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Abstract—Several different secure routing protocols have
been proposed for determining the appropriate paths on which
data should be transmitted in ad hoc networks. In this paper,
we focus on two of the most relevant such protocols, ARAN
and endairA, and present the results of a formal analysis that
we have carried out using the AVISPA Tool, an automated
model checker for the analysis of security protocols. By model
checking ARAN with the AVISPA Tool, we have discovered
three attacks (a route disruption, a route diversion, and a
creation of incorrect routing state), while our analysis of
endairA revealed no attacks.
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I. INTRODUCTION

Ad hoc networking is a new area1 in wireless communi-
cations that is attracting the attention of many researchers
for its potential to provide ubiquitous connectivity without
the assistance of any fixed infrastructure. A Mobile Ad Hoc
Network (MANET) is an autonomous system composed of
both stationary and mobile devices communicating with
each other via radio transceivers. While stationary devices
cannot move (i.e., their physical location does not vary
with time), mobile devices are free to move randomly and
organise themselves arbitrarily; thus, the network’s wireless
topology may change rapidly and unpredictably.

Wireless devices use radio frequency channels to broad-
cast messages to the other devices. This form of broadcast
is quite different from the more conventional wired-based
broadcast as radio transmissions span over a limited area,
called transmission cell, and reach only a (possibly empty)
subset of the devices in the network.

Ad hoc networks rely on multi-hop wireless communica-
tions where nodes have essentially two roles: (i) acting as
end-systems and (ii) performing routing functions. A routing
protocol is used to determine the appropriate paths on which
data should be transmitted in a network. Routing protocols
for wireless systems can be classified into topology-based
protocols and position-based ones:

• Topology-based protocols rely on traditional routing
concepts, such as maintaining routing tables or dis-
tributing link-state information.

This work was partially supported by the FP7-ICT-2007-1 Project
no. 216471 “AVANTSSAR: Automated Validation of Trust and Security
of Service-oriented Architectures” and the PRIN’07 project “SOFT”.

1Actually, this kind of networks were first studied in the seventies under
the name of Packet Radio Networks.

• Position-based protocols use information about the
physical locations of the nodes to route data packets
to their destinations.

Topology-based protocols can be further divided into proac-
tive protocols and reactive ones:

• Proactive routing protocols try to maintain consistent
routing information within the system at any time.

• In reactive routing protocols, a route is established
between a source and a destination only when it is
needed. For this reason, reactive protocols are also
called on-demand protocols.

Examples of proactive routing protocols for MANETs are
OLSR [1] and DSDV [2], while examples of on-demand
protocols are DSR [3] and AODV [4].

Initial work on routing in ad hoc networks has considered
only the problem of providing efficient mechanisms for
finding paths, without considering security issues. However,
due to the lack of physical protection, some of the routers
could be corrupted affecting the routing paths, which can
obviously have undesirable effects on the operations of the
network. As a consequence, ad hoc routing protocols are
exposed to a number of different attacks [5]. In order to
overcome these problems, several “secure” routing protocols
have been proposed; for instance, some of the most relevant
such protocols for MANETs are: SAODV [6], SRP [7],
Ariadne [8], ARAN [9], and endairA [10].

These protocols, like, in general, security protocols, are
however notoriously difficult to get right and experience has
shown that informal or semi-formal validation approaches
are not up to the task of showing a protocol correct. Several
approaches have thus been proposed for the formal specifi-
cation and analysis of security protocols, and a number of
efficient tools have been implemented for security protocol
falsification (i.e., detecting attacks) and/or verification (i.e.,
proving the protocols correct). Two prominent such tools are
ProVerif [11] and the AVISPA Tool [12]. However, security
protocol analysis has mostly focussed on “standard” pro-
tocols for properties such as confidentiality, authentication
or key-exchange, and, as we discuss in more detail in the
related work section, only few attempts have been made at
formally analysing routing protocols.

Contribution: In this paper, we present a formal au-
tomated analysis of some of the most common execution
scenarios of the “secure” ad hoc routing protocols ARAN



and endairA. We have carried out this analysis by using
the AVISPA Tool, a state-of-the-art push-button tool for
the Automated Validation of Internet Security Protocols
and Applications, which provides a modular and expressive
formal language for specifying protocols and their security
properties, and integrates different back-ends that implement
a variety of automatic protocol analysis techniques. All the
back-ends of the tool analyse protocols under the assump-
tions of perfect cryptography and that the protocol messages
are exchanged over a network that is under the control of a
Dolev-Yao intruder [13]. Hence, such a model is particularly
well suited for the protocols we consider here.

By model checking the two most common execution sce-
narios of ARAN with the AVISPA Tool, we have discovered
the following attacks:

• route disruption, which occurs when the intruder pre-
vents a route from being discovered;

• route diversion, which occurs when the intruder does
not prevent the establishment of routes, but it achieves
that some established routes are diverted;

• creation of incorrect routing state, which occurs when
the intruder jeopardises the routing states in some
nodes.

These attacks can be implemented by relying on some
spoofing behaviour of the intruder. We have found two
different kinds of spoofing attacks on ARAN. In the first
case, the intruder assumes the identity of a node that has
moved away from its initial position; the node remains
connected to the rest of the network only because of the
intruder. Due to the spoofing activity of the intruder, the node
can become part of a routing path, although it is actually
disconnected from the rest of the network. This malicious
activity can clearly lead to a route-diversion attack as well as
a creation-of-incorrect-routing-state attack, as routing tables
would contain incorrect information. A different spoofing
attack can be achieved by using a number of malicious
nodes to immediately forward route requests towards the
destination. In this manner, the intruder bypasses the nodes
in the route path together with the cryptographic calculations
of the protocol. This immediately leads to a route-disruption
attack as well as a creation-of-incorrect-routing-state attack.

We have then used the AVISPA Tool to model check the
most common execution scenario of the endairA protocol. In
this case, our analysis revealed no attacks, the reason being
some crucial check on neighbouring nodes imposed by the
endairA protocol.

Outline: In Section II, we present ARAN and then, in
Section III, we describe endairA by comparison with ARAN.
In Section IV, we give a classification of attacks on ad
hoc routing protocols, according to [5]. In Section V, we
give a brief description of the AVISPA Tool. In Section VI,
we present a formal analysis of ARAN using the AVISPA
Tool. A similar analysis is done in Section VII for the
protocol endairA, showing that endairA is more robust than

Figure 1 The ARAN protocol (an example with four nodes)

A → ∗ : {RDP,X ,NA}KA− , [certA]
B → ∗ : {{RDP,X ,NA}KA−}KB− , [certA, certB ]
C → ∗ : {{RDP,X ,NA}KA−}KC− , [certA, certC ]
X → C : {REP,A,NA}KX− , [certX ]
C → B : {{REP,A,NA}KX−}KC− , [certX , certC ]
B → A : {{REP,A,NA}KX−}KB− , [certX , certB ]
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ARAN. In the final Section VIII, we summarise our main
results, compare with related work, and discuss future work.
An appendix contains the full specifications of ARAN and
endairA that we have formalised for our analysis with the
AVISPA Tool.

