
Concurrency

Massimo Merro

4 December 2017

Massimo Merro Concurrency 1 / 38



Introduction

Our focus so far has been on the semantics of sequential computations.
However, many interesting systems are not sequential!

hardware is intrisically parallel

multiple-processor machines

multi-threading (even on a single processor)

networked machines

cyber-physical systems

IoT devices

in general, concurrency can increase program performance by
scheduling parallel independent tasks on multicore hardware, and can
enable responsive user interfaces.

Massimo Merro Concurrency 2 / 38



Challenges in concurrent systems

the state-space of our systems become larger, with the combinatorial
explosion; with n threads, each of which can be in only 2 states, the
system has 2n states!

the state-space is not only larger but also more complex

parallel components sharing resources should access them in mutual
exclusion. If this is not done properly those components may suffer
deadlock or starvation

computations become nondeterministic (unless synchrony is imposed),
as different threads operate at different speeds

concurrency in programming might induce severe problems such as
data races, i.e., concurrent access to shared data by different threads,
with consequent unpredictable or erroneous behavior.

Massimo Merro Concurrency 3 / 38



More challenges

partial failures (of some process, of some device in a network, or some
persistent storage device); need transaction mechanisms

communication between different environments with different local
resources (e.g. different local stores, or libraries); need consistency
mechanisms;

communication between administrative domains with partial trust (or,
indeed not trust al all); protection against malicious attack

dealing with contingent complexity (embedded historical accidents,
etc).

Massimo Merro Concurrency 4 / 38



On next slides

Theme: as for sequential languages seen up to now, but much more so.
Concurrent languages are a complicated world.

Aim of this lecture: just to give you a taste of a how relatively simple
semantics can be used to express some of the fine distinctions. Primarily

1 to boost your intuition on reasoning on concurrent systems

2 this can support rigorous proofs about crypto systems,
cache-coherency protocols, database transactions, etc.

Our Goal: Define the simplest possible concurrent language and explore a
few interesting issues.

Massimo Merro Concurrency 5 / 38



A small concurrent language

Booleans b ∈ B = {true, false}
Integers n ∈ N = {. . . ,−1, 0, 1, . . .}
Locations l ∈ L = {l, l0, l1, l2, . . .}
Operations op ::= +

∣∣ ≥

Expressions e ∈ Exp ::= n
∣∣ b

∣∣ e op e
∣∣ if e then e else e∣∣ l := e

∣∣ !l
∣∣ skip

∣∣ e; e∣∣ while e do e
∣∣ e ‖ e

Types T ::= int
∣∣ bool

∣∣ unit
∣∣ proc

Tloc ::= intref

The construct e ‖ e is called parallel composition.

Massimo Merro Concurrency 6 / 38



Parallel composition: Our Design Choices

threads don’t return a value

threads are anonymous, i.e. they don’t have an identity

termination of a thread cannot be directly observed withing a program

processes, in general, are given by a pool of concurrent threads

threads can’t be killed externally.

Massimo Merro Concurrency 7 / 38



Changes: Typing and operational semantics

(T-sq1)
Γ ` e1 : unit Γ ` e2 : unit

Γ ` e1; e2 : unit
(T-sq2)

Γ ` e1 : unit Γ ` e2 : proc

Γ ` e1; e2 : proc

(T-par)
Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 ‖ e2 : proc
T1,T2∈{unit,proc}

(par-L)
〈e1, s〉 _ 〈e ′1, s ′〉

〈e1 ‖ e2, s〉 _ 〈e ′1 ‖ e2, s ′〉 (par-R)
〈e2, s〉 _ 〈e ′2, s ′〉

〈e1 ‖ e2, s〉 _ 〈e1 ‖ e ′2, s ′〉

(end-L)
−

〈skip ‖ e, s〉 _ 〈e, s〉 (end-R)
−

〈e ‖ skip, s〉 _ 〈e, s〉

Γ ` e : unit entails e singlethreaded

Γ ` e : proc entails e multithreaded

Massimo Merro Concurrency 8 / 38



As in any concurrent language:

threads execute asynchronously - the semantics allows any
interleaving of the reductions of the threads

all threads can read and write the shared memory

As a consequence, the Determinacy property does not hold.
For instance:

