 The calculus

The syntax of our Calculus of the Internet of Things , shortly CaIT, is given in a
two-level structure: a lower one for processes and an upper one for networks of
smart devices.

M,N ::= 0
∣∣ n[IonP]µl

∣∣ M | N
∣∣ (νc)M

P,Q ::= nil
∣∣ ρ.P

∣∣ P | Q
∣∣ bπ.P cQ

∣∣ [b]P ;Q
∣∣ X

∣∣ fix X.P

We use letters n, m to denote nodes/devices, c, g for channels, l, h, k for (physical)
locations , s, s′ for sensors , a, a′ for actuators and x, y, z for variables . Our values ,
ranged over by v and w, are constituted by basic values, such as booleans and
integers, sensor and actuator values, and coordinates of physical locations.

A network M is a pool of distinct nodes running in parallel and living in
physical locations. We assume a discrete notion of distance between two locations
h and k, i.e. d(h, k) ∈ N. We write 0 to denote the empty network, while M | N
represents the parallel composition of two networks M and N . In (νc)M channel
c is private to the nodes of M . Each node is a term of the form n[IonP]µl , where n
is the device ID; I is the physical interface of n, represented as a partial mapping
from sensor and actuator names to physical values; P is the process modelling
the logics of n; l is the physical location of the device; µ ∈ {s, m} is a tag to
distinguish between stationary and mobile nodes.

For security reasons, sensors in I can be read only by its controller process P .
Similarly, actuators in I can be modified only by P . No other devices can access
the physical interface of n. P is a timed concurrent processes which manages both
the interaction with the physical interface I and channel communication. The
communication paradigm is point-to-point via channels that may have different
transmission ranges. We assume a global function rng() from channel names

4

to N ∪ {−1,∞}. A channel c can be used for: i) intra-node communications,
if rng(c) = −1; ii) short-range inter-node communications (such as Bluetooth,
infrared, etc) if 0 ≤ rng(c) < ∞; iii) Internet communications, if rng(c) = ∞.

Technically, our processes build on CCS with discrete time [14]. We write
ρ.P , with ρ ∈ {σ,@(x), s?(x), a!v}, to denote intra-node actions. The process
σ.P sleeps for one time unit. The process @(x).P gets the current location of
the enclosing node. Process s?(x).P reads a value v from sensor s. Process a!v.P
writes the value v on the actuator a. We write bπ.P cQ, with π ∈ {c〈v〉, c(x)},
to denote channel communication with timeout. This process can communicate
in the current time interval and then continues as P ; otherwise, after one time
unit, it evolves into Q. We write [b]P ; Q for conditional (here guard JbK is always
decidable). In processes of the form σ.Q and bπ.P cQ the occurrence of Q is said
to be time-guarded. The process fix X.P denotes time-guarded recursion, as all
occurrences of the process variable X may only occur time-guarded in P . In
processes bc(x).P cQ, s?(x).P and @(x).P the variable x is said to be bound.
Similarly, in process fix X.P the process variable X is bound. In the term (νc)M
the channel c is bound. This gives rise to the standard notions of free/bound
(process) variables, free/bound channels, and α-conversion. A term is said to be
closed if it does not contain free (process) variables, although it may contain free
channels. We always work with closed networks: the absence of free variables
is preserved at run-time. We write T{v/x} for the substitution of the variable x
with the value v in any expression T of our language. Similarly, T{P/X} is the
substitution of the process variable X with the process P in T .

Actuator names are metavariables for actuators like display@n or alarm@n.
As node names are unique so are actuator names: different nodes have different
actuators. The sensors embedded in a node can be of two kinds: location-dependent
and node-dependent . The first ones sense data at the current location of the
node, whereas the second ones sense data within the node, independently on the
node’s location. Thus, node-dependent sensor names are metavariables for sensors
like touchscreen@n or button@n; whereas a sensor temp@h, for temperature, is
a typical example of location-dependent sensor. Node-dependent sensor names
are unique. This is not the case of location-dependent sensor names which may
appear in different nodes. For simplicity, we use the same metavariables for both
kind of sensors. When necessary we will specify the type of sensor in use.

We rule out ill-formed networks by means of the following definition.
Definition 1. A network M is said to be well-formed if: (i) it does not contain
two nodes with the same name; (ii) different nodes have different actuators and
different node-dependent sensors; (iii) for each n[IonP]µh in M , with a prefix
s?(x) (resp. a!v) in P , I(s) (resp. I(a)) is defined; (iv) for each n[IonP]µh in M
with I(s) defined for some location-dependent sensor s, it holds that µ = s.
Last condition says that location-dependent sensors may be used only in stationary
nodes (see discussion in Sec. 2.3). Hereafter, we will always work with well-formed
networks. It is easy to show that well-formedness is preserved at runtime.

We adopt the following notational conventions.
∏

i∈I Mi denotes the parallel
composition of all Mi, for i∈I.

∏
i∈I Mi = 0 and

∏
i∈I Pi = nil, for I = ∅. We

write
∏

i Mi when I is not relevant. We write π.P instead of fix X.bπ.P cX. We
use (ν c̃)M as an abbreviation for (νc1) . . . (νck)M , with c̃ = c1, . . . , ck.