II. THE ARAN ROUTING PROTOCOL

ARAN (Authenticated Routing for Ad Hoc Networks) is
a secure, on-demand, distance-vector routing protocol for
ad hoc networks proposed in [9]. ARAN uses public key
cryptography to ensure routing message integrity and non-
repudiation to the route discovery process.

In order to explain in detail how the protocol works, we
use some standard notation for security protocols. Given a
node n, we write Kn+ and Kn− to denote the public key
and the private key of n, respectively. Moreover, given a
message 〈v1, . . . , vn〉, we write {v1, . . . , vn}Kn− meaning
the message 〈v1, . . . , vn〉 signed by n. In the following, as is
standard, we identify the name of a node with its IP address.
Moreover, for brevity and when no confusion arises, we will
often write a message 〈v1, . . . , vn〉 simply as v1, . . . , vn.

ARAN requires the use of a trusted certificate server T,
whose public key is known to all valid nodes. This server
sends to each node a certificate, containing the IP address of
the node, its public key, a timestamp t of when the certificate
was created, and a time e at which the certificate expires,
all signed with the private key of T. As an example, when
a node n gets certified by T it receives a certificate of the
form {n, Kn+, t, e}KT− . All nodes use certificates issued by
T to authenticate themselves during the protocol.

In Figure 1, we show, as a concrete example, a scheme
of the ARAN protocol with four nodes: a source node
A, a destination node X , and two intermediate nodes B
and C, one close to the source and the other close to the
destination. We also provide a graphical representation of
the flow of messages: dashed arrows denote the broadcast of
route discovery packets (RDP), while the continuous arrows
denote the unicast sending of reply packets (REP). We do not
show in the figure the preliminary phase in which each node



receives a certificate from T, assuming it has been already
performed. The protocol proceeds as follows.

• The source node A begins the process of dis-
covery of the route to the destination X by
broadcasting a route request message of the form
〈{RDP,X ,NA}KA− , [certA]〉, where RDP is the packet
identifier, X is the IP address of the destination, and
NA is a nonce; all this information is signed with the
private key of the source. The purpose of the nonce is to
uniquely identify a RDP coming from a source; it also
helps in detecting replayed messages since whenever A
starts a new route discovery process, it monotonically
increases the nonce.

• When a node receives a RDP, it sets an entry in its
routing table with A as destination, and the neighbour
from which it received the request as next hop. This
information will be useful for the reverse path back to
the source, when sending a reply message.

• When the intermediate node B receives the request
packet, it verifies that the certificate has not expired, and
then uses the public key of A, obtained from certA, to
validate the signature. The receiving node also checks
the nonce to verify that it has not already processed this
RDP: nodes do not forward the same message twice. If
any of these verifications fails, the message is dropped,
otherwise B signs the received RDP and appends its
own certificate certB . Thus, B broadcasts a packet
of the form 〈{{RDP,X ,NA}KA−}KB− , [certA, certB ]〉.
Hence, in general, the request contains two signatures:
that of the source and that of the last intermediate node
that processed it.

• When the intermediate node C receives the RDP sent
by B, it first verifies if the certificates are still valid,
then it validates the signatures for both the source A
and the node B using the public keys extracted from the
certificates in the message. If any of these verifications
fails, the message is dropped, otherwise C records B
in its routing table as its parent node. Then, C removes
the certificate and the signature of B from the message,
it signs the original (signed) message, and appends its
own certificate. Thus, C broadcasts a packet of the form
〈{{RDP,X ,NA}KA−}KC− , [certA, certC ]〉.

• When the destination X receives the first route re-
quest belonging to this route discovery, it performs
the verification and updates its routing tables in a
manner similar to the intermediate nodes. Then, it sends
a REP to the source A passing by the node from
which it has received the RDP, i.e., C. The REP is
propagated back on the reverse of the discovered route
as a unicast message. The destination node X sends
to C the message 〈{REP,A,NA}KX− , [certX ]〉, which
contains the packet type identifier REP, the IP address
of the source, and the nonce NA originally sent by the

source, all signed with the private key of the destination,
together with the certificate of X .

• When C receives the reply packet from X , it ver-
ifies if X’s certificate has not expired and val-
idates its signature. If any of these verifications
fails, the message is dropped, otherwise C signs
the message with its private key, and appends its
own certificate before forwarding the packet to its
parent node. Thus, C sends to B a message of
the form 〈{{REP,A,NA}KX−

}KC−
, [certX , certC ]〉.

Eventually, the message is received by B, which does
the usual verifications, removes the signature and the
certificate of C, signs the original (signed) message, ap-
pends its own certificate, and sends to A the reply mes-
sage. That is, B sends to the source A a reply message
of the form 〈{{REP,A,NA}KX−}KB− , [certX , certB ]〉.

• When A receives the reply, it verifies whether the cer-
tificates are valid, validates the signatures, and verifies
the nonce returned by the destination. If any of these
verifications fails, the message is dropped, otherwise A
notices that the intended destination was reached and
that B is the first next-hop towards the destination.

As can be seen from the description, ARAN does not use
hop counts as a routing metric. Instead, the nodes update
their routing tables using the information obtained from the
routing message arriving first; any later message that belongs
to the same route discovery is discarded. This means that
ARAN does not necessarily discover the shortest path in
the network, but rather it discovers the quickest one.

III. THE ENDAIRA ROUTING PROTOCOL

In Figure 2, we show, as a concrete example, a scheme
of the endairA protocol with four nodes: a source A, a
destination X , and two intermediate nodes B and C, one
close to the source and the other close to the destination.
Again, we give a graphical representation of the message
flow, where the dashed arrows denote the broadcast of route
request packets (RREQ) and the continuous ones denote the
unicast sending of route reply packets (RREP). The protocol
works as follows.

• The source A broadcasts a RREQ of the form
〈RREQ, A, X, id , [ ]〉, where id is a randomly generated
request identifier that helps in detecting replay mes-
sages, and [ ] is the list of intermediate nodes that have
successfully received the RREQ. This list is initially
empty.

• When the intermediate node B receives the route
request for the first time, it broadcasts the message
〈RREQ, A, X, id , [B]〉, appending its node-id in the list.

• When the intermediate node C receives the route re-
quest sent by B, it similarly broadcasts a RREQ of the
form 〈RREQ, A, X, id , [B,C]〉.

• When the request reaches the destination, the node
X replies with a unicast message RREP for C



Figure 2 The endairA routing protocol

A −→ ∗ : RREQ, A, X, id , [ ]
B −→ ∗ : RREQ, A, X, id , [B]
C −→ ∗ : RREQ, A, X, id , [B,C]
X −→ C : {RREP, A, X, [B,C]}KX−

C −→ B : {{RREP, A, X, [B,C]}KX−}KC−

B −→ A : {{{RREP, A, X, [B,C]}KX−}KC−}KB−

A B C X
RREQ RREQ RREQ

RREP RREP RREP

(the last node in the route-list) of the form
{RREP, A, X, [B,C]}KX− .