〈l := 1 ‖ l := 2, {l 7→ 0}〉 _ 〈skip ‖ l := 2, {l 7→ 1}〉 _ 〈skip ‖ skip, {l 7→ 2}〉 _ 〈skip, {l 7→ 2}〉

But also

〈l := 1 ‖ l := 2, {l 7→ 0}〉 _ 〈l := 1 ‖ skip, {l 7→ 2}〉 _ 〈skip ‖ skip, {l 7→ 1}〉 _ 〈skip, {l 7→ 1}〉

Massimo Merro Concurrency 9 / 38



Race conditions

both ’assignments’ and ’dereferencing’ are atomic operations: in the
previous configuration we can get a store where location l is
associated to either 1 or 2. No strange combinations of them.

However, in (l := e) ‖ e ′ the semantic steps which are necessaty to
evaluate e and e ′ can be interleaved

So, what about the execution of program (l := 1 + !l) ‖ (l := 7 + !l)?
In this case, we can get race conditions, i.e. the output can be
something completely unexpected and inconsistent with the intentions
of any thread!
In particular, as decipted at pag. 97 of the notes, there are 3 possible
final configurations for 〈(l := 1 + !l) ‖ (l := 7 + !l), {l 7→ 0}〉:

1 〈skip, {l 7→ 1}〉
2 〈skip, {l 7→ 7}〉
3 〈skip, {l 7→ 8}〉

(1) and (2) are due to “interferences” while executing the
assignments; only (3) corresponds to some correct scheduling!

Massimo Merro Concurrency 10 / 38



Morals

There are too many possible results

Actually, all the possible executions give rise to to a combinatorial
explosion of states

Drawing state-space diagrams, as done at pag. 97 of Sewell’s notes,
works only for very little examples: we need better techniques to
analyze our concurrent programs!

Almost centainly you (as the programmer) didn’t want all those 3
outcomes to be possible - need better idioms to or constructs for
programming.

Massimo Merro Concurrency 11 / 38



How do we get anything coherent done?

need some way(s) to synchronize between threads, so can enforce
mutual exclusion for shared data

Think of Lamport’s “Bakery” algorithm for concurrent and distributed
systems. Can you code that in our small concurrent language? If not,
what would you need in the language?

though you can depend on built-in support from the scheduler, e.g.
mutexes or condition variable (or, at the lower level, tas, test-and-set,
or cas, compare-and-set).

Massimo Merro Concurrency 12 / 38



Adding primitives mutexes in the language

Mutex names m ∈ M = {m,m1, . . .}
Configurations 〈e, s, µ〉, where µ : M → B is the mutex state

Expressions e ∈ Exp . . .
∣∣ e ‖ e

∣∣ lock m
∣∣ unlock m

Typing:

(T-lock)
−

Γ ` lock m : unit
(T-unlock)

−
Γ ` unlock m : unit

Operational semantics:

(lock)
−

〈lock m, s, µ〉 _ 〈skip, s, µ[m 7→ true]〉 if ¬µ(m)

(unlock)
−

〈unlock m, s, µ〉 _ 〈skip, s, µ[m 7→ false]〉

... and adapt all the other rules to extended configurations 〈e, s, µ〉.
Massimo Merro Concurrency 13 / 38



Using a Mutex

To avoid race conditions, we can rewrite the previous program as follows:

Prg
def
= (lock m; l := 1 + !l; unlock m) ‖ (lock m; l := 7 + !l; unlock m)

Let 〈Prg , s0, µ0〉 be a configuration such that s0 = {l 7→ 0} and µ0 returns
false for any mutex name. Then, for all possible executions traces of the
configuration 〈Prg , s0, µ0〉 we will always have

〈Prg , s0, µ0〉 _∗ 〈skip, {l 7→ 8}, µ0〉

No other final configurations are possible!

The two assignments will be executed one after the other in mutual
exclusion.

Note that the two assignments commute, so we end up in the same final
state whichever got the lock first.

Massimo Merro Concurrency 14 / 38



Deadlocks

The construct lock m can block if the the mutex m has already been
locked by another thread. So, if we use (at least) two mutexes we can
easily deadlock!

