
Chapter 3

The While programming
language

1



Contents

3 The While programming language 1
3.1 Big-step semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Small-step semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Extensions to the language While . . . . . . . . . . . . . . . . . . . 22

3.4.1 Local declarations . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Aborting computations . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Adding parallelism . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Big-step semantics
The abstract syntax of the imperative programming language While is given in Fig-
ure 3.1. The main syntactic category is Com, for commands, and anybody with even
minimal exposure to programming should be familiar with the constructs. Here is a
sample command, or program:

l2 := 1;
l3 := 0;
while ¬ (l1 = l2) do
l2 := l2 + 1;
l3 := l3 + 1

which subsequently we we refer to as C1.

Exercise: What do you think the command or program C1 does? �

According to Figure 3.1 the language of commands contains five constructs, which we
explain intuitively in turn.

• Assignments: These take the form l := E where E is an arithmetic expression
and l is the name of some location or variable in memory. So the language
assumes some given set of locations names Locs, and we use l, k, . . . for typical
elements. The syntax of commands also depends on a separate language for
acceptable arithmetic expressions, E. An example abstract syntax for these is
also given in Figure 3.1. This in turn uses n as a meta-variable to range over

2



Semantics Hilary term 2012

C ∈ Com ::= l := E | if B then C else C

| C ; C | while B do C | skip

B ∈ Bool ::= true | false | E = E | B&B | ¬ B

E ∈ Arith ::= l | n | (E + E)

Figure 3.1: The language While

the set of numerals, Nums, used in previous chapters. Apart from these, we
are allowed to use one operator + to construct arithmetic expressions, although
others can be easily added.

Thus a typical example of an assignment command is

k := l + 2

Intuitively this refers to the command:

– look up the current value, a numeral, in the location l

– replace the current value stored in location k by 2 plus the value found in l

• Sequencing, C1 ; C2. The intention here should be obvious. First execute the
command C1; when this is finished execute the command C2.

• Tests, if B then C1 else C2. Intuitively this evaluates the Boolean expression
B; if the resulting value is true then the command C1 is executed, if it is false
C2 is executed.

• Repetition, while B doC. This is one of the many repetitive control commands
found in common sequential programming languages. The intuition here is that
the command C is to be repeatedly executed until the Boolean guard B can be
evaluated to false. Note that this is a somewhat dangerous command; if B
always evaluates to tt then this command will execute forever, repeating the
command C indefinitely.

• Skip, skip. This construct, the final one, is a bit of a non-entity in that its
execution has no effect. We could do without this construct in the language but
it will prove to be very useful in the next section.

We should point out that in Figure 3.1, as usual, we are describing abstract syntax
rather than concrete syntax. If we want to describe a particular command in a linear
manner we must ensure that its abstract structure is apparent, by using brackets or as
in the example command on page 2 using indentation and white space.

Draft: February 3, 2012 3



Semantics Hilary term 2012

In order to design a big-step semantics for the language While we need to have an
intuition about what we expect commands to do. Following the informal descriptions
of the individual constructs above, intuitively we expect a command to execute a se-
quence of assignments, with the precise sequence depending on the flow of control in
the construct, dictated by the evaluation of Boolean expressions in the test and while
components. An individual assignment is a transformation on the memory of a machine
on which the command is expected to run. A command is expected to start executing
relative to an initial memory state, effect a series of updates to the memory, and then
halt. Therefore we can describe the overall effect of a command as a transformation
from an initial memory state to the terminal memory state. Our big-step semantics will
prescribe the allowed transformations, without prescribing in any great detail how the
the transformations are to be performed.

Before proceeding further we need to introduce some notation for memory states.
An individual memory location holds a value, which for While, is a numeral. Therefore
a snapshot of the memory, which we refer to as a state, is captured completely by a
function from locations to numerals:

s : Locs→ Nums

We use standard mathematical notation for states, with s(l) denoting the numeral cur-
rently held in location l; the collection of all possible states is denoted by States. In
addition we need one new piece of notation for modifying states. For any state s, the
new state s[k 7→ n] returns the same numeral as the old state s for every location l
different from k, and for k it returns the numeral n. Formally s[k 7→ n] is defined by:

s[k 7→ n](l) =

{
n if k = l

s(l) otherwise

The big-step semantics for While has as judgements

〈C, s〉 ⇓ s′

where C is a command from Com and s, s′ are states. The intention is that this judge-
ment captures the following informal intuition:

when the command C is run to completion from the initial state s it even-
tually terminates in the state s′.