• When C receives this message, it verifies if the sig-
nature is valid and extracts the content of the signed
message. Then, it verifies that its node-id is in the
node list of the reply, and that the previous identifier,
B in this case (or that of the source if there is no
previous identifier in the node list), and the following
identifier, X in this case, belong to neighbouring nodes.
Each intermediate node also verifies the digital signa-
tures of the received reply messages. If any of these
verifications fails, then the reply message is dropped.
Otherwise, the message is signed by the intermediate
node and passed to the next node on the route (towards
the source). So, in our case, at the end of the protocol,
node B sends to the source A the unicast message
{{{RREP, A, X, [B,C]}KX−}KC−}KB− .

• When A receives the RREP, it verifies the signatures,
extracts the content of the message, and verifies if the
first identifier in the route is a neighbour, and finally
that the reply message is the expected one. If any of
these verifications fails, the reply message is dropped.

IV. ATTACKS IN AD HOC ROUTING PROTOCOLS

Routing is a fundamental service in any kind of network;
hence, an ideal target for attacks. According to [5], attacks
against a routing protocol can have the following three goals:

• increase intruder control over the communications be-
tween some nodes;

• degrade the quality of the service provided by the
network;

• increase the resource consumption of some nodes (e.g.,
CPU, memory, or energy).

In order to attack an ad hoc routing protocol, an intruder
must perform some malicious activities to achieve one or
more of the goals described above. These activities include
eavesdropping, replaying, modifying and deleting control
packets (i.e., packets containing routing information). In
addition, an intruder can try to fabricate control packets

containing fake routing information, or it can create control
packets under a fake identity: the former is called packet
forgery, and the latter is usually referred to as spoofing.
Using these instruments, an intruder can mount the following
attacks against routing protocols.

Route disruption: In a route-disruption attack, the
intruder prevents a route from being discovered between
two nodes that are otherwise connected. In this case, there
exists a route between the two victim nodes, but due to the
intruder, the routing protocol is unable to discover it. The
primary objective of this attack is to degrade the quality of
the service provided by the network. In particular, the two
victims cannot communicate, and other nodes can also suffer
and be coerced to use suboptimal routes. There are several
ways to implement a route-disruption attack. For instance, if
the intruder controls a set of nodes that form a vertex cut in
the network, then it is fairly easy to prevent the discovery of
any routes between the two parts of the network by dropping
all control packets sent from one part to the other. Another
way to mount a route-disruption attack is to forge error
messages that would invalidate the correct routing state in
some victim nodes, thereby effectively preventing them from
being able to communicate with some other nodes.

Route diversion: In a route-diversion attack, the in-
truder does not prevent the establishment of routes, but
it achieves that some established routes are diverted. This
means that due to the presence of the intruder, the proto-
col establishes routes that are different from those that it
would establish if the intruder did not interfere with the
execution of the protocol. The goal of route diversion can
be to increase adversarial control over the communications
between some victims nodes. In this case, the intruder tries
to achieve that the diverted routes contain one of the nodes
that it controls or a link that it can observe. Then, the intruder
can more easily eavesdrop or modify data sent between
the victim nodes. Another objective of route diversion can
be to increase the resource consumption of some nodes.
Route diversion can be implemented by dropping, forging
or manipulating control packets.

Creation of incorrect routing state: Another type of
attack aims at jeopardising the routing state in some nodes
so that the state appears to be correct but, in fact, it is
not and thus data packets routed using that state will never
reach their destination. One example of this attack is when
the route discovery procedure of a source routing protocol
returns a non-existent route to the source; as a consequence,
data packets using this non-existent route will be dropped
when they reach the first non-existent link in the route.
Another example is the creation of routing loops. Distance-
vector-based protocols are particularly vulnerable to this
kind of attack, because the nodes do not have a full view
of the whole network or of the entire route. Yet another
example is when the network is disconnected, but the routing
state in some node falsely indicates that each destination



is reachable. Incorrect routing states can be created by
spoofing, forging, modifying, or dropping control packets.

Generation of extra traffic: An attack aiming at in-
creasing resource consumption can inject spoofed packets
into the network. In on-demand protocols, a spoofed route
request can be flooded in this way. In distance-vector-based
protocols, a spoofed routing update message can cause a
sequence of “triggered” updates propagating in the whole
network.

Setting up a gray hole: All the attacks that we have
discussed so far target the route establishment function of
routing, whereas a gray-hole attack is concerned with the
packet forwarding function. In a gray-hole attack, an intruder
selectively drops data packets that it should forward. If all
data packets are dropped, then the gray hole degenerates
into a black hole. The primary objective of the gray-hole
attack is to degrade the quality of the service. In particular,
the packet delivery ratio between some nodes can decrease
considerably.

V. THE AVISPA TOOL

The AVISPA Tool consists of different modules, inter-
connected as shown in Figure 3; for more details see the
documentation and papers listed at [12]. A protocol designer
interacts with the tool by specifying a security problem (a
protocol paired with one or more security properties that the
protocol is expected to achieve) in the High-Level Protocol
Specification Language HLPSL [14]. The HLPSL is an
expressive, modular, role-based, formal language that allows
for the specification of control flow patterns, data-structures,
different intruder models, complex security properties, as
well as different cryptographic primitives and their algebraic
properties. These features make HLPSL well suited for
specifying industrial-scale protocols and it has been applied
for the specification of dozens of such protocols and for
their analysis using the AVISPA Tool. Moreover, HLPSL is
also well suited for the specification (and thus AVISPA is
also well suited for the analysis) of wireless sensor network
security protocols, as in [15], or of secure routing protocols
for ad hoc networks, as we do here.

The AVISPA Tool also comprises a more low-level,
rewrite-based specification language, called Intermediate
Format IF. Specifications of security problems written in
HLPSL are automatically translated into IF specifications,
which describe infinite-state transition systems amenable
to formal analysis. IF specifications are then automatically
given as input to the different back-ends of the AVISPA Tool,
which implement a variety of automatic analysis techniques
ranging from protocol falsification by finding an attack on
the input protocol and bounded-session verification (for a
given scenario consisting of a finite number of sessions),
to abstraction-based unbounded verification methods for
infinite numbers of sessions.

Figure 3 Architecture of the AVISPA Tool
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The tool integrates four back-ends:2 the On-the-fly Model-
Checker OFMC, the Constraint-Logic-based Attack Searcher
CL-AtSe, the SAT-based Model-Checker SATMC, and the
TA4SP protocol analyser, which verifies secrecy properties
of protocols by implementing tree automata based on auto-
matic approximations. All the back-ends of the tool analyse
protocols under the assumptions of perfect cryptography and
that the protocol messages are exchanged over a network
that is under the control of a Dolev-Yao intruder [13].
That is, the back-ends analyse protocols by considering
the standard protocol-independent, asynchronous model of
an active intruder who controls the network but cannot
break cryptography; in particular, the intruder can intercept
messages and analyse them if he possesses the corresponding
keys for decryption, and he can generate messages from his
knowledge and send them under any party name.