Consider

e = (lock m1; lock m2; l1 := !l2; unlock m1; unlock m2)

‖ (lock m2; lock m1; l2 := !l1; unlock m2; unlock m1)

... and we don’t want deadlocks!

Massimo Merro Concurrency 15 / 38



Language Properties

Obviously, we don’t have Determinacy anymore

Type preservation is still valid

Typing and type inferences is scarcely changed

Very fancy type systems can be used to enforce locking disciplines

Progress in general is not valid unless we adopt a type system to
enforce a locking discipline. In that case, we would have
deadlock-freedom for free. This has an influence on our notions of
semantic equivalence.

Massimo Merro Concurrency 16 / 38



Semantic equivalences on concurrent programs

Since deadlocking processes are not ruled out anymore by our type system,
we have to revisit our semantic equivalences
Let’s amend the typed equivalences seen for sequential computations.

Trace equivalence 'Γ

e1 'Γ e2 iff for all mutex states µ and all stores s, s.t. dom(Γ) ⊆ dom(s),
we have Γ ` e1 : T1, Γ ` e2 : T2, T1,T2 ∈ {unit, proc}, and

〈e1, s, µ〉 _∗ 〈e ′1, s ′, µ′〉 implies ∃e ′2. 〈e2, s, µ〉 _∗ 〈e ′2, s ′, µ′〉
〈e2, s, µ〉 _∗ 〈e ′2, s ′, µ′〉 implies ∃e ′1. 〈e1, s, µ〉 _∗ 〈e ′1, s ′, µ′〉.

Notice that now we consider also partial traces and not only those leading
to final configurations.

Massimo Merro Concurrency 17 / 38



Example (1)

P1 =
(
(lock m; l := 3) ‖ (lock m; l := 4)

)
Q1 = lock m; (l := 3 ‖ l := 4)

Is P1 'Γ Q1, for Γ = {l : intref}? Yes, it is!

Is C [P1] 'Γ′ C [Q1], for any well-typed context C [·]? No, it isn’t!.

Consider the context C [·] defined as follows:

[·] ‖ (x1 := !l; x2 := !l; if !x2 = !x1 + 1 then r := 1 else r := 0)

Then 〈C [Q1], s, µ〉 _∗ 〈skip, s ′ µ′〉, with s(l)=s(r)=0, µ(m)=false,
s ′(l) = 4, s ′(r)=1 and µ′(m)=true.

But, there is no trace 〈C [P1], s, µ〉 _∗ 〈. . . , s ′′, µ′′〉, with s ′ = s ′′ and
µ′ = µ′′! This is because P1 can “touch” location l only once!

However, C [·] is not “fair” because it does not acquire the mutex
before accessing location l. Any “fair” distinguishing context?

Massimo Merro Concurrency 18 / 38



Example (2)

Suppose we can type the following programs:

P2 =
(
(lock m; l := 3; unlock m) ‖ (lock m; l := 4; unlock m)

)
Q2 = lock m; (l := 3 ‖ unlock m; lock m ‖ l := 4); unlock m
R2 = lock m; (l := 3 ‖ unlock m ‖ lock m ‖ l := 4); unlock m

In these 3 programs the critical assignments to l are fully locked.

Is P2 'Γ Q2 'Γ R2, for Γ = {l0 : intref, l : intref}? Yes, it is.

Is C [P2] 'Γ C [Q2], for any “fair” context C [·]? No, it isn’t!

Consider the “fair” context C [·] defined as follows:

[·] ‖ (lock m; x1:=!l; x2:=!l; (if !x2 = !x1+1 then r:=1 else r:=0); unlock m)

Then 〈C [Q2], s, µ〉 _∗ 〈. . . , s ′ µ′〉, with s(l)=s(r)=0, µ(m)=false,
s ′(l) = 4, s ′(r)=1 and µ′(m)=true.

But there is no trace s.t. 〈C [P2], s, µ〉 _∗ 〈. . . , s ′, µ′〉.

Massimo Merro Concurrency 19 / 38



So...

It is not considering “fair” contexts that we fix the problem!

What is the problem? 'Γ is not preserved by parallel contexts!

Why? Because trace equivalence forgets about intermediate states!

Moral: Parallel contexts have a stronger distinghishing power because they
have more chances to create interferences.