5

Table 1 Reduction semantics

(pos)
−

n[Ion@(x).P]µh _τ n[IonP{h/x}]
µ

h

(sensread)
I(s) = v

n[Ions?(x).P]µh _τ n[IonP{v/x}]µh

(actunchg)
I(a) = v

n[Iona!v.P]µh _τ n[IonP]µh
(actchg)

I(a) 6= v I′ := I[a 7→ v]

n[Iona!v.P]µh _a n[I′onP]
µ
h

(loccom)
rng(c) = −1

n[Ionbc〈v〉.P cR | bc(x).QcS]µh _τ n[IonP | Q{v/x}]µh

(timestat)
n[Ion

Q
ibπi.PicQi |

Q
j σ.Rj]

s

h
6_τ

n[Ion
Q

ibπi.PicQi |
Q

j σ.Rj]
s

h
_σ n[Ion

Q
i Qi |

Q
j Rj]

s

h

(timemob)
n[Ion

Q
ibπi.PicQi |

Q
j σ.Rj]

m

h
6_τ d(h, k) ≤ δ

n[Ion
Q

ibπi.PicQi |
Q

j σ.Rj]
m

h
_σ n[Ion

Q
i Qi |

Q
j Rj]

m

k

(glbcom)
d(h, k) ≤ rng(c)

n[Ionbc〈v〉.P cR]µ1
h | m[Ionbc(x).QcS]µ2

k _τ n[IonP]µ1
h | m[IonQ{v/x}]µ2

k

(parp)

Q
i ni[IionPi]

µi
hi

_ω

Q
i ni[I′ionP ′

i]
µi
hi

ω∈{τ, a}Q
i ni[IionPi | Qi]

µi
hi

_ω

Q
i ni[I′ionP ′

i | Qi]
µi
hi

(parn)
M _ω M ′ ω∈{τ, a}

M | N _ω M ′ | N

(timepar)
M _σ M ′ N _σ N ′ M | N 6_τ

M | N _σ M ′ | N ′ (timezero)
−

0 _σ 0

(res)
M _ω N ω ∈ {τ, a, σ}

(νc)M _ω (νc)N
(struct)

M ≡ N N _ω N ′ ω ∈ {τ, a, σ} N ′ ≡ M ′

M _ω M ′

2.1 Reduction semantics

The dynamics of the calculus is specified in terms of reduction relations over
networks (see Tab. 1). As usual in process calculi, a reduction semantics [22]
relies on an auxiliary standard relation, ≡, called structural congruence, which
brings the participants of a potential interaction into contiguous positions. For
lack of space, we omit the formal definition of ≡, as it is quite standard.

As CaIT is a timed calculus, with a discrete notion of time, it will be necessary
to distinguish between instantaneous reductions , M _i N , and timed reductions ,
M _σ N . Relation _i denotes activities which take place within one time interval,
whereas _σ represents the passage of one time unit. Instantaneous reductions
are of two kinds: those which involve the change of the values associated to some
actuator a, written _a, and the others, written _τ . Intuitively, reductions of
the form M _a N denote watchpoints which cannot be ignored by the physical
environment (in Ex. 2, and more extensively at the end of Sec. 2.3, we explain
why this is important). Thus, we define the instantaneous reduction relation
_i = _τ ∪ _a, for any actuator a. We also define the reduction _ = _τ ∪ _σ.

The first seven rules in Tab. 1 model intra-node activities. Rule (pos) serves
to compute the current position of a node. Rule (sensread) represents the reading

6

of the current data detected at some sensor s. Rules (actunchg) and (actchg)

implement the writing of some data v on an actuator a, distinguishing whether
the value of the actuator changes or not. Rule (loccom) models intra-node commu-
nications on a local channel c (rng(c) = −1). Rule (timestat) models the passage
of time within a stationary node. Notice that all untimed intra-node actions are
considered urgent actions as they must occur before the next timed action. Rule
(timemob) models the passage of time for mobile nodes. This rule also serves to
model node mobility . Mobile nodes can nondeterministically move from one phys-
ical location h to a (possibly different) location k, at the end of a time interval.
Node mobility respects the following time discipline: in one time unit a node can
move from h to k provided that d(h, k) ≤ δ, for some fixed δ ∈ N (if h = k then
d(h, k) = 0). For the sake of simplicity, we fix the same constant δ for all nodes
of our systems. Rule (glbcom) models inter-node communication along a global
channel c (rng(c) ≥ 0). Intuitively, two nodes can communicate via a channel c
only if they are within the transmission range of c. Rules (parp) and (parn) serve
to propagate instantaneous reductions through parallel processes, and parallel
networks, respectively. Rule (timepar) is for inter-node time synchronisation. The
remaining rules are standard.

We write _k
i to denote k consecutive reductions _i; _∗

i is the reflexive and
transitive closure of _i. We use the same notation for the reduction relation _.

Below we report a few standard time properties which hold in our calculus:
time determinism, maximal progress, patience and well-timedness.

Proposition 1 (Time properties).

– If M _σ M ′ and M _σ M ′′, then M ′ ≡
∏

i∈I ni[IionPi]
µi

hi
and M ′′ ≡∏

i∈I ni[IionPi]
µi

ki
, with d(hi, ki) ≤ 2δ, for all i ∈ I.

– If M _i M ′, then there is no M ′′ such that M _σ M ′′.
– If M _i M ′ for no M ′, then there is N such that M _σ N .
– For any M there is a z ∈ N such that if M _u

i N then u ≤ z.

In its standard formulation, time determinism says that a system reaches at most
one new state by executing a reduction step _σ. However, by an application
of Rule (timemob), our mobile nodes may change location when executing a
reduction _σ. Well-timedness ensures the absence of infinite instantaneous
traces which would prevent the passage of time.