Upon termination, each back-end of the AVISPA Tool
outputs the result of its analysis stating whether the input
problem was solved (giving a description of the considered
protocol goal or, in case it was violated, the related attack
trace), some of the system resources were exhausted, or the
problem was not tackled by a back-end for some reason.

In the case of our analyses of ARAN and endairA, as we
will see in the next two sections, the AVISPA Tool has not
revealed any attacks on endairA but it has discovered three
attacks on ARAN by means of the back-ends OFMC, CL-
AtSe and SATMC, while TA4SP could not be applied in the
first place as it only verifies secrecy properties, which are
not the kinds of properties we were interested in here.

Before we discuss our analyses, it is important to observe
that in this paper we only consider some of the most

2The AVISPA Tool is also available as part of the AVANTSSAR
Platform at www.avantssar.eu, including the Open source Fixedpoint Model-
Checker [16] as the new OFMC. Moreover, the AVISPA Tool is additionally
supported by the Security Protocol Animator SPAN, which allows a
modeller to interactively build Message Sequence Charts of the protocol
execution from HLPSL specifications.



common execution scenarios (and corresponding network
topologies) of ARAN and endairA, consisting of a finite
number of protocol sessions executed in parallel. (This
does not mean, however, that the resulting model-checking
problems are finite, as the Dolev-Yao intruder can send
infinitely many different messages, which can be dealt with
by the AVISPA back-ends.) Hence, this work constitutes a
stepping stone for future analyses, in which we will consider
further scenarios and sessions, exploiting in particular the
symbolic sessions feature of AVISPA (that allows the user
to specify simply the number of sessions that the user wishes
to analyse) as well as the abstraction techniques that allow
for unbounded protocol verification instead of the protocol
falsification and bounded-session verification we consider
here.

VI. ANALYSIS OF ARAN

In order to analyse the “secure” routing protocol ARAN,
we have formalised two HLPSL specifications, representing
two different network topologies that correspond to the most
common execution scenarios of ARAN; the specifications
are given in full in the appendix. The AVISPA Tool has
found a different spoofing attack in each such topology,
giving rise to route disruption, route diversion and creation-
of-incorrect-routing-state attacks.

A. First HLPSL specification of ARAN

The first HLPSL specification formalises a standard model
of ARAN, in which there are four protocol roles that can
be considered as equivalence classes between nodes with
the same behaviour for sending and receiving messages in
a generic route request: a source node A, a destination
node X , and two intermediate nodes B and C, where
B communicates with the neighbouring A and C, and C
communicates with the neighbouring B and X . We have
chosen to consider two different intermediate nodes of the
route discovery because during the request the neighbours
of the source node A act differently than the others, as they
decrypt and analyse only the private key and the certificate
of A; in contrast, the other intermediate nodes must verify
two keys and certificates. In the reply, the situation is dual
as the node near the destination X in the path receives a
single private key and certificate.

The properties of this specification that we have to analyse
are the following:

• Authentication of NA and X in the request phase: the
receiving node checks (NA, X) to verify that it has not
already processed this RDP.

• Authentication of NA and A in the reply phase: the
receiving node checks (NA, A) to verify that it has not
already processed this REP.

The authentication is end-to-end, checked by each node each
time it receives a request or a reply.

Our HLPSL specification formalises all this as follows.
First of all, it simulates both the request phase and the
reply phase: the source node A starts the session and
sends a message that reaches the destination X through
two intermediate nodes B and C; similarly, X sends a
reply that reaches A through B and C. In general, HLPSL
specifications are written under the assumption that protocol
models have behaviours that can be expressed as linearly
ordered traces of events, e.g., sending and receiving of
messages. In addition, traces contain auxiliary events that
express information about an honest principal’s assumptions
or intentions when executing a protocol.3 These events
provide a language over which we then define the goals
of the protocol, where we assume that the intruder can
neither generate auxiliary events nor modify those auxiliary
events generated by honest principals. In particular, for
authentication, one can use the auxiliary events witness
and request to check that a principal is right in believing
that its intended peer is present in the current session, has
reached a certain state, and agrees on a certain value, which
typically is fresh. Note that, here and in the following, we
use the tt font for actual HLPSL code.

There is also an auxiliary event wrequest that corre-
sponds to weak authentication, i.e., authentication without
replay protection, which is the kind of authentication we
are interested in here. In a nutshell:

• witness(A,B,v,M) should be read as “principal
A asserts that it wants to be the peer of principal B,
agreeing on the value M in an authentication effort
identified by the protocol id v.”

• wrequest(B,A,v,M) should be read as “principal
B accepts the value M and now relies on the guarantee
that principal A existed sometime in the past and at
that time agreed on value M, having interpreted it as
protocol id v.”

The third argument v is used for distinguishing different
authentication pairs; that is, for asserting with what purpose
the value is being interpreted. As a modelling convention, it
is usually the name of the authenticating role, the role to be
authenticated, and the name of the variable being checked,
all in lower case, concatenated together.

In the goal section of the protocol specification, we
then write, for instance, weak_authentication_on
b_a_M to indicate that witnesses and wrequests con-
taining those three protocol ids should be taken into account.

For concreteness, in our first HLPSL specification of
ARAN, we consider weak authentication as obtained by
placing a pair wrequest and witness of the variables X
and Na in the request phase, and of the variables A and Na
in the reply phase (where Na is the HLPSL representation of

3As is standard, we use the term principal to refer to an agent/node
participating in a protocol, and call it honest when it behaves only according
to what specified by the protocol.



nonce NA). More precisely, the source node A contains the
witness with B of X and Na in the request phase and the
wrequest with B of A and Na in the reply phase. The first
intermediate node B contains both the wrequest and the
witness with A and C of X and Na in the request phase,
and A and Na in the reply phase. The second intermediate
node C contains both the wrequest and the witness
with B and X of X and Na in the request phase, and A and
Na in the reply phase. The destination node X contains the
wrequest with C of X and Na in the request phase, and
the witness with B of A and Na in the reply phase.

In addition to the four basic roles we have discussed,
our HLPSL specification contains also a composed role
session that describes one whole protocol session by in-
stantiating one instance of each basic role, “glueing” them so
they execute together, usually in parallel (with interleaving
semantics). Finally, we have a top-level role environment
that contains global constants and a composition of one
or more sessions, where the intruder may play some roles
as a legitimate user; this is, in other words, the scenario
we are analysing. There is also a statement that describes
what knowledge the intruder initially has; typically, this
includes the names of all principals, all public keys, his own
private key(s), and all publicly known functions. Note that
the constant i is used to refer to the intruder.