However the behaviour of commands depends on the behaviour of arithmetic and
Boolean expressions, and therefore we can only formalise their behaviour if we already
have a formal account of how expressions work. Consider, for example, the commands

• if l = k then l1 := k + l1 else l2 := l + (k + 2)

• while ¬ (l1 = l2) do l2 := l2 + 1 ; l3 := l3 + 1

In order to explain these commands we need to know how to evaluate expressions such
as l + (k + 2) and Boolean expressions ¬ (l1 = l2). Consequently before embarking
on commands we have to first give a formal semantics to the auxiliary languages Arith

Draft: February 3, 2012 4



Semantics Hilary term 2012

(b-num)

〈n, s〉 ⇓ n

(b-loc)

〈l, s〉 ⇓ s(l)

(b-add)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 + E2, s〉 ⇓ n3

n3 = add(n1, n2)

Figure 3.2: Big-step semantics of arithmetic expressions

and Bool, from Figure 3.1. We have already considered arithmetic expressions in detail
in the previous to chapters. However here they are a little more complicated as their
meaning in general depends on the current state of the command which uses them; we
can not know the value of the expression l + (k + 2) without knowing what numerals
are currently stored in the locations l and k.

So we first give a big-step semantics for both arithmetic expressions and Booleans.
The judgements here are or the form

〈E, s〉 ⇓ n 〈B, s〉 ⇓ bv

meaning

the value of expression E relative to the state s is the numeral n

and

the (Boolean) value of the Boolean expression B relative to the state s is
the Boolean value bv.

Note that the form of these judgements imply that we do not expect the evaluation of
expressions to affect the state.

The rules for arithmetic expressions are given in Figure 3.2, and are a simple exten-
sion of the big-step semantics from Chapter 1; there is one new rule, (b-loc), for looking
up the current value in a location.

Exercise: Design a big-step semantics for Boolean expressions. Intuitively every
Boolean expression should evaluate to either true or false. So the rules should be
such that for every Boolean expression B and every state s, we can derive either the
judgement 〈B, s〉 ⇓ true or 〈B, s〉 ⇓ false. However to express the evaluation rules
it is best to introduce a meta-variable bv, to represent either of these Boolean values.
Recall that the rules in Figure 3.2 are facilitated by the use of n as a meta-variable for
the numerals 0, 1, . . .. �

These auxiliary judgements are now used in Figure 3.3, containing the defining
rules for commands. Basically for each syntactic construct in Com we have a particular

Draft: February 3, 2012 5



Semantics Hilary term 2012

(b-skip)

〈skip, s〉 ⇓ s

(b-assign)

〈E, s〉 ⇓ n

〈l := E, s〉 ⇓ s[l 7→ n]

(b-seq)

〈C1, s〉 ⇓ s1
〈C2, s1〉 ⇓ s′

〈C1 ; C2, s〉 ⇓ s′

(b-if.t)

〈B, s〉 ⇓ true
〈C1, s〉 ⇓ s′

〈if B then C1 else C2, s〉 ⇓ s′

(b-if.f)

〈B, s〉 ⇓ false
〈C2, s〉 ⇓ s′

〈if B then C1 else C2, s〉 ⇓ s′

(b-while.f)

〈B, s〉 ⇓ false

〈while B do C, s〉 ⇓ s

(b-while.t)

〈B, s〉 ⇓ true
〈C, s〉 ⇓ s1
〈while B do C, s1〉 ⇓ s′

〈while B do C, s〉 ⇓ s′

Figure 3.3: Big-step semantics of While

rule, or pair of rules, which directly formalises the intuition given above, on pages 2
and 3. We look briefly at each of these in turn.

The command l := E is a single statement. Intuitively from start state s

• we calculate the current value of the expression E, 〈E, s〉 ⇓ n.

• The final state is then obtained by updating the value in location l, s[l 7→ n]

This is the import of the rule (b-assign).
To calculate the final state which results from executing C1 ; C2 in initial state s

• we first execute C1 in initial state s, to obtain the intermediate final state s1.

• We then execute C2 from this state s1 to obtain the final state s′. This is then the
final state after the successful execution of the composed command C1 ; C2.

The rule (b-seq) is a direct formalisation of this informal description.
The effect of executing the test if B then C1 else C2 from the state s depends

on the value of the Boolean expression B relative to s; so it is convenient to express
the semantics using two rules, one which can be applied when 〈B, s〉 ⇓ true and the

Draft: February 3, 2012 6



Semantics Hilary term 2012

other when 〈B, s〉⇓false. These, (b-if.t) and (b-if.f), formalise the obvious intuition that
executing if B then C1 else C2 amount to the execution of C1 when B is true and C2
when it is false.

The only non-trivial command to consider is C = while B do C; the intuitive
explanation given on page 3 is not very precise, refering as it does to the repeated
execution of C until ...... We can be a little more precise by considering two sub-cases:

(i) If the Boolean guard B evaluates to false immediately in the start state s, then
the body C is never executed and the command immediately terminates in the
final state s. This is formalised in the rule (b-while.f).

(ii) If B evaluates to true we expect the body C to be executed at least once.