2.2 Behavioural equivalence

Our contextual equivalence is reduction barbed congruence [15, 24], a standard
contextually defined process equivalence that crucially relies on the definition of
basic observables to represent what the environment can directly observe of a
system3. As already said in the Introduction, we choose to observe the capability
to publish messages via actuators (physical observation).

3 See [24] for a comparison between this approach and the original barbed congruence.

7

Definition 2 (Barbs). We write M ↓a@h!v if M ≡ (νg̃)
(
n[IonP]µh | M ′), with

I(a) = v. We write M ⇓a@h!v if M _∗ M ′ ↓a@h!v.

The reader may wonder why our barb reports the location and not the node of the
actuator. We also recall that actuator names are unique, so they somehow codify
the name of their node. The location is then necessary because the environment
is potentially aware of its position when observing an actuator: if every day at
6.00AM your smartphone rings to wake you up, then you may react differently
depending whether you are at home or on holidays in the Bahamas!

Definition 3. A binary relation R over networks is barb preserving if MRN
and M ↓a@h!v implies N ⇓a@h!v.

Definition 4. A binary relation R over networks is reduction closed if whenever
M R N the following conditions are satisfied:

– M _ M ′ implies N _∗ N ′ and M ′ R N ′

– M _a M ′ implies N _∗_a_∗ N ′ and M ′ R N ′.

Here, we require reduction closure of both _ and _a, for any a. This is a crucial
design decision in CaIT (see Ex. 2 and Sec. 2.3 for details).

In order to model sensor updates made by the physical environment on a
sensor s, in a given location h, we define the operator [s@h 7→ v] on networks.

Definition 5. Given a location h, a sensor s, and a value v, we define:

n[IonP]µh[s@h 7→ v] def= n[I[s 7→ v]onP]µh, if I(s) defined
n[IonP]µk [s@h 7→ v] def= n[IonP]µk , if I(s) undef. or h 6= k

(M | N)[s@h 7→ v] def= M [s@h 7→ v] | N [s@h 7→ v](
(νc)M

)
[s@h 7→ v] def= (νc)

(
M [s@h 7→ v]

)
0[s@h 7→ v] def= 0.

Notice that when updating a sensor we use its location, also for node-dependent
sensors. This is because when changing a node-dependent sensor (e.g. touching a
touchscreen of a smartphone) the environment is in general aware of its position.

Definition 6. A binary relation R is contextual if M R N implies that

– for all networks O, M | O R N | O
– for all channels c, (νc)M R (νc)N
– for all s, h, and v in the domain of s, M [s@h 7→ v] R N [s@h 7→ v].

The first two clauses requires closure under logical contexts (parallel systems),
while the last clause involves physical contexts, which can nondeterministically
update sensor values.

Finally, everything is in place to define our touchstone behavioural equality.

Definition 7. Reduction barbed congruence, ∼=, is the largest symmetric relation
over networks which is reduction closed, barb preserving and contextual.

8

Remark 1. Obviously, if M ∼= N then M and N will be still equivalent in any
setting where sensor updates are governed by specific physical laws.

We recall that the reduction relation _ ignores the passage of time, and
therefore the reader might suspect that our reduction barbed congruence is
impervious to the precise timing of activities. We show that this is not the case.

Example 1. Let M = n[∅onσ.bc〈〉cnil]sh and N = n[∅onbc〈〉cnil]sh, with rng(c) =
∞. Then, M _σ N . As _ does not distinguish instantaneous from timed
reductions, one may suspect that M ∼= N , and that a prompt transmission
along channel c is equivalent to the same transmission delayed of one time unit.
However, the test T = test[Jonσ.a!1.bc().a!0cnil]sl , with J (a) = 0, for some
actuator a, can distinguish the two networks. In fact, if M | T __a O =
n[∅onbc〈〉cnil]sh | test[J ′onbc().a!0cnil]sl , with J ′(a) = 1, then there is no O′ such
that N | T _∗_a_∗ O′ with O ∼= O′. This is because O can perform a reduction
sequence __a that cannot be matched by any O′.

Behind this example there is the general principle that reduction barbed congru-
ence is sensitive to the passage of time.

Proposition 2. If M ∼= N and M _σ M ′ then there is N ′ such that N _∗
τ_σ_∗

τ

N ′ and M ′ ∼= N ′.

Now, we provide some insights into the design decision of having two different
instantaneous reductions _τ and _a.

Example 2. Let M=n[Iona!1 | a!0.a!1]µh and N=n[Iona!1.a!0.a!1]µh, with I(a)=0
and undefined otherwise. Then, within one time unit, M may display on the
actuator a either the sequence of values 01 or the sequence 0101, while N can
only display the sequence 0101. As a consequence, for a physical observer, the
behaviours of M and N are clearly different. Now, if M _τ_a M ′ = n[Jona!1]µh,
with J (a) = 1, the only possible reply of N respecting reduction closure is
N _∗_a N ′ = n[Jona!0.a!1]µh. However, it is evident that M ′ 6∼= N ′ because N ′

can turn the actuator a to 0 while M ′ cannot. Thus, M 6∼= N .
Had we merged _a with _τ then we would have M ∼= N because the

capability to observe messages on actuators, given by the barb, would not be
enough to observe changes on actuators within one time interval.

2.3 Design choices

CaIT is a value-passing process calculus, à la CCS, which can be easily adapted
to deal with the transmission of channel names, à la π-calculus [24].