B. Analysis of the first HLPSL specification of ARAN

The analysis with the AVISPA Tool of our first HLPSL
specification of ARAN finds a spoofing attack, where the
intruder pretends to be an intermediate node or even the
destination node, thereby deceiving the other nodes:

1) A → I : {RDP,X, NA}KA− , certA
2) I → B : {RDP,X, NA}KA− , certA
3) B → I : {{RDP,X, NA}KA−}KB− , certA, certB
Figure 4 shows the network topology, where A represents

the source node, B represents the intermediate node, neigh-
bour to A, and I represents the intruder.

When, in a network topology, an intermediate node B
moves from his initial position to the next one, outside of
the communication range of the other nodes in the network,
the intruder can place himself within the ranges of both A
and B. Now, via the spoofing, a false routing information
attack may occur. A broadcasts the route request, as specified
by the protocol; I intercepts this message but cannot send
it pretending to be B, because it doesn’t have the private
key of B to sign the packet. So, I relays the request to
B, who thinks that I is A and re-broadcasts the message.
However, only I can overhear this message and sends it
to the next intermediate node C. In this way, if this packet
reaches the destination the first time around, it will establish
an incorrect route state. Obviously, it is necessary that the
same procedure is carried out in the reply phase, where there
are similar controls. After the intruder executes the sequence,
it can thus realise an incorrect-routing-state attack.

Figure 4 Network topology of the first attack on ARAN
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Figure 5 Equivalence classes in the first HLPSL specifica-
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As illustrated in Figure 5, our HLPSL specification con-
tains two parallel sessions, which, for readability, we denote
by (A1, B1, C1, X1) and (A2, I, C2, X2), where the index-
ing is used only to distinguish the two sessions executed by
the same principals (e.g. A1 and A2 are both A): in the first
session all four basic roles are played by honest principals,
while in the second session the intruder plays the role of B2.
More specifically, in the second session A2 starts the route
discovery by sending a request to I , but I does not possess
the private key of B to sign the message, and thus cannot
fully take over B’s identity. So, I forwards the message to
B1 and, according to the first session of the protocol, B1

sends the new signed message to C1. But I can intercept
this message and, afterwards, relay the packet to C2 in the
second session of the protocol. Since the broadcast actually
makes it impossible to block messages in a MANET, we
have modelled this in our network by considering a node that
moves outside the communication range. The same situation
must of course also occur in the reply phase, in which
C2 will send a message to I , who will follow the same
procedure to make it reach the source A2, properly signed
by B1. This attack can also occur when in the second session
I plays the role of the second intermediate node C2 or of
the destination X2.

C. Second HLPSL specification of ARAN and its analysis

By considering another common execution scenario, we
have discovered a second spoofing attack on ARAN, whose
network topology is illustrated in Figure 6. It is namely
possible that a chain of collaborating intruders develop a
parallel path from the source node A to the destination
X . Thus, since the intruders aren’t required to perform



Figure 6 Network topology of the second attack on ARAN
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cryptographic operations, the request messages may reach
the destination X faster than in the authorised network.
Naturally, this operation can be done within any portion of
the network. In the reply, the intruders execute the same
operations “back to front”. It is thus an attack of route
disruption, since the nodes of the network don’t know the
intruders I1, I2, ..., In.

To model this attack, we have formalised a second HLPSL
specification, in which, as illustrated in Figure 7, we added a
particular polymorphed role, which we call joker role J and
which includes all the paths that reach any of the following
node equivalence classes. So, J feigns the normal execution
of the protocol to simulate the chain of intruders (in fact, the
presence of J is just a technicality that allows us to avoid
having to specify the chain of communicating intruders).

The attack proceeds as follows:
1) A → I : {RDP,X, NA}KA− , certA
2) I → J : {RDP,X, NA}KA− , certA
3) J → I : {{RDP,X, NA}KA−}KC− , certA, certC
4) I → X : {{RDP,X, NA}KA−}KC− , certA, certC
5) X → I : {{REP,A, NA}KX− , certX

Specifically, when I receives a message from A, it starts
the attack by making use of J to simulate the chain of
intruders. J sends an identical packet at the same time to
B, C and X; when J receives a message from B, it sends
an identical packet at the same time to C and X; when J
receives a message from C, it sends an identical packet to
X . If, finally, J receives a message from X , it promptly
drops the packet. X receives a message signed with the
private key of C, because C doesn’t represent a single node
but rather an equivalence class of all nodes neighbouring
the destination, and it is important to have a perfect match
between the send channel and the receive channel. Similar to
the previous attack, now the intruder can realise an incorrect-
routing-state attack or a disruption attack.

Since this specification gives rise to a huge expansion
of states of execution, we have actually formalised it to
direct the flow of execution towards J and removed the flow
towards the other nodes. For this reason, we have introduced
a new variable (called Plus) encrypted with the private
key of J . This minor modification in the protocol is not in
contrast with its properties but it allows for a considerable

Figure 7 Equivalence classes in the second HLPSL specifi-
cation of ARAN
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simplification of the whole analysis procedure, and thus
leads to the discovery of the attack.

VII. ANALYSIS OF ENDAIRA

The analysis of endairA uses a variant of the first HLPSL
specification of ARAN where, instead of four roles, we have
only three roles as all intermediate nodes behave in the same
way. The authentication is end-to-end, as in ARAN, so the
properties we have to analyse are the authentication of A,
B and X in the reply phase. Each intermediate node that
receives the reply verifies that its identifier is in the node list
included in the reply and that the preceding node identifier
(or that of the initiator, if there is no preceding identifier
in the node list) and the following node identifier (or that
of the target, if there is no following identifier in the node
list) indeed belong to neighbouring nodes. Each intermediate
node also verifies that the digital signatures in the reply are
valid and that they correspond to the subsequent identifiers
in the node list and to the target. When the source node
receives the route reply, it verifies if the first identifier in
the route included in the reply belongs to a neighbour.

We have used AVISPA only to analyse the reply phase
since endairA focusses on this phase, but does not really
attempt at protecting the request phase so to reduce the use
of cryptography and thus, ultimately, to reduce the resource
consumption in the nodes.

As described above, endairA adds a property with respect
to ARAN, namely the check of the node identifiers in the
node list in the reply phase. It is because of this additional
check that AVISPA does not find an attack similar to that
of ARAN for endairA: we have modelled this property
by specifying, in the transitions, that whenever a node
receives a new message, it checks that its identifier and
that of the neighbouring nodes do indeed correspond to
what he initially received from the role session. If an
intruder attempted to spoof the identity of another node, in
a manner similar to what we saw before, the following node
would notice the problem and interrupt the execution, as the
check would fail given that he wouldn’t find the appropriate
node in his neighbourhood. More concretely, in our HLPSL
specification, this is formalised by requiring that a variable
remains equal, i.e., that a variable and its primed version
(representing its new value) are equal. For example, for the



destination node X , B = B′ and X = X ′. In fact, each
node controls his neighbourhood, so the intermediate node
B has three equalities, A = A′, B = B′ and X = X ′, while
the source node A has A = A′ and B = B′.