That’s why it is much more difficult to write correct concurrent
programs: when you add parallel threads a correct sequential program
may go wrong!

Massimo Merro Concurrency 20 / 38



Trace Congruence: a much finer semantic equivalence

Trace congruence ∼=Γ

Define e1
∼=Γ e2 to hold iff for all mutex states µ and all stores s, such

that dom(Γ) ⊆ dom(s), we have Γ ` e1 : T1, Γ ` e2 : T2,
T1,T2 ∈ {unit, proc} and

〈e1, s, µ〉 _∗ 〈e ′1, s ′, µ′〉 implies ∃e ′2. 〈e2, s, µ〉 _∗ 〈e ′2, s ′, µ′〉
〈e2, s, µ〉 _∗ 〈e ′2, s ′, µ′〉 implies ∃e ′1. 〈e1, s, µ〉 _∗ 〈e ′1, s ′, µ′〉
if e1

∼=Γ e2 then for any expression e such that Γ′ ` e1 ‖ e : proc and
Γ′ ` e2 ‖ e : proc, for some Γ′, then e1 ‖ e ∼=Γ′ e2 ‖ e.

By definition, the relation ∼=Γ is preserved by parallel contexts!

... and
P1 6∼=Γ Q1

P2 6∼=Γ Q2

Massimo Merro Concurrency 21 / 38



What about bi-similarity for concurrent programs?

We adapt the definitions to the current setting with mutexes:

Similarity

We say that e1 is simulated by e2, written e1 vΓ e2, iff

Γ ` e1 : T1 and Γ ` e2 : T2, with T1,T2 ∈ {unit, proc}
for any µ and s with dom(Γ) ⊆ dom(s), if 〈e1, s, µ〉 _ 〈e ′1, s ′, µ′〉 then
there is e ′2 such that 〈e2, s, µ〉 _∗ 〈e ′2, s ′µ′〉, with e ′1 vΓ e ′2.

Bisimilarity

We say that e1 is bisimilar to e2, written e1 ≈Γ e2, iff

Γ ` e1 : T1 and Γ ` e2 : T2, with T1,T2 ∈ {unit, proc}
for any µ and s with dom(Γ) ⊆ dom(s), if 〈e1, s, µ〉 _ 〈e ′1, s ′, µ′〉 then
there is e ′2 such that 〈e2, s, µ〉 _∗ 〈e ′2, s ′, µ′〉, with e ′1 ≈Γ e ′2
for any µ and s with dom(Γ) ⊆ dom(s), if 〈e2, s, µ〉 _ 〈e ′2, s ′, µ′〉 then
there is e ′1 such that 〈e1, s, µ〉 _∗ 〈e ′1, s ′, µ′〉, with e ′1 ≈Γ e ′2.

Massimo Merro Concurrency 22 / 38



Now, if you consider the processes of the previous examples:

P1 vΓ Q1

Q1 6vΓ P1

P2 vΓ Q2

Q2 6vΓ P2

Q2 ≈Γ R2

Unlike 'Γ, both vΓ and ≈Γ can observe changes at intermediate states!
In general, P vΓ Q and Q vΓ P does not imply P ≈Γ Q! Can you find
two programs P and Q where this happens?
Is the relation vΓ a congruence? Yes, it is!.
Why? Because vΓ is much sharper when observing processes.

Massimo Merro Concurrency 23 / 38



On the power of bi-similarity

Similarity and Bisimilarity are preserved by parallel contexts

If e1 vΓ e2 then for any expression e, such that Γ′ ` e1 ‖ e : proc and
Γ′ ` e2 ‖ e : proc, for some Γ′, it holds that

e1 ‖ e vΓ e2 ‖ e .

If e1 ≈Γ e2 then for any expression e, such that Γ′ ` e1 ‖ e : proc and
Γ′ ` e2 ‖ e : proc, for some Γ′, it holds that

e1 ‖ e ≈Γ e2 ‖ e .