The time model we adopt is known as the fictitious clock approach (see [14]):
a global clock is supposed to be updated whenever all nodes agree on this, by
globally synchronising on a special timing action σ. Thus, time synchronisation
relies on some clock synchronisation protocol for mobile wireless systems [27].

In cyber-physical systems [25], sensor changes are usually modelled either using
continuous models (differential equations) or through discrete models (difference

9

equations)4. However, in this paper we aim at providing a behavioural semantics
for IoT applications from the point of the view of the end user. And the end
user cannot directly observe changes on the sensors of an IoT application: she
can only observe the effects of those changes via actuators and communication
channels. Thus, in CaIT we do not represent sensor changes via specific models,
but we rather abstract on them by supporting nondeterministic sensor updates
(see Def. 5 and 6). Actually, as said in Rem. 1, behavioural equalities derived in
our setting remains valid when adopting any specific model for sensor updates.

In CaIT the value associated to sensors and actuators can change more than
once within the same time interval. At first sight this choice may appear weird
as certain actuators may require some time to turn on. On the other hand, other
actuators may have a very quick reaction. A similar argument applies to sensors.
In this respect CaIT does not enforce a synchronisation of physical events as
it happens for logical signals in synchronous languages [5]. In fact, actuator
changes are under nodes’ control: if an actuator is a slow device then it is under
the responsibility of its controller to update the actuator with a proper delay.
Similarly, a sensor should be read only when its value makes sense.

Unlike mobile computations [6], smart devices do not decide where to move
to: an external agent moves them. Furthermore, Def. 1 imposes that location-
dependent sensors can only occur in stationary nodes. This allows us a local,
rather than a global, representation of those sensors. The representation of mobile
location-dependent sensors would have the same technical challenges of mobile
wireless sensor networks [27].

Finally, we would like to explain our choice of barb. As said in the In-
troduction there are other possible definitions. For instance, one could ob-
serve the capability to transmit along a channel c, by defining M ↓c@h if
M ≡ (νg̃)

(
n[Ionbc〈v〉.P cQ | R]µk | N

)
with c 6∈ g̃ and d(h, k) ≤ rng(c). However,

if you consider the system S = (νc)(M | m[Jonbc(x).a!1cnil]µh), with J (a) = 0,
then it is easy to show that M ↓c@h if and only if S __a S′ ↓a@h!1. Thus, the
barb on channels can always be reformulated in terms of our barb. The vice
versa is not possible. The reader may also wonder whether it is possible to turn
the reduction _a into _τ by introducing some special barb which would be
capable to observe actuators changes. For instance, something like M ↓a@h!v.w if
M ≡ (νg̃)

(
n[Iona!w.P | Q]µh | M ′), with I(a) = v and v 6= w. It should be easy

to see that this extra barb would not help in distinguishing the terms proposed
in Ex. 2. Actually, here there is something deeper that needs to be spelled out.
In process calculi, the term β of a barb ↓β is a concise encoding of a context
Cβ expressible in the calculus and capable to observe the barb ↓β . However, our
barb ↓a@h!v does not have such a corresponding physical context in our language.
Said with an example, in CaIT we do not represent the “eyes of a person” looking
at the values appearing to some display. Technically speaking, in our calculus we
don’t have terms of the form a?(x).P to read values on the actuator a, simply
because such terms would not be part of an IoT system. The lack of this physical

4 Difference equations relate to differential equations as discrete math relate to contin-
uous math.

10

Table 2 A smart home in CaIT

Sys
def
= Phone

˛̨
Home

Phone
def
= nP [IP onBoilerCtrl | LightCtrl]mout

Home
def
= LM1

˛̨
BM

˛̨
LM2

LM1
def
= n1[I1onLightMng1]

s

loc1

LM2
def
= n2[I2onLightMng2]

s

loc4

BM
def
= nB[IBonBoilerMng]sloc2

BoilerCtrl
def
= fix X.mode?(z).bb〈z〉.σ.XcX

LightCtrl
def
=

Q2
j=1 fix X.bcj〈〉.σ.XcX

LightMngj
def
= fix X.bcj().lightj !on.σ.Xclightj !off.X for j ∈ {1, 2}

BoilerMng
def
= fix X.bb(x).[x = man] boiler!on.σ.Manual; TempCtrlcTempCtrl

Manual
def
= fix Y.b(y).[y = auto]X; σ.Y

TempCtrl
def
= temp?(t).[t < Θ] boiler!on.σ.X; boiler!off.σ.X

context, together with the persistent nature of actuators’ state, explains why our
barb ↓a@h!v must work together with the reduction relation _a to provide the
desired distinguishing power of ∼=. Further discussions can be found in [7].

3 Case study: a smart home

In Tab. 2, we model the smart home discussed in the Introduction, and represented
in Fig. 1. Our house spans over 4 contiguous physical locations loci, for i = [1..4],
such that d(loci, locj) =| i− j |. The entrance is in loc1, the patio spans from loc2

to loc3 and the lounge is at loc4. The house can only be accessed via its entrance.
Our system Sys consists of the parallel composition of the smartphone, Phone,

and the smart home, Home. The smartphone is represented as a mobile node,
with δ = 1, initially placed outside the house: out 6= locj , for j ∈ [1..4]. As
the phone can only access the house from its entrance, and δ = 1, we have
d(l, loci) ≥ i, for any l 6∈ {loc1, loc2, loc3, loc4} and i ∈ [1..4]. Its interface IP

contains only one sensor, called mode, representing the touchscreen to control
the boiler. This is a node-dependent sensor. The process BoilerCtrl reads sensor
mode and forwards its value to the boiler manager in the patio, BoilerMng, via
the Internet channel b (rng(b) = ∞). The domain of mode is {man, auto}, where
man stands for manual and auto for automatic; initially, IP (mode) = auto.