Firming up on exactly what should happen in case (ii) we expect C to successfully
terminate in a state, say s1 and then for the execution of C to be repeated, but this
time from the newly obtained state s1. This is formalised in the rule (b-while.t). Note
that this inference rule is qualitatively different than all the other rules we have seen
so far. Up to now, the behaviour of a compound command is determined entirely
by the behaviour of its individual components. For example, according to the rule
(b-seq), the behaviour of the compound C1 ; C2 is determined completely by that of
individual components, C1 and C2; similarly if B then C1 else C2 is explained in the
rules (b-if.t) and (b-if.f) purely in terms of the behaviour of the individual components
B, C1 and C2. However this is not the case with the rule (b-while.t); to conclude the
judgement 〈while B do C, s〉 ⇓ s′ we have a premise which still involves the command
while B do C itself.

The final possible command is the ineffective skip; its execution has no effect on
the state and therefore we have the axiom 〈skip, s〉 ⇓ s in Rule (b-noop).

Let us now look at a sample derivation in the logical system determined by these
rules. Consdier the command C1 given on page 2. In order to set out the derivation we
use the following abbreviations:

C11 for l2 := 1 ; l3 := 0
C12 for l2 := l2 + 1 ; l3 := l3 + 1

B for ¬ (l1 = l2)
W for while ¬ (l1 = l2) do C12

So the command C1 can be alternatively described by C11 ; W. We also use the notation
smnk to denote a state of the memory in which the location l1 contains the numeral m,
l2 contains n and l3 contains k; these are the only locations used by the command C1.
With these abbreviations a formal derivation of the judgement

〈C1, s377〉 ⇓ s322

is given in Figure 3.4. So if a compiler is to agree with our formal semantics it must
ensure that if C1 is exectured from the initial state s377 it must eventually terminate
with s322 as the final state.

Draft: February 3, 2012 7



Semantics Hilary term 2012

Su
bp

ro
of

A
:

..
.

〈B
,s

33
2〉
⇓
f
a
l
s
e

(b
-w

h
il

e
.f

)
〈W
,s

33
2〉
⇓

s 3
32

(b
-a

ss
ig

n
)

〈l
2

:=
l

2
+
1
,s

32
1〉
⇓

s 3
31

(b
-a

ss
ig

n
)

〈l
3

:=
l

3
+
1
,s

33
1〉
⇓

s 3
32

(b
-s

e
q

)
〈C

12
,s

32
1〉
⇓

s 3
32

..
.

〈B
,s

32
1〉
⇓
t
r
u
e

(b
-w

h
il

e
.t

)
〈W
,s

32
1〉
⇓

s 3
22

Su
bp

ro
of

B
:

(b
-a

ss
ig

n
)

〈l
2

:=
l

2
+
1
,s

31
0〉
⇓

s 3
20

(b
-a

ss
ig

n
)

〈l
3

:=
l

3
+
1
,s

32
0〉
⇓

s 3
21

(b
-s

e
q

)
〈C

12
,s

31
0〉
⇓

s 3
21

(b
-a

ss
ig

n
)

〈l
2

:=
1
,s

37
7〉
⇓

s 3
17

(b
-a

ss
ig

n
)

〈l
3

:=
0
,s

31
7〉
⇓

s 3
10

(b
-s

e
q

)
〈C

11
,s

37
7〉
⇓

s 3
10

A
(b

-w
h
il

e
.t

)
〈W
,s

32
1〉
⇓

s 3
22

..
.

〈B
,s

31
0〉
⇓
t
r
u
e

B
(b

-s
e
q

)
〈C

12
,s

31
0〉
⇓

s 3
21

(b
-w

h
il

e
.t

)
〈W
,s

31
0〉
⇓

s 3
32

(b
-s

e
q

)
〈C

1,
s 3

77
〉
⇓

s 3
32

Fi
gu

re
3.

4:
A

n
ex

am
pl

e
de

riv
at

io
n

Draft: February 3, 2012 8



Semantics Hilary term 2012

Intuitively we expect there to be commands in the language While which loop, or
continue executing indefinitely. Let us see how this is reflected in the big-step seman-
tics. Consider the command

while (¬ l1 = 0) do l := l + 1 (3.1)

which we denote by LP and let s be any state such that s(l) > 0. Our intuition says
that executing LP from the initial state s would lead to non-termination. So it would be
unfortunate if we could derive the judgement

b̀ig 〈LP, s〉 ⇓ s′ (3.2)

for some state s′; this would contradict our intuition as this judgement is supposed to
capture the idea that command LP, executed from the initial state s eventually termi-
nates, with terminal state s′.

So how do we know that (3.2) is not true for any state s′ ? We can prove it by
contradiction. Suppose a judgement 〈LP, s〉 ⇓ s′ could be derived for some state s such
that s(l) > 0 and some arbitrary state s′. If so there is such a judgement which has a
shortest derivation; that is there is no other such judgement which has a shorter proof.
Suppose this particular judgement is actually 〈LP, s1〉 ⇓ s2 for a some states s1, s2 such
that s1(l) > 0.