The AVISPA Tool has validated our specification, which
formalises the most common execution scenario of endairA.
This, of course, does not mean that endairA is free from
attacks and we are currently formalising and analysing other
interesting scenarios.

VIII. CONCLUSIONS, RELATED AND FUTURE WORK

In this paper, we have presented a formal approach to the
security analysis of two ad hoc routing protocols, ARAN
and endairA, by means of the AVISPA Tool. We have
discovered three kinds of attacks on ARAN: route disruption,
route diversion, and creation of an incorrect routing state. In
contrast, endairA is more robust, due to the extra check on
the neighbouring nodes belonging to the discovered route.
As a consequence, our analysis of endairA revealed no
attacks.

Attacks against ad hoc routing protocols can be subtle and
thus difficult to discover. Since proving that a routing proto-
col is free from attacks is impossible by informal reasoning
(as is the case for security protocol analysis in general,
due to the virtually infinite protocol execution scenarios
that should be considered), much effort has been recently
devoted to modelling and analysing wireless communication
and/or routing protocols in a formal way. For example,
Yang and Baras [17] provide a symbolic model for routing
protocols based on strand spaces, modelling the network
topology but not the cryptographic primitives that can be
used for securing communications; they also implement a
semi-decision procedure to search for attacks.

Buttyán and Vadja [18] provide a model for routing proto-
cols in a cryptographic setting; they provide a security proof
(by hand) for a fixed protocol. Aćs and Buttyán [19] use a
similar cryptographic model for the security analysis of on-
demand, distance-vector routing protocols, such as AODV
SAODV, and ARAN. In particular, the ARAN protocol
was (supposedly) proved secure using this framework. The
same authors propose a new framework [20] for on-demand
source routing and on-demand distance-vector protocols. In
addition, routing security is defined in terms of resistance
against attacks aimed at creating an incorrect routing state
in the network. Thus, route-disruption, route-diversion, gen-
eration of-extra-control-traffic, and gray-hole attacks are not
considered within the framework. The protocol endairA has
been verified in [20], but note that both frameworks proposed
by Aćs and Buttán cannot be automated.

Nanz and Hankin [21] propose a process calculus to
model the network topology and broadcast communications.
They also propose a decision procedure for an intruder that
is already specified by the user. This allows them only to
check security against fixed scenarios known in advance.

In [22], Godskesen studies a simplification of the ARAN
protocol with only two nodes: the initiator and the destina-
tion, in the transmission range of each other. The intruder
simply relays messages from one node to the other. The
specification of the protocol is given in a process calculus
for MANETs; the tool ProVerif [11] is then used to show that
false routes can be constructed by an intruder establishing
a man-in-the-middle spoofing attack. Our work is inspired
by and generalises the work done in [22], in the attempt of
carrying out an exhaustive analysis of possible attacks on
ARAN using AVISPA. To our knowledge, our paper is the
first one to use AVISPA for the analysis of ad hoc routing
protocols. The AVISPA tool has already been used in [15]
for an analysis TinySec [23], LEAP [24], and TinyPK [25],
three wireless sensor network security protocols, and in [26]
for an analysis of the Sensor Network Encryption Protocol
SNEP [27]. Moreover, AVISPA has also been used to check
new security properties in ad hoc networks for detecting a
particular trust relation between two nodes in an anonymous
and unobservable way [28].

More recently, Arnaud, Cortier and Delaune [29] have
proposed a calculus for modelling and reasoning about
security protocols, including secure routing protocols, for
a bounded number of sessions. They provide two NPTIME
decision procedures for analysing routing protocols for any
network topology, and apply their framework to analyse the
protocol SRP [7] applied to DSR [3].

We see this paper as a first step in a research program
aiming at applying the AVISPA Tool for the formal analysis
of ad hoc network routing protocols. As future work, we thus
envisage to use AVISPA both to consider other analysis sce-
narios of ARAN and endairA (and possibly also attempt at
verifying their security and not just find attacks on them) and
to analyse other protocols, all also with respect to other kinds
of attacks such as extra traffic and gray holes. We also plan
to employ the AVANTSSAR Platform for such analyses; the
platform, which is currently under development, scales up
(the main components of) the AVISPA Tool to the formal
specification and automated validation of trust and security
of service-oriented architectures, and we thus expect that it
will allow us to carry out even more detailed analyses of the
protocols under consideration.
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APPENDIX

FIRST HLPSL SPECIFICATION OF ARAN
role source_node(
A,B,C,X : agent,
Ka, Kb, Kc, Kt, Kx : public_key,
RCV, SND : channel(dy))

played_by A def=
local
RDP,REP : protocol_id,
State : nat,
NA,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id

init State := 0
transition
step1.
State = 0 /\ RCV(start)
=|>
State’:= 4 /\ Na’ := new()

/\ SND({RDP.X.Na’}_inv(Ka).{A.Ka.Ts1.E1}_inv(Kt))
/\ witness(A,B,a_b_IPx,X) /\ witness(A,B,a_a_Na,Na’)

step2.
State = 4 /\ RCV({{REP.A’.Na’}_inv(Kx)}_inv(Kb).{X’.Kx.Ts4’.E4’}_inv(Kt).

{B’.Kb.Ts2’.E2’}_inv(Kt))
=|>
State’:= 8 /\ wrequest(A,B,a_b_IPa,A’) /\ wrequest(A,B,a_a_Na,Na’)

end role

role intermediate_node1(
A,B,C,X : agent,
Ka, Kb, Kc, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by B def=
local
RDP,REP : protocol_id,
State : nat,
Na,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text



const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id

init State := 1
transition
step1.
State = 1 /\ RCV({RDP.X’.Na’}_inv(Ka).{A’.Ka.Ts1’.E1’}_inv(Kt))
=|>
State’:= 5 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).{B.Kb.Ts2.E2}_inv(Kt))
/\ wrequest(B,A,a_b_IPx,X’) /\ wrequest(B,A,a_a_Na,Na’)
/\ witness(B,C,a_b_IPx,X’) /\ witness(B,C,a_a_Na,Na’)

step2.
State = 5 /\ RCV({{REP.A’.Na’}_inv(Kx)}_inv(Kc).

{X’.Kx.Ts4’.E4’}_inv(Kt).
{C’.Kc.Ts3’.E3’}_inv(Kt))

=|>
State’:= 9 /\ SND({{REP.A’.Na’}_inv(Kx)}_inv(Kb).

{X’.Kx.Ts4’.E4’}_inv(Kt).{B.Kb.Ts2.E2}_inv(Kt))
/\ wrequest(B,C,a_b_IPa,A’) /\ wrequest(B,C,a_a_Na,Na’)
/\ witness(B,A,a_b_IPa,A’) /\ witness(B,A,a_a_Na,Na’)

end role

role intermediate_node2(
A,B,C,X : agent,
Ka, Kb, Kc, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by C def=
local
RDP,REP : protocol_id,
State : nat,
Na,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id

init State := 2
transition
step1.
State = 2 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).{B’.Kb.Ts2’.E2’}_inv(Kt))
=|>
State’ := 6 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).