In Phone there is a second process, called LightCtrl, which allows the smart-
phone to switch on lights only when getting in touch with the light managers in-
stalled in the rooms. Here, channels c1 and c2 serve to control the lights of entrance
and lounge, respectively; these are short-range channels: rng(c1) = rng(c2) = 0.

The smart home Home consists of three stationary nodes: LM1, BM , and
LM2. The light managers processes LightMng1, LightMng2, are placed in LM1

and LM2, respectively. They manage the corresponding lights via the actua-
tors lightj , for j ∈ {1, 2}. The domain of these actuators is {on, off}; initially,
Ij(lightj) = off, for j ∈ {1, 2}.

11

Table 3 Smart home: a position based light management

Sys
def
= Phone

˛̨
Home

Phone
def
= nP [IP onBoilerCtrl | LightCtrl]

m

out

Home
def
= Home

˛̨
CLM

CLM
def
= nC [∅onCLightMng]

s

loc3

LightCtrl
def
= fix X.@(x).bg〈x〉.σ.XcX

CLightMng
def
= fix X.bg(y).[y = loc1]bc1〈〉.σ.XcX; [y = loc4]bc2〈〉.σ.XcX; σ.XcX

The boiler manager process BoilerMng is placed in BM (node nB). Here, the
physical interface IB contains a sensor named temp and an actuator called boiler;
temp is a location-dependent temperature sensor, whose domain is N, and boiler
is an actuator to display boiler functionality, whose domain is {on, off}. The boiler
manager can work either in automatic or in manual mode. In automatic mode,
sensor temp is periodically checked: if the temperature is under a threshold Θ
then the boiler will be switched on, otherwise it will be switched off. Conversely, in
manual mode, the boiler is always switched on. Initially, the boiler is in automatic
mode, IB(temp) = Θ, and IB(boiler) = off.

Our system Sys enjoys a number of desirable run-time properties . For instance,
if the boiler is in manual mode or its temperature is under the threshold Θ
then the boiler will get switched on, within one time unit. Conversely, if the
boiler is in automatic mode and its temperature is higher than or equal to the
threshold Θ, then the boiler will get switched off within one time unit. These
three fairness properties can be easily proved because our calculus is well-timed.
In general, similar properties cannot be expressed in untimed calculi. Finally,
our last property states the phone cannot act on the lights of the two rooms at
the same time, manifesting a kind of “ubiquity”. For the sake of simplicity, in
the following proposition we omit location names both in barbs and in sensor
updates, writing ↓a!v instead of ↓a@h!v, and [s 7→ v] instead of [s@h 7→ v]. The
system Sys′ denotes an arbitrary (stable) derivative of Sys.

Proposition 3 (Run-time properties). Let Sys (_∗
i _σ)∗ Sys′.

– If Sys′[mode7→man] _∗
i Sys′′ _σ then Sys′′ ↓boiler!on

– If Sys′[temp 7→ t] _∗
i Sys′′ _σ, with t < Θ, then Sys′′ ↓boiler!on

– If Sys′[temp 7→ t]_∗
i Sys′′ _σ, with t ≥ Θ, then Sys′′ ↓boiler!off

– If Sys′ _∗
i Sys′′ ↓light1!on then Sys′′ ↓light2!off , and vice versa.

Finally, we propose a variant of our system, where lights functionality depends
on the position of the smartphone. Intuitively, the smartphone detects is current
GPS position, via the process @(x).P , and then sends it to a centralised light
manager process, CLightMng, via an Internet channel g. This process will
interact with the local light managers to switch on/off lights, depending on the
position of the smartphone. In Table 3, new components have been overlined.
Channels c1 and c2 have different range now, as they serve to communicate with
the centralised light manager: rng(c1) = 2 and rng(c2) = 1.

Prop. 3 holds for Sys as well. Actually, the two systems are closely related.

12

Table 4 Intensional semantics for processes

(SndP)
−

bc〈v〉.P cQ cv−−−→ P
(RcvP)

−
bc(x).P cQ cv−−−→ P{v/x}

(PosP)
−

@(x).P
@h−−−→ P{h/x}

(Com)
P

cv−−−→ P ′ Q
cv−−−→ Q′ rng(c) = −1

P | Q
τ−−→ P ′ | Q′

(Sensor)
−

s?(x).P
s?v−−−→ P{v/x}

(Actuator)
−

a!v.P
a!v−−−→ P

(ParP)
P

λ−−→ P ′ λ 6= σ

P | Q
λ−−→ P ′ | Q

(Fix)
P{fix X.P/X}

λ−−→ Q

fix X.P
λ−−→ Q

(TimeNil)
−

nil
σ−−→ nil

(Delay)
−

σ.P
σ−−→ P

(Timeout)
−

bπ.P cQ σ−−→ Q
(TimeParP)

P
σ−−→ P ′ Q

σ−−→ Q′ P | Q 6 τ−−→
P | Q

σ−−→ P ′ | Q′

Proposition 4. For δ = 1, (ν c̃)Sys ∼= (ν c̃)(νg)Sys.

The bisimulation proof technique developed in the remainder of the paper will
be very useful to prove equalities between systems of such size.