How can this judgement be derived? Because 〈¬ l1 = 0, s1〉 ⇓ true every deriva-
tion, including the shortest one, must involve an application of the rule (b-while.t).
Specifically the structure of the shortest derivation must take the form

¬ l1 = 0 ⇓ true 〈l := l + 1, s1〉 ⇓ s3

. . . . . .

〈LP, s3〉 ⇓ s1
(b-while.t)

〈LP, s〉 ⇓ s1

Now because b̀ig 〈l := l + 1, s1〉 ⇓ s3 we know that s3(l) > 0. And in the above
derivation the . . . . . . actually provides a derivation for the judgement 〈LP, s3〉 ⇓ s1.
Moreover the size of this derivation is actually smaller than that of 〈LP, s1〉 ⇓ s2. But
this is a contradiction since we assumed that this derivation of 〈LP, s1〉⇓s2 was shortest.

Exercise: Consider the alternative command LP1 = while true do skip. Prove that
for any arbitrary state s we can not derive a judgement of the form 〈LP1, s〉 ⇓ s′ for any
state s′. �

3.2 Small-step semantics
The big-step semantics of the previous section merely specifies what the final state
should be when a command is executed from some initial state; it does not put con-
straints on how the execution from the initial state to the final state is to proceed. Intu-
itively executing a command involves performing some sequence of basic operations,
determined by the control flow in the command; the basic operations consist of

(a) updates to the memory, effected by assignment statements

Draft: February 3, 2012 9



Semantics Hilary term 2012

(b) evaluation of Boolean guards, in test or while statements; the results of these eval-
uations determine the flow of control.

In this section we give a more detailed semantics for While which describes, at least
indirectly, this sequence of basic operations which should be performed in order to
execute a given command.

The judgements in the small-step semantics for While take the form

〈C, s〉 → 〈C′, s′〉

meaning:

one step in the execution of the command C relative to the state s changes
the state to s′ and leaves the residual command C′ to be executed.

Thus the transition from C to C′ is achieved by performing the first basic operation,
while the execution of the residual C′ will determine the remaining basic operations
necessary to execute C to completion.

This semantics also depends on how both arithmetic expressions and Booleans are
evaluated. But since we are mainly interested in commands our inference rules, in Fig-
ure 3.5, are given in terms of the big-step semantics of both arithmetics and Booleans.
The degenerate command skip plays a fundamental role in these rules. Intuitively
the execution of skip relative to any initial state s involves the execution of no basic
operations, and thus we would expect that the judgement

〈skip, s〉 → 〈C, s′〉

can not be derived for any 〈C, s′〉; indeed the pair 〈skip, s〉 will indicate a terminal
configuration, which requires no further execution.

Let us now briefly look at the rules in Figure 3.5. Executing the command l := E
involves performing one basic operation, namely updating the numeral stored in l to
be whatever the expression E evaluates to. Thus in (s-ass)

• E is evaluated to the numeral n, that is 〈E, s〉 ⇓ n

• the state s changes to the modified store s[l 7→ n]

• the residual, what remains to be executed is skip; that is the command has now
been completely executed.

The execution of a statement of the form C1 ;C1 is a little more complicated. There
are two cases, depending on whether or not there are any basic operations left to be
performed in C1. If there is then there will be a judgement of the form 〈C1, s〉→〈C′1, s

′〉,
representing the execution of this basic operation. Then the execution of the first step
of the compound command is given by the judgement 〈C1 ; C2, s〉 → 〈C′1 ; C2, s′〉; this
is the import of (s-seq.left).

However there may be nothing left to execute in C1; although it is not yet appar-
ent, this will only be the case if C1 is precisely the degenerate command skip. This
accounts for the second rule (s-seq.skip), which formalises the idea that if C1 has termi-
nated, the execution of C2 should be started. Note that this rule introduces steps into

Draft: February 3, 2012 10



Semantics Hilary term 2012

(s-ass)

〈E, s〉 ⇓ n

〈l := E, s〉 → 〈skip, s[l 7→ n]〉

(s-seq.left)

〈C1, s〉 → 〈C′1, s
′〉

〈C1 ; C2, s〉 → 〈C′1 ; C2, s′〉

(s-seq.skip)

〈skip ; C2, s〉 → 〈C2, s〉

(s-cond.t)

〈B, s〉 ⇓ true

〈if B then C1 else C2, s〉 → 〈C1, s〉

(s-cond.f)

〈B, s〉 ⇓ false

〈if B then C1 else C2, s〉 → 〈C2, s〉

(s-while.f)

〈B, s〉 ⇓ false

〈while B do C, s〉 → 〈skip, s〉

(s-while.t)

〈B, s〉 ⇓ true

〈while B do C, s〉 → 〈C ; while B do C, s〉

Figure 3.5: Small-step semantics of While

the small-step semantics which do not correspond to either (a) or (b) above; these may
be considered to be housekeeping steps.