{A’.Ka.Ts1’.E1’}_inv(Kt).{C.Kc.Ts3.E3}_inv(Kt))
/\ wrequest(C,B,a_b_IPx,X’) /\ wrequest(C,B,a_a_Na,Na’)
/\ witness(C,X,a_b_IPx,X’) /\ witness(C,X,a_a_Na,Na’)

step2.
State = 6 /\ RCV({REP.A’.Na’}_inv(Kx).{X’.Kx.Ts4’.E4’}_inv(Kt))
=|>
State’:= 10 /\ SND({{REP.A’.Na’}_inv(Kx)}_inv(Kc).

{X’.Kx.Ts4’.E4’}_inv(Kt).{C.Kc.Ts3.E3}_inv(Kt))
/\ wrequest(C,X,a_b_IPa,A’) /\ wrequest(C,X,a_a_Na,Na’)
/\ witness(C,B,a_b_IPa,A’) /\ witness(C,B,a_a_Na,Na’)

end role

role final_node(
A,B,C,X : agent,
Ka, Kb, Kc, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by X def=
local
RDP,REP : protocol_id,
State : nat,
Na,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id

init State := 3
transition
step1.
State = 3 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).

{A’.Ka.Ts1’.E1’}_inv(Kt).{C’.Kc.Ts3’.E3’}_inv(Kt))
=|>
State’:= 7 /\ SND({REP.A’.Na’}_inv(Kx).{X.Kx.Ts4.E4}_inv(Kt))

/\ wrequest(X,C,a_b_IPx,X’) /\ wrequest(X,C,a_a_Na,Na’)
/\ witness(X,C,a_b_IPa,A’) /\ witness(X,C,a_a_Na,Na’)

end role

role session(
A,B,C,X : agent,
Ka, Kb, Kc, Kt, Kx : public_key)
def=
local
RCV1,SND1,RCV2,SND2,RCV3,SND3,RCV4,SND4 : channel(dy)

composition
source_node(A,B,C,X,Ka,Kb,Kc,Kt,Kx,RCV1,SND1)
/\ intermediate_node1(A,B,C,X,Ka,Kb,Kc,Kt,Kx,RCV2,SND2)
/\ intermediate_node2(A,B,C,X,Ka,Kb,Kc,Kt,Kx,RCV3,SND3)
/\ final_node(A,B,C,X,Ka,Kb,Kc,Kt,Kx,RCV4,SND4)

end role

role environment()
def=
const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id,
a,b,c,x : agent,
ka,kb,kc,kt,kx : public_key
intruder_knowledge ={a,b,c,x,ka,kb,kc,kt,kx}

composition
session(a,b,c,x,ka,kb,kc,kt,kx)
/\ session(a,i,c,x,ka,kb,kc,kt,kx)

end role

goal
weak_authentication_on a_b_IPa
weak_authentication_on a_b_IPx
weak_authentication_on a_a_Na

end goal

environment()

SECOND HLPSL SPECIFICATION OF ARAN
role source_node(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key,
RCV, SND : channel(dy))

played_by A def=
local
RDP,REP : protocol_id,
State : nat,
Na,Plus,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const a_b_IPa, a_b_IPx, a_a_Na : protocol_id
init State := 0
transition
step1.
State = 0 /\ RCV(start)
=|>
State’:= 5 /\ Na’ := new()

/\ SND({RDP.X.Na’}_inv(Ka).{A.Ka.Ts1.E1}_inv(Kt))
/\ witness(A,B,a_b_IPx,X) /\ witness(A,B,a_a_Na,Na’)

step2.
State = 5 /\ RCV({{REP.A’.Na’}_inv(Kx)}_inv(Kb).

{X’.Kx.Ts4’.E4’}_inv(Kt).{B’.Kb.Ts2’.E2’}_inv(Kt))
=|>
State’:= 10 /\ wrequest(A,B,a_b_IPa,A’)

/\ wrequest(A,B,a_a_Na,Na’)
end role

role intermediate_node1(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by B def=
local
RDP,REP : protocol_id,
State : nat,
Na,Plus,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const a_b_IPa, a_b_IPx, a_a_Na : protocol_id
init State := 1
transition
step1.
State = 1 /\ RCV({RDP.X’.Na’}_inv(Ka).

{A’.Ka.Ts1’.E1’}_inv(Kt).{Plus}_inv(Kj))
=|>
State’:= 6 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).{B.Kb.Ts2.E2}_inv(Kt))
/\ wrequest(B,A,a_b_IPx,X’)
/\ wrequest(B,A,a_a_Na,Na’)
/\ witness(B,C,a_b_IPx,X’)
/\ witness(B,C,a_a_Na,Na’)

step2.
State = 6 /\ RCV({{REP.A’.Na’}_inv(Kx)}_inv(Kc).

{X’.Kx.Ts4’.E4’}_inv(Kt).{C’.Kc.Ts3’.E3’}_inv(Kt))
=|>
State’:= 11 /\ SND({{REP.A’.Na’}_inv(Kx)}_inv(Kb).

{X’.Kx.Ts4’.E4’}_inv(Kt).{B.Kb.Ts2.E2}_inv(Kt))
/\ wrequest(B,C,a_b_IPa,A’)
/\ wrequest(B,C,a_a_Na,Na’)
/\ witness(B,A,a_b_IPa,A’)
/\ witness(B,A,a_a_Na,Na’)

end role

role intermediate_node2(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by C def=
local
RDP,REP : protocol_id,
State : nat,
Na,Plus,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const a_b_IPa, a_b_IPx, a_a_Na : protocol_id
init State := 2
transition
step1.
State = 2 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).
{B’.Kb.Ts2’.E2’}_inv(Kt).{Plus}_inv(Kj))

=|>
State’ := 7 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).

{A’.Ka.Ts1’.E1’}_inv(Kt).{C.Kc.Ts3.E3}_inv(Kt))
/\ wrequest(C,B,a_b_IPx,X’)
/\ wrequest(C,B,a_a_Na,Na’)
/\ witness(C,X,a_b_IPx,X’)
/\ witness(C,X,a_a_Na,Na’)

step2.
State = 7 /\ RCV({REP.A’.Na’}_inv(Kx).

{X’.Kx.Ts4’.E4’}_inv(Kt))
=|>
State’:= 12 /\ SND({{REP.A’.Na’}_inv(Kx)}_inv(Kc).

{X’.Kx.Ts4’.E4’}_inv(Kt).
{C.Kc.Ts3.E3}_inv(Kt))

/\ wrequest(C,X,a_b_IPa,A’)
/\ wrequest(C,X,a_a_Na,Na’)
/\ witness(C,B,a_b_IPa,A’)
/\ witness(C,B,a_a_Na,Na’)

end role

role final_node(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by X def=
local
RDP,REP : protocol_id,
State : nat,
Na,Plus,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text



const a_b_IPa, a_b_IPx, a_a_Na : protocol_id
init State := 3
transition
step1.
State = 3 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).