Massimo Merro Concurrency 24 / 38



Conditional critical regions

We have seen that communication between parallel threads is via the
store

In concurrent programs it is very difficult to limit interferences on it

Many real concurrent programming languages have constructs for
alleviating these problems: semaphores, locks, critical regions, etc

We have seen how to enrich our language with a simple form of locks

Here we examine a higher-level construct for conditional critical
regions

await e1 protect e2 end

The intuition is that this command may only be executed when the
boolean expression e1 is true, and the entire command e2 is to be
executed to completion without interruption or interference.

Massimo Merro Concurrency 25 / 38



For example consider the program:

Prg1
def
= l := 0 ‖ (await !l = 0 protect l := 1; l := !l + 1 end)

This is a deterministic program; if it is executed in a state s, with
s(l) 6= 0, then it will terminate and the only possible terminal state is
s[l 7→ 2].

As another example consider the more involved program:

Prg2
def
= (await true protect l1 := 1; l1 := !l0 + 1 end)

‖
(await true protect l0 := 2; l0 := !l1 + 1 end)

The two guards, set to true, are vacuous, so which protected
command is executed first is chosen non-deterministically.

Massimo Merro Concurrency 26 / 38



Formally...

Language:

Configurations 〈e, s〉, as before

Expressions e ∈ Exp ::= . . .
∣∣ e ‖ e

∣∣ await e protect e end

Typing:

(T-await)
Γ ` e1 : bool Γ ` e2 : unit

Γ ` await e1 protect e2 end : unit

Operational semantics:

(await)
〈e1, s〉 _∗ 〈true, s ′〉 〈e2, s

′〉 _∗ 〈skip, s ′′〉
〈await e1 protect e2 end, s〉 _ 〈skip, s ′′〉

This is a kind of test-and-set command: whenever the guard e1 evaluates
to true the command e2 can be executed atomically, in just one step!

Massimo Merro Concurrency 27 / 38



It is easy to see that

await true protect (l := !l + 1; l := !l− 1) end

≈Γ

await false protect (l := !l + 1; l := !l− 1) end

≈Γ

await e protect (l := !l + 1; l := !l− 1) end

≈Γ

skip

for any expression e such that

Γ ` e : bool

e does not modify the store.

Massimo Merro Concurrency 28 / 38



Example

Let us consider the following programs:

P4
def
= l0 := 0;

(await !l0 = 0 protect (l := 1; l0 := 1) end)

‖
(await !l0 = 0 protect (l := 0; l0 := 1) end)

Q4
def
= l0 := 0; (l := 0; l0 := 1 ‖ l := 1; l0 := 1)

Supponendo di poter tipare il seguente processo:

R4
def
= l0 := 0;

(await !l0 = 0 protect (l := 0; l0 := 1 ‖ l := 1; l0 := 1) end)

P4 vΓ Q4

Q4 6vΓ P4

P4 ≈Γ R4

Massimo Merro Concurrency 29 / 38



Nondeterministic choice
Let us suppose to enrich our language with the following construct:

Configurations 〈e, s〉, as before

Expressions e ∈ Exp ::= . . .
∣∣ e + e

Typing:

(T-choice)
Γ ` e1 : unit Γ ` e2 : unit

Γ ` e1 + e2 : unit

Operational semantics:

(ChoiceL)
〈e1, s〉 _ 〈e ′1, s ′〉

〈e1 + e2, s〉 _ 〈e ′1, s ′〉

(ChoiceR)
〈e2, s〉 _ 〈e ′2, s ′〉

〈e1 + e2s〉 _ 〈e ′2, s ′〉

This construct chooses nondeterministically one branch or the other; once
a branch is chosen the other one is discarded!

Massimo Merro Concurrency 30 / 38



True and false algebraic laws

1 e + e ≈Γ e

2 e ≈Γ skip; e

3 e1 + e2 vΓ (skip; e1) + e2

4 e1 + e2 wΓ (skip; e1) + e2

5 e1 + e2 6≈Γ (skip; e1) + e2

6 e1 + e2 vΓ (skip; e1) + (skip; e2)

7 e1 + e2 wΓ (skip; e1) + (skip; e2)

8 e1 + e2 6≈Γ (skip; e1) + (skip; e2)

9 e + e ≈Γ (skip; e) + e

10 e + e ≈Γ (skip; e) + (skip; e)

Massimo Merro Concurrency 31 / 38



Example: When execution order is important

Consider the following algebraic law:

l := 1 ‖ m := 2 ≈Γ (l := 1; m := 2) + (m := 2; l := 1)

Can we generalise this law as follows?

e1 ‖ e2 ≈Γ (e1; e2) + (e2; e1)

for arbitrary expressions e1 and e2?