Example Consider the execution of the compound command l2 := 1 ; l3 := 0 from
the initial stare s377; here we are using the notation for states introduced in the pre-
vious section. Using the two rules we have discussed already, we have the following
derivation:

(s-ass)
〈l2 := 1, s377〉 → 〈skip, s317〉

(s-seq.left)
〈l2 := 1 ; l3 := 0, s377〉 → 〈skip ; l3 := 0, s317〉

Therefore we can write s̀m 〈l2 := 1 ; l3 := 0, s377〉 → 〈skip ; l3 := 0, s317〉 which
represents the first step in the execution of the compound command, from initial state
s377, representing an update of the memory.

We also have s̀m 〈skip ; l3 := 0, s317〉 → 〈l3 := 0, s317〉, a housekeeping step,
because of the derivation

(s-seq.skip)
〈skip ; l3 := 0, s317〉 → 〈l3 := 0, s317〉

Draft: February 3, 2012 11



Semantics Hilary term 2012

We also have s̀m 〈l3 := 0, s317〉 → 〈skip, s310〉 because of the derivation consisting of
one application of the rule (s-seq.skip)

(s-seq.skip)
〈l3 := 0, s317〉 → 〈skip, s310〉

Again this step represents an update to the memory. Recall that we view configurations
such as 〈skip, s310〉 to be terminal, as nothing more needs to be executed. Thus we
have executed the command l2 := 1 ; l3 := 0 to completion in three steps. Borrowing
the notation from Chapter 1 we have

〈l2 := 1 ; l3 := 0, s377〉 →
3 〈skip, s310〉 �

Returning to our discussion of the inference rules in Figure 3.5, the treatment of
the test, if B then C1 else C2 is captured in the two rules (s-cond.t) and (s-cond.f).
Depending on what Boolean value B evaluates to, we move on to execute either C1 or
C2. Note that with these rules, the evaluation of the Boolean together with the resulting
decision is taken to be a single execution step.

Finally we come to the interesting construct while B doC. The behaviour depends
naturally on the value of the guard B in the current state. Intuitively if this evaluates to
false then the body C is not to be executed; in short the computation is over. This is
formalised in (s-small.f). On the other hand if it is true, 〈B, s〉⇓true, then we expect the
body to executed at least once, and the execution of the overall command to be repeated.
This is conveniently expressed in (s-while.t) by the transition from while B do C to the
command C ; while B do C.

Let us revisit the command C1 on page 2, which re-using the abbreviations on
page 7 is equivalently expressed as C11 ; W. Let us use the small-step semantics to
execute it from the initial state s377.

Intuitively the first step in this computation is the update of the location l2 with the
numeral 1, and this is borne out formally by the following derivation:

(s-ass)
〈l2 := 1, s377〉 → 〈skip, s317〉

(s-seq.l)
〈C11, s377〉 → 〈(skip ; l3 := 1), s317〉

(s-seq.l)
〈C1, s377〉 → 〈(skip ; l3 := 0) ; W, s317〉

So we have the judgement s̀m 〈C1, s377〉 → 〈(skip ; l3 := 0) ; W, s317〉.
The second step is the rather uninteresting housekeeping move

s̀m 〈(skip ; l3 := 0) ; W, s317〉 → 〈l3 := 0 ; W, s317〉

justified by the formal derivation

(s-seq.s)
〈skip ; l3 := 0, s377〉 → 〈l3 := 1, s317〉

(s-seq.l)
〈(skip ; l3 := 0) ; W, s317〉 → 〈l3 := 0 ; W, s317〉

Draft: February 3, 2012 12



Semantics Hilary term 2012

We leave the reader to check the derivation of the two subsequent moves

s̀m 〈l3 := 0 ; W, s317〉 → 〈skip ; W, s311〉 s̀m 〈skip ; W, s310〉 → 〈W, s310〉

Thus in four steps we have reached the execution of the while command; using the
notation of Chapter 1 this is expressed formally as:

〈C1, s377〉 →
4 〈while ¬ (l1 = l2) do C12, s310〉 (3.3)

We are not getting very far.
We have not seen the rules for evaluating Boolean expressions, but let us assume

that that they are such that 〈¬ (l1 = l2), s310〉⇓true can be derived. Then the next step

s̀m 〈while ¬ (l1 = l2) do C12, s310〉 → 〈C12 ; W, s310〉 (3.4)

is justified by an application of the rule (s-while.t), in the nearly trivial derivation:

〈¬ (l1 = l2), s310〉 ⇓ true
(s-while.t)

〈while ¬ (l1 = l2) do C12, s310〉 → 〈C12 ; W, s310〉

The command C12 consisting of two assignments is now executed, taking four steps

s̀m 〈C12 ; W, s310〉 →
4 〈while ¬ (l1 = l2) do C12, s321〉 (3.5)

and we are back to executing the while command once more; but note the state has
changed.