{A’.Ka.Ts1’.E1’}_inv(Kt).
{C’.Kc.Ts3’.E3’}_inv(Kt).{Plus}_inv(Kj))

=|>
State’:= 8 /\ SND({REP.A’.Na’}_inv(Kx).

{X.Kx.Ts4.E4}_inv(Kt))
/\ wrequest(X,C,a_b_IPx,X’)
/\ wrequest(X,C,a_a_Na,Na’)
/\ witness(X,C,a_b_IPa,A’)
/\ witness(X,C,a_a_Na,Na’)

end role

role joker_node(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key,
RCV,SND : channel(dy))

played_by J def=
local
RDP,REP : protocol_id,
State : nat,
Na,Plus,Ts1,E1,Ts2,E2,Ts3,E3,Ts4,E4 : text

const a_b_IPa, a_b_IPx, a_a_Na : protocol_id
init State := 4
transition
step1.
State = 4 /\ RCV({RDP.X’.Na’}_inv(Ka).

{A’.Ka.Ts1’.E1’}_inv(Kt))
=|>
State’:= 9 /\ SND({RDP.X’.Na’}_inv(Ka).

{A’.Ka.Ts1’.E1’}_inv(Kt).{Plus}_inv(Kj))
/\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).
{B.Kb.Ts2.E2}_inv(Kt).{Plus}_inv(Kj))

/\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).
{A’.Ka.Ts1’.E1’}_inv(Kt).
{C.Kc.Ts3.E3}_inv(Kt).{Plus}_inv(Kj))

step2.
State = 9 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).{B’.Kb.Ts2’.E2’}_inv(Kt))
=|>
State’:= 14 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kb).

{A’.Ka.Ts1’.E1’}_inv(Kt).
{B’.Kb.Ts2’.E2’}_inv(Kt).{Plus}_inv(Kj))

/\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).
{A’.Ka.Ts1’.E1’}_inv(Kt).
{C.Kc.Ts3.E3}_inv(Kt).{Plus}_inv(Kj))

step3. State = 14 /\ RCV({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).
{A’.Ka.Ts1’.E1’}_inv(Kt).
{C’.Kc.Ts3’.E3’}_inv(Kt))

=|>
State’:= 19 /\ SND({{RDP.X’.Na’}_inv(Ka)}_inv(Kc).

{A’.Ka.Ts1’.E1’}_inv(Kt).
{C’.Kc.Ts3’.E3’}_inv(Kt).{Plus}_inv(Kj))

end role

role session(
A,B,C,J,X : agent,
Ka, Kb, Kc, Kj, Kt, Kx : public_key)
def=
local
RCV1,SND1,RCV2,SND2,RCV3,SND3,RCV4,SND4,RCV5,SND5 : channel(dy)

composition
source_node(A,B,C,J,X,Ka,Kb,Kc,Kj,Kt,Kx,RCV1,SND1)
/\ intermediate_node1(A,B,C,J,X,Ka,Kb,Kc,Kj,Kt,Kx,RCV2,SND2)
/\ intermediate_node2(A,B,C,J,X,Ka,Kb,Kc,Kj,Kt,Kx,RCV3,SND3)
/\ final_node(A,B,C,J,X,Ka,Kb,Kc,Kj,Kt,Kx,RCV4,SND4)
/\ joker_node(A,B,C,J,X,Ka,Kb,Kc,Kj,Kt,Kx,RCV5,SND5)

end role

role environment()
def=
const
a_b_IPa, a_b_IPx, a_a_Na : protocol_id,
a,b,c,x,j : agent,
ka,kb,kc,kj,kt,kx : public_key
intruder_knowledge ={a,b,c,x,ka,kb,kc,kj,kt,kx}

composition
session(a,b,c,j,x,ka,kb,kc,kj,kt,kx)

end role

goal
weak_authentication_on a_b_IPa
weak_authentication_on a_b_IPx
weak_authentication_on a_a_Na

end goal

environment()

HLPSL SPECIFICATION OF ENDAIRA
role source_node(
A,B,X : agent,
Ka, Kb, Kx : public_key,
RCV, SND : channel(dy))

played_by A def=
local
Rrep : protocol_id,
State : nat

const aa, bb, xx : protocol_id
init State := 2
transition
step1.

State = 2 /\ RCV({{Rrep.A’.X’.B’}_inv(Kx)}_inv(Kb))
/\ A’ = A /\ B’ = B

=|>
State’:= 5 /\ wrequest(A,B,xx,X’) /\ wrequest(A,B,bb,B’)

/\ wrequest(A,B,aa,A’)
end role

role intermediate_node(
A,B,X : agent,
Ka, Kb, Kx : public_key,
RCV,SND : channel(dy))

played_by B def=
local
Rrep : protocol_id,
State : nat

const aa, bb, xx : protocol_id
init State := 1
transition
step1.
State = 1 /\ RCV({Rrep.A’.X’.B’}_inv(Kx))

/\ A’ = A /\ B’ = B /\ X’ = X
=|>
State’:= 4 /\ SND({{Rrep.A’.X’.B’}_inv(Kx)}_inv(Kb))

/\ wrequest(B,X,xx,X’) /\ wrequest(B,X,bb,B’)
/\ wrequest(B,X,aa,A’) /\ witness(B,A,xx,X’)
/\ witness(B,A,bb,B’) /\ witness(B,A,aa,A’)

end role

role final_node(
A,B,X : agent,
Ka, Kb, Kx : public_key,
RCV,SND : channel(dy))

played_by X def=
local
Rrep : protocol_id,
State : nat

const aa, bb, xx : protocol_id
init State := 0
transition
step1.
State = 0 /\ RCV(start) /\ B’ = B /\ X’ = X
=|>
State’:= 3 /\ SND({Rrep.A.X.B}_inv(Kx))

/\ witness(X,B,xx,X) /\ witness(X,B,bb,B)
/\ witness(X,B,aa,A)

end role

role session(
A,B,X : agent,
Ka, Kb, Kx : public_key)
def=
local
RCV1,SND1,RCV2,SND2,RCV3,SND3 : channel(dy)

composition
final_node(A,B,X,Ka,Kb,Kx,RCV3,SND3)

/\ intermediate_node(A,B,X,Ka,Kb,Kx,RCV2,SND2)
/\ source_node(A,B,X,Ka,Kb,Kx,RCV1,SND1)

end role

role environment()
def=
const
aa, bb, xx : protocol_id,
a,b,x : agent,
ka,kb,kx : public_key
intruder_knowledge ={a,b,x,ka,kb,kx}

composition
session(a,b,x,ka,kb,kx)
/\ session(i,b,x,ka,kb,kx)
/\ session(a,i,x,ka,kb,kx)
/\ session(a,b,i,ka,kb,kx)

end role

goal
weak_authentication_on xx
weak_authentication_on bb
weak_authentication_on aa

end goal

environment()