We end this section with a comment. While reading this case study the
reader should have noticed that our reduction semantics does not model sensor
updates. This is because sensor changes depend on the physical environment, and
a reduction semantics models the evolution of a system in isolation. Interactions
with the external environment will be treated in our extensional semantics.

4 Labelled transition semantics

In this section we provide two labelled semantic models in the SOS style of
Plotkin: the intensional semantics and the extensional semantics.

Intensional semantics Since our syntax distinguishes between networks and
processes, we have two different kinds of transitions:

– P
λ−−→ Q, with λ ∈ {σ, τ, cv, cv, @h, s?v, a!v}, for process transitions

– M
ν−−→ N , with ν ∈ {σ, τ, a, cv@h, cv@h}, for network transitions.

In Tab. 4 we report transition rules for processes, very much in the style of [14].
As in CCS, we assume [b]P ;Q = P if JbK = true, and [b]P ;Q = Q if JbK = false.
Rules (SndP), (RcvP) and (Com) model communications along a channel c. Rule
(PosP) is for extracting the physical position of the embedding node. Rules (Sensor)

and (Actuator) serve to read sensors, and to write on actuators, respectively. Rules
(ParP) and (Fix) are straightforward. The remaining rules allow us the derive
the timed action σ. In Rule (Delay) a timed prefix is consumed. Rule (Timeout)

13

Table 5 Intensional semantics for networks

(Pos)
P

@h−−−→ P ′

n[IonP]µh
τ−−→ n[IonP ′]

µ
h

(SensRead)
I(s) = v P

s?v−−−→ P ′

n[IonP]µh
τ−−→ n[IonP ′]

µ
h

(ActUnChg)
I(a) = v P

a!v−−−→ P ′

n[IonP]µh
τ−−→ n[IonP ′]

µ
h

(LocCom)
P

τ−−→ P ′

n[IonP]µh
τ−−→ n[IonP ′]

µ
h

(ActChg)
I(a) 6= v P

a!v−−−→ P ′ I′ := I[a 7→ v]

n[IonP]µh
a−−→ n[I′onP ′]

µ
h

(TimeStat)
P

σ−−→ P ′ n[IonP]sh
τ−−→6

n[IonP]sh
σ−−→ n[IonP ′]

s

h

(TimeMob)
P

σ−−→ P ′ n[IonP]mh
τ−−→6 d(h,k)≤δ

n[IonP]mh
σ−−→ n[IonP ′]

m

k

(Snd)
P

cv−−−→ P ′ rng(c) ≥ 0

n[IonP]µh
cv@h−−−−−→ n[IonP ′]

µ
h

(Rcv)
P

cv−−−→ P ′ rng(c) ≥ 0

n[IonP]µh
cv@h−−−−−→ n[IonP ′]

µ
h

(GlbCom)
M

cv@k−−−−−→ M ′ N
cv@h−−−−−→ N ′ d(h, k) ≤ rng(c)

M | N
τ−−→ M ′ | N ′

(ParN)
M

ν−−→ M ′ ν 6= σ

M | N
ν−−→ M ′ | N

(TimePar)
M

σ−−→ M ′ N
σ−−→ N ′ M | N

τ−−→6
M | N

σ−−→ M ′ | N ′

(TimeZero)
−

0
σ−−→ 0

(Res)
M

ν−−→ N ν 6∈ {cv@h, cv@h}
(νc)M

ν−−→ (νc)N

models timeouts when channel communications are not possible in the current
time interval. Rule (TimeParP) is for time synchronisation of parallel processes.
The symmetric counterparts of Rules (ParP) and (Com) are omitted.

In Tab. 5 we report the rules for networks. Rule (Pos) extracts the position
of a node. Rule (SensRead) models the reading of a sensor of the enclosing node.
Rules (ActUnChg) and (ActChg) describes the writing of a value v on an actuator
a of the node, distinguishing whether the value of the actuator is changed or not.
Rule (LocCom) models intra-node communications. Rule (TimeStat) models the
passage of time for a stationary node. Rule (TimeMob) models both time passing
and node mobility at the end of a time interval. Rules (Snd) and (Rcv) model
transmission and reception along an global channel. Rule (GlbCom) models inter-
node communications. The remaining rules are straightforward. The symmetric
counterparts of Rules (ParN) and (GlobCom) are omitted.

The reduction semantics and the labelled intensional semantics coincide.

Theorem 1 (Harmony theorem). Let ω ∈ {τ, a, σ}:

– M
ω−−→ M ′ implies M _ω M ′

– M _ω M ′ implies M
ω−−→ M ′′, for some M ′′ such that M ′ ≡ M ′′.

Extensional semantics Here we redesign our LTS to focus on the interactions
of our systems with the external environment. As the environment has a logical

14

Table 6 Extensional semantics: additional rules

(SndObs)
M

cv@h−−−−−→ M ′ d(h, k)≤ rng(c)

M
cv.k−−−−→ M ′

(RcvObs)
M

cv@h−−−−−→ M ′ d(k, h)≤ rng(c)

M
cv.k−−−−→ M ′

(SensEnv)
v in the domain of s

M
s@h?v−−−−−−→ M [s@h 7→ v]

(ActEnv)
M ↓a@h!v

M
a@h!v−−−−−→ M

part (the parallel nodes) and a physical part (the physical world) our extensional
semantics distinguishes two different kinds of transitions:

– M
α−−→ N , logical transitions, for α ∈ {τ, σ, a, cv . k, cv . k}, to denote the

interaction with the logical environment ; here, actuator changes, τ - and
σ-actions are inherited from the intensional semantics, so we don’t provide
inference rules for them;

– M
α−−→ N , physical transitions, for α ∈ {s@h?v, a@h!v}, to denote the

interaction with the physical world .