Another round of five derivations gives

〈while ¬ (l1 = l2) do C12, s321〉 →
5 〈while ¬ (l1 = l2) do C12, s332〉 (3.6)

Now, since presumably 〈¬ (l1 = l2), s332〉 ⇓ false is also derivable, and therefore a
near trivial derivation using the rule (s-while.f) justifies the final step

s̀m 〈while ¬ (l1 = l2) do C12, s322〉 → 〈skip, s332〉 (3.7)

Combining all the judgements (3.3), (3.4), (3.5), (3.6) and (3.7) we have the com-
plete execution

〈C1, s377〉 →
15 〈skip, s322〉

Exercise: Let C be any command different from skip. Prove that for every state s
there is a derivation of the form 〈C, s〉 → 〈C′, s′〉 for some configuration 〈C′, s′〉. �

To end this section let us revisit the non-terminating command LP = while ¬ l1 =

0 do l := l + 1 discussed in the previous section. Again let s be any state satisfying

Draft: February 3, 2012 13



Semantics Hilary term 2012

s(l) > 0. Assuming 〈¬ l1 = 0, s〉 ⇓ true is derivable, an application of the rule
(s-while.t) will justify the judgement

s̀m 〈LP, s〉 → 〈(l := l + 1) ; LP, s〉

We then have

s̀m 〈(l := l + 1) ; LP, s〉 → 〈(skip ; LP, s1〉 and s̀m 〈skip ; LP, s1〉 → 〈LP, s1〉

where s1 is some state which also satisfies s1(l) > 0. In other words,

〈LP, s〉 →3 〈LP, s1〉,

in three steps we are back where we started.
So in the small-step semantics non-termination is manifest by computation se-

quences which go on indefinitely. In our particular case:

〈LP, s〉 →3 〈LP, s1〉 →
3 〈LP, s2〉 →

3 . . . . . . →3 〈LP, sk〉 →
3 . . .

Exercise: Give a small-step semantics to arithmetic and Boolean expressions. �

Exercise: Use your small-step semantics of arithmetics and Boolean expressions to
rewrite the semantics of commands in Figure 3.5, so that no big-step semantics is used.

�

3.3 Properties
In this section we review the two semantics we have given for the language While. In
particular we are interested in the relationship between them, and ensuring that they are
self-consistent. Section 2.2.3 serves as a model for the development, and most of the
mathematical arguments we used already appear there. However in places we have to
use a more complicated form of induction, Rule induction in place of structural induc-
tion. But for the moment let us describe structural induction as it applies to commands
in While. From the BNF definition in Figure 3.1 we see that there are five methods for
constructing commands from Com. There are two seeds or starting points, and three
kinds of constructors:

• Base cases:

– the constant skip is a command

– For every location name l and arithmetic expression E, l := E is a com-
mand.

• Inductive steps:

– If C1 and C2 are commands, then so is C1 ; C2.

Draft: February 3, 2012 14



Semantics Hilary term 2012

– If C1 and C2 are commands then if B thenC1 elseC2 is also a command,
for every Boolean expression B.

– If C is a command, then so is while B do C, again for every Boolean
expression B.

So suppose we wish to prove that some property P(C) is true for every command C ∈
Com. Structural induction will ensure that this will be true provided we prove five
separate properties:

• Base cases:

– Prove, in some way or another, that P(skip) is true.

– Prove that P(l := E) is true for every location name l and arithmetic ex-
pression E.

• Inductive steps:

– Under the assumption that both P(C1) and P(C2) are true, for some arbitrary
pair of commands C1, C2 prove that P(C1 ; C2) follows.

– Similarly, under the same two assumptions P(C1) and P(C2) prove that
P(if B then C1 else C2 is a consequence, for every Boolean expression
B.

– Finally, assuming that P(C) is true for some arbitrary command C, prove
that P(while B do C) follows as a logical consequence, again for every
Boolean expression B.

So these kinds of proofs will be long, with much detail. But normally the details will be
fairly mundane and the entire process is open to automatic or semi-automatic software
assistance.

But note that in general properties of commands will depend on related properties
of the auxiliary arithmetic and Boolean expressions; this is to be expected, as the se-
mantic definitions for commands depend on an a priori semantics for arithmetic and
Boolean expressions. In particular we have used a big-step semantics for these auxil-
iary languages.

Proposition 1 For every expression E ∈ Arith and every state s

(i) (Normalisation) there exists some numeral n such that b̀ig 〈E, s〉 ⇓ n

(ii) (Determinacy) if b̀ig 〈E, s〉 ⇓ n1 and b̀ig 〈E, s〉 ⇓ n2 then n1 = n2.

Proof: Both use structural induction on the language Arith ; the arguments are virtually
identical to those used in Chapter 2.2.3 for the slightly simpler language Exp. �

We have not actually given a big-step semantics for Boolean expressions, but in the
sequel we will assume that one has been given and that it also enjoys these properties.

First let us look at the small-step semantics.