Massimo Merro Concurrency 32 / 38



Example: On Bisimulation

Let

e1
def
= (l := 1) + (l := 1; m := 2)

e2
def
= l := 1; m := 2

which of the following statements is true?

e1 vΓ e2

e1 wΓ e2

e1 ≈Γ e2.

Massimo Merro Concurrency 33 / 38



An encoding of nondeterministic choice

Question: Is e1 + e2 a primitive construct or it can be codified?

Let us try to encode nondeterministic choice using parallel composition,
locations and the construct for critical regions:

e1 ] e2
def
= let m : ref int = ref 0 in(

await !m = 0 protect m := 1 end; e1

‖
await !m = 0 protect m := 1 end; e2

)
Said in other words: does our implementation of nondeterministic choice
satisfy its specification, or... something close to it? Actually:

e1 ] e2 wΓ e1 + e2

e1 ] e2 vΓ e1 + e2

e1 ] e2 6≈Γ e1 + e2

e1 ] e2 ≈Γ (skip; e1) + (skip; e2).

Massimo Merro Concurrency 34 / 38



An encoding of nondeterministic choice

Question: Is e1 + e2 a primitive construct or it can be codified?
Let us try to encode nondeterministic choice using parallel composition,
locations and the construct for critical regions:

e1 ] e2
def
= let m : ref int = ref 0 in(

await !m = 0 protect m := 1 end; e1

‖
await !m = 0 protect m := 1 end; e2

)
Said in other words: does our implementation of nondeterministic choice
satisfy its specification, or... something close to it? Actually:

e1 ] e2 wΓ e1 + e2

e1 ] e2 vΓ e1 + e2

e1 ] e2 6≈Γ e1 + e2

e1 ] e2 ≈Γ (skip; e1) + (skip; e2).

Massimo Merro Concurrency 34 / 38



Persistent behaviours (1)

We know that when we write e1; e2 we have to execute e1 first, and only
when e1 has been completed we can execute e2.

However, how can we write in our language a program that repeats
subsequently the same program e?

e; e; e; e; . . .

Proposal:

RepSeq(e)
def
= let S : (unit → unit) → (unit → unit)

=
(
fn f : unit → unit ⇒ (fn x : unit ⇒ x ; (f x))

)
in fix.S e

Suppose to have a CBN semantics!

Massimo Merro Concurrency 35 / 38



Persistent behaviours (2)

What about a program that forks an arbitrary number of threads e?

e ‖ e ‖ e ‖ e ‖ . . .

Proposal:

RepPar(e)
def
= let P : (unit → unit) → (unit → unit)

=
(
fn f : unit → unit ⇒ (fn x : unit ⇒ x ‖ (f x))

)
in fix.P e

Again suppose to have a CBN semantics!

Massimo Merro Concurrency 36 / 38



Data race and critical regions (1)

During the execution of the program RepSeq(l := !l + 1) the value
associated to the location l increases monotonically:

l := !l + 1; l := !l + 1; l := !l + 1; . . .

Whereas during the execution of the program RepPar(l := !l + 1) the
value associated to the location l may increase or decrease.

l := !l + 1 ‖ l := !l + 1 ‖ l := !l + 1 ‖ . . .

This is because this program suffers of data races at locations l .
Actually:

RepSeq(l := !l + 1) vΓ RepPar(l := !l + 1)

RepSeq(l := !l + 1) 6wΓ RepPar(l := !l + 1)

Massimo Merro Concurrency 37 / 38



Data races and critical regions (2)

Any way to avoid those data races maintaining concurrency?
Proposal:

AwtPar(e)
def
=

let A : (unit → unit) → (unit → unit)

=
(
fn f : unit → unit ⇒ (fn x : unit ⇒ await true protect x end ‖ (f x))

)
in fix.Ae

Now, it is possible to prove that

RepSeq(l := !l + 1) ≈Γ AwtPar(l := !l + 1).

Massimo Merro Concurrency 38 / 38