In Tab. 6 the extensional actions deriving from rules (SndObs) and (RcvObs)

mention the location k of the logical environment which can observe the com-
munication occurring at channel c. Rules (SensEnv) and (ActEnv) model the
interaction of a system M with the physical environment. The environment
can nondeterministically update the current value of (location-dependent or
node-dependent) sensors, and can read the information exposed on actuators.

Note that our LTSs are image finite. They are also finitely branching , and
hence mechanisable, under the obvious assumption of finiteness of all domains of
admissible values, and the set of physical locations.

5 Full abstraction

Based on our extensional semantics, we are ready to define a notion of bisimilarity.
We adopt a standard notation for weak transitions. We denote with =⇒ the
reflexive and transitive closure of τ -actions, namely (

τ−−→)∗, whereas α=⇒ means
=⇒ α−−→=⇒, and finally α̂=⇒ denotes =⇒ if α = τ and α=⇒ otherwise.

Definition 8 (Bisimulation). A binary symmetric relation R over networks
is a bisimulation if M R N and M

α−−→ M ′ imply there exists N ′ such that
N

α̂==⇒ N ′ and M ′ R N ′. We say that M and N are bisimilar, written M ≈ N ,
if M R N for some bisimulation R.

Later on, we will take into account the number of τ -actions performed by a
process. The expansion relation [1], written ., is a well-known asymmetric variant
of ≈ such that P . Q holds if P ≈ Q and Q has at least as many τ -moves as P .

A main result is that our bisimilarity is a congruence.

Theorem 2 (Congruence theorem). The relation ≈ is contextual.

15

The proof that ≈ is preserved by the sensor update operator [s@h 7→ v] is
non-standard and technically challenging . It required a well-founded induction.

Thm. 2 is crucial to prove that our bisimilarity is sound with respect to reduc-
tion barbed congruence. Actually, our bisimilarity is both sound and complete.

Theorem 3 (Full abstraction). M ≈ N iff M ∼= N .

Soundness follows from Thm. 1, Thm. 2, and the capability of extensional actions
to capture barbs. As to completeness, for any extensional action α we exhibit an
observing context Cα.

Remark 2. A consequence of Thm. 3 and Rem. 1 is that our bisimulation proof-
technique remains sound in a setting with more restricted contexts, where nonde-
terministic sensor updates are replaced by some specific model for sensors.

As testbed for our notion of bisimilarity, we prove a number of algebraic laws
on well-formed networks.

Theorem 4 (Some algebraic laws).

1. n[Iona!v.P | R]µh & n[IonP | R]µh, if I(a) = v and a does not occur in R

2. n[Ion@(x).P | R]µh & n[Ion{h/x}P | R]
µ

h

3. n[Ionbc〈v〉.P cS | bc(x).QcT | R]µh & n[IonP |Q{v/x}|R]µh, c not in R and rng(c)=−1

4. (νc)(n[Ionbc〈v〉.P cS | R]µh | m[Jonbc(x).QcT | U]µ
′

k)
& (νc)(n[IonP | R]µh | m[JonQ{v/x} | U]µ

′

k), if rng(c) = ∞ and c does not
occur in R and U

5. n[IonP]µh & n[Ionnil]µh, if subterms bπ.P1cP2 or a!v.P1 do not occur in P
6. n[Ionnil]µh ≈ 0, if I(a) is undefined for any actuator a
7. n[∅onP]mh ≈ m[∅onP]sk, if P does not contain terms of the form @(x).Q, and

for any channel c in P either rng(c) = ∞ or rng(c) = −1.

Laws 1-4 are a sort of tau-laws. Laws 5 and 6 models garbage collection of
processes and nodes, respectively. Law 7 gives a sufficient condition for node
anonymity as well as for non-observable node mobility.

Finally, we show that our labelled bisimilarity can be used to deal with more
complicated systems. Let us prove that the two variants of the smart home
mentioned in Prop. 4 are actually bisimilar.

Proposition 5. If δ = 1 then (ν c̃)Sys ≈ (ν c̃)(νg)Sys.

Due to the size of the systems involved, the proof of the proposition above is
quite challenging. In this respect, the first four laws of Thm. 4 are fundamentals
to apply non-trivial up-to expansion proof-techniques [24].

6 Related work

To our knowledge, the IoT-calculus [16] is the first (and only) process calculus
for IoT systems. We report here the main differences between CaIT and the
IoT-calculus. In CaIT, we can express desirable time and runtime properties (see
Prop. 1 and Prop. 3). The nondeterministic link entailment of the IoT-calculus

16

makes communication simpler than ours; on the other hand it does not allow to
enforce that a smart device cannot be in two places at the same time. In CaIT,
both sensors and actuators are under the control of a single entity, i.e. the process
of the node where they were deployed. This was a security issue. CaIT has a
finer control of inter-node communication: it takes into account both distance
among nodes and transmission range of channels. Node mobility in CaIT is timed
constrained: in one time unit at most a fixed distance δ may be covered.