Draft: February 3, 2012 15



Semantics Hilary term 2012

Exercise: Let C be any command different from skip. Use structural induction to
prove that for every state s there is a derivation of the judgement 〈C, s〉 → 〈C′, s′〉 for
some configuration 〈C′, s′〉. �

Proposition 2 For every command C ∈ Com and every state s, if s̀m 〈C, s〉 → 〈C1, s1〉

and s̀m 〈C, s〉 → 〈C1, s1〉 then C1 is identical to C2 and s1 is identical to s2.

Proof: By structural induction on the command C. Here the property of commands we
want to prove P(C) is:

for every state s, if s̀m 〈C, s〉→ 〈C1, s1〉 and s̀m 〈C, s〉→ 〈C1, s1〉 then C1 =

C2 and s1 = s2.

As explained above, we now have five different statements about P(−) to prove:

(i) A base case, when C is skip. Here P(skip) is vacuously true, as it is not possible
to derive any judgement of the form 〈skip, s〉 → 〈D, s′〉, for any pair 〈D, s′〉.

(ii) Another base case, when C is l := E. From Proposition 1 we know that, for a
given state s, there is exactly one number n such that b̀ig 〈E, s〉 ⇓ n. Looking at
the collection of rules in Figure 3.5, there is only one possible rule to apply to
the pair 〈l := E, s〉, namely (s-ass). Consequently, if s̀m 〈l := E, s〉 → 〈C1, s1〉 and

s̀m 〈l := E, s〉 → 〈C1, s1〉 then both C1 and C2 must be skip, and both s1 and s2
must be the same state, s[l 7→ n].

(iii) An inductive case, when C is D1 ; D2. Here we are allowed to assume that P(D1)
and P(D2) are true, and from these we must show that P(D1 ; D2) follows. So
suppose we have a derivation of both judgements

〈D1 ; D2, s〉 → 〈C1, s1〉 and 〈D1 ; D2, s〉 → 〈C2, s2〉 (3.8)

Lets do a case analysis on the structure of D1. First suppose it is the trivial
command skip. Then, looking at the inference rules in Figure 3.5 we see that
the only possible rule which can be used to infer these judgements is (s-seq.skip);
note in particular that (s-seq.left) can not be used, as an appropriate premise,
〈skip, s〉 → 〈C′, s′〉 can not be found. So both of the above derivations must
have exactly the same the form, namely:

(s-seq.skip)
〈skip ; D2, s〉 → 〈D2, s1〉

In other words both C1 and C2 are the same command D2, and s1 and s2 are the
same state, s.

On the other hand if D1 is different than skip, a perusal of Figure 3.5 will see that
the only possible rule which can be used is (s-seq.left). So the pair of derivations
must be of the form

. . .
?

〈D1, s〉 → 〈D′1, s
′〉

(s-seq.skip)
〈D1 ; D2, s〉 → 〈D′1 ; D2, s′〉

and

. . .
??

〈D1, s〉 → 〈D′′1 , s
′′〉

(s-seq.skip)
〈D1 ; D2, s〉 → 〈D′′1 ; D2, s′′〉

Draft: February 3, 2012 16



Semantics Hilary term 2012

So that in (3.8) above, 〈C1, s1〉 has the form 〈D′1 ; D2, s′〉 and 〈C2, s2〉 the form
〈D′′1 ; D2, s′′〉.

But to construct these derivations we must already have derivations of both the
judgements 〈D1, s〉 → 〈D′1, s

′〉 and 〈D1, s〉 → 〈D′′1 , s
′′〉. Here we can now apply

the first inductive hypothesis, P(D1), to obtain D′1 is the same as D′′1 and s′ =

s′′. From this we immediately have our requirement, that 〈C1, s1〉 coincides with
〈C2, s2〉.

Note that in this case we have only used one of the inductive hypotheses, P(D1).

(iv) Another inductive case, when C is while B do D, for some Boolean expression
B and command D. Here we are allowed to assume that P(D) is true, and from
this hypothesis to demonstrate that P(C) follows. To this end suppose we have
derivations of two judgements of the form

〈while B do D, s〉 → 〈C1, s1〉 and 〈while B do D, s〉 → 〈C2, s2〉 (3.9)

using the rules from Figure 3.5. These derivations have to use the rules (s-while.f)

and (s-while.t), which depend on the semantics of the Boolean expression B. So
to start with let us look at its evaluation. By Proposition 1, or more correctly the
version of this proposition for Boolean expressions, there is exactly one Boolean
value bv such that the judgement 〈B, s〉 ⇓ bv can be derived. There are only two
possibilities for bv, namely true and false respectively. Let us look at these
two possibilities in turn.

First suppose that 〈B, s〉⇓false. In this case the rule (s-while.t) can not be used in
the derivation of either of the derivations of the judgements in (3.9) above. In fact
both can only use (s-while.f) and therefore both have exactly the same derivation,
namely:

〈B, s〉 ⇓ false
(s-while.f)

〈while B do D, s〉 → 〈skip, s〉

So in this case obviously C1 and C2 are the same command, skip, and s1 and s2
are the same state, s.