Finally, Lanese et al. equip the IoT-calculus with an end-user bisimilarity
which shares the same motivations of our bisimilarity. In the IoT-calculus, end
users provide values to sensors and check actuators. Unlike us, they can also
observe node mobility but they cannot observe channel communication. End-
user bisimilarity is not preserved by parallel composition. Compositionality is
recovered by strengthening its discriminating power.

Our calculus takes inspiration from algebraic models for wireless systems [17,
23, 19, 12, 3, 18, 20, 11, 26, 10, 21, 8, 4]. Most of these models adopt broadcast com-
munication, while we consider point-to-point communication, as in [16, 10, 21].
We model network topology as in [17, 19]. Prop. 2 was inspired by [8]. Fully
abstract observational theories for calculi of wireless systems appear in [12, 19, 8].

Vigo et al. [28] proposed a calculus for wireless-based cyber-physical systems
endowed with a theory to model and reasoning on cryptographic primitives,
together with explicit notions of communication failure and unwanted communi-
cation. However, as pointed out in [29], the calculus does not provide a notion
of network topology, local broadcast and behavioural equivalence. It also lacks
a clear distinction between physical components (sensor and actuators) and
logical ones (processes). Compared to [28], paper [29] introduces a static network
topology and enrich the theory with an harmony theorem.

CaIT shares some similarities with the synchronous languages of the Esterel
family [5]. In synchronous languages, computations proceed in phases called
instants, which have some similarity with our time intervals. For instance, our
timed reduction semantics has some points in common with that of CRL [2].

Finally, CaIT is somehow reminiscent of the SCEL language [9]. A framework
to model behaviour, knowledge, and data aggregation of Autonomic Systems.

Acknowledgements We thank Ilaria Castellani and Matthew Hennessy for their
precious comments, and Valentina Castiglioni for an early proof of the harmony
theorem. The anonymous referees provided useful comments.

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737–760 (1992)

2. Attar, P., Castellani, I.: Fine-Grained and Coarse-Grained Reactive Noninterference.
In: Abadi, M., Lluch-Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 159–179.
Springer, Heidelberg (2013)

3. Benetti, D., Merro, M., Vigano, L.: Model checking ad hoc network routing protocols:
Aran vs. endairA. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, M. (eds.) SEFM
2010. pp. 191–202. IEEE Computer Society (2010)

4. Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola, J.,
Parrow, J.: Broadcast psi-calculi with an application to wireless protocols. Software
and System Modeling 14(1), 201–216 (2015)

17

5. Boussinot, F., de Simone, R.: The SL synchronous language. IEEE Transactions on
Software Engineering 22(4), 256–266 (1996)

6. Cardelli, L., Gordon, A.: Mobile ambients. TCS 240(1), 177–213 (2000)
7. Castiglioni, V., Lanotte, R., Merro, M.: A Semantic Theory of the Internet of

Things. CoRR abs/1510.04854 (2015)
8. Cerone, A., Hennessy, M., Merro, M.: Modelling mac-layer communications in

wireless systems. Logical Methods in Computer Science 11(1:18) (2015)
9. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Autonomic

Systems Programming: The SCEL language. ACM TAAS 9, 7:1–7:29 (2014)
10. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.: A

process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012)

11. Ghassemi, F., Fokkink, W., Movaghar, A.: Verification of Mobile Ad Hoc Networks:
an Algebraic Approach. TCS 412(28), 3262–3282 (2011)

12. Godskesen, J.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Vitek,
J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer (2007)

13. Gubbi, J., Palaniswami, M.: Internet of things (IoT): A vision, architectural elements,
and future directions. Fut. Gen. Comput. Syst. 29(7), 1645–1660 (2013)

14. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117(2), 221–239 (1995)

15. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151(2), 437–486
(1995)

16. Lanese, I., Bedogni, L., Di Felice, M.: Internet of things: a process calculus approach.
In: Shin, S.Y., Maldonado, J.C. (eds.) SAC 2013. pp. 1339–1346. ACM (2013)

17. Lanese, I., Sangiorgi, D.: An Operational Semantics for a Calculus for Wireless
Systems. TCS 411, 1928–1948 (2010)

18. Lanotte, R., Merro, M.: Semantic analysis of gossip protocols for wireless sensor
networks. In: Katoen, J.P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
156–170. Springer, Heidelberg (2011)

19. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks (full version).
Information and Computation 207(2), 194–208 (2009)

20. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. TCS
412(47), 6585–6611 (2011)

21. Merro, M., Sibilio, E.: A calculus of trustworthy ad hoc networks. Formal Aspects
of Computing 25(5), 801–832 (2013)

22. Milner, R.: The polyadic π-calculus: a tutorial. Tech. rep., LFCS (1991)
23. Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless

Networks. TCS 367(1-2), 203–227 (2006)
24. Sangiorgi, D., Walker, D.: The Pi-Calculus a theory of mobile processes. Cambridge

University Press (2001)
25. Schaft, A., Schumacher, H.: An introduction to hybrid dynamical systems, Lecture

Notes in Control and Information Science, vol. 251. Springer, Heidelberg (2000)
26. Singh, A., Ramakrishnan, C., Smolka, S.: A process calculus for Mobile Ad Hoc

Networks. SCP 75(6), 440–469 (2010)
27. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wireless

sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)
28. Vigo, R., Nielson, F., Nielson, H.: Broadcast, denial-of-service, and secure communi-

cation. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 412–427.
Springer, Heidelberg (2013)

29. Wu, X., Zhu, H.: A calculus for wireless sensor networks from quality perspective.
In: HASE 2015. pp. 223–231. IEEE Computer Society (2015)