Now we consider the case when 〈B, s〉 ⇓ true. In this case both the derivations
have to use the rule (s-while.t). But again the derivations have to have exactly the
same form, namely:

〈B, s〉 ⇓ true
(s-while.f)

〈while B do D, s〉 → 〈D ; while B do D, s〉

So here again we have shown that C1 and C2 in (3.9) above coincide, as they both
must be the command D ; while B do D; also s1 and s2 are the same state s.

There is one more possibility for C, that it is of the form if B then C1 else C2; this
we leave to the reader to verify. �

Draft: February 3, 2012 17



Semantics Hilary term 2012

Corollary 3 For every command C ∈ Com, every state s and every natural number k,
if 〈C, s〉→k 〈C1, s1〉 and 〈C, s〉→k 〈C1, s2〉 then C1 is identical to C2 and s1 is identical
to s2.

Proof: This time we use mathematical induction on the number of steps k. The base
case, when k = 0 is trivial, while the inductive case uses the previous proposition. �

Exercise: Write out the proof of Corollary 3 in detail.

Theorem 4 (Determinacy) For every command C ∈ Com, every state s, if 〈C, s〉 →∗

〈skip, s1〉 and 〈C, s〉 →∗ 〈skip, s2〉 then s1 = s2.

Proof: This is a rather simple consequence of the previous result. We know by defini-
tion that

〈C, s〉 →k1 〈skip, s1〉

〈C, s〉 →k2 〈skip, s2〉

for some pair of natural numbers k1, k2. Without loss of generality let us suppose that
k1 ≤ k2. Then we actual have

〈C, s〉 →k1 〈skip, s1〉

〈C, s〉 →k1 〈C′, s′2〉 →
k3 〈skip, s2〉

for some 〈C′, s′2〉, where k3 is the difference between k1 and k2. But by Corollary 3 this
must mean that the intermediate command C′ must actually be skip and the state s′2
must coincide with s1. But we have already remarked that no small-steps can be taken
by the terminal command skip. This means that k3 must be 0, and therefore that s2
must be the same as s′2, that is s1. �

We now consider the relationship between the two forms of semantics.

Theorem 5 b̀ig 〈C, s〉 ⇓ s′ implies 〈C, s〉 →∗ 〈skip, s′〉

Proof: Similar in style to that of Proposition 4 of the previous chapter. But because of
the complicated inference rule (b-while.t) we can not use structural induction over the
command C. Instead we use rule induction, as explained in Section 2.3. Specifically,
as explained there, we use strong mathematical induction on the size of the shortest
derivation of the judgement 〈C, s〉 ⇓ s′.

Recall that 〈C, s〉 →∗ 〈skip, s′〉 is a shorthand notation for there is some natural
number k such that 〈C, s〉→k 〈skip, s′〉. So to proceed with the proof let us take this to
be the property in which we are interested. Let P(C, s, s′) denote the property:

there is some natural number k such that 〈C, s〉 →k 〈skip, s′〉.

We have to show b̀ig 〈C, s〉 ⇓ s′ implies P(C, s, s′), which we do by rule induction. So
let the inductive hypothesis (IH) be:

Draft: February 3, 2012 18



Semantics Hilary term 2012

b̀ig 〈D, sD〉 ⇓ s′D implies P(D, sD, s′D) whenever the judgement 〈D, sD〉 ⇓ s′D
has a derivation whose size is strictly smaller than the shortest derivation
of the judgement 〈C, s〉 ⇓ s′.

We have to show that from the hypothesis (IH) we can derive b̀ig 〈C, s〉 ⇓ s′ implies
P(C, s, s′).

So suppose b̀ig 〈C, s〉 ⇓ s′, and let us look at the shortest derivation of the judgement
〈C, s〉 ⇓ s′. There are lots of possibilities for the form of this derivation. To consider
them all let us do a case analysis on the structure of C. As we know there are five
possibilities; we examine a few.

Suppose C is skip . Then P(C, s, s′) is trivially true, since 〈skip, s〉→0 〈skip, s〉.

Suppose C is the assignment command l := E . Since b̀ig 〈C, s〉 ⇓ s′ we know that
the state s′ must be s[l 7→ n], where n is the unique number such that 〈E, s〉 ⇓ n; we
know this is unique from Proposition 1. Then it is easy to use the rule (s-ass) from
Figure 3.5 to show that 〈C, s〉 →1 〈skip, s′〉.

Next suppose that C has the structure C1 ; C2 . Then the structure of the derivation
of the judgement 〈C, s〉 ⇓ s′ must be of the form

. . .
(b-?)

〈C1, s〉 ⇓ s1

. . .
(b-?)

〈C2, s1〉 ⇓ s′
(b-seq)

〈C1 ; C2, s〉 ⇓ s′
(3.10)

for some state s′. From this we know that the judgement 〈C1, s〉 ⇓ s1 has a derivation;
more importantly the size of this derivation is strictly smaller than the derivation of
〈C, s〉 we are considering. So the inductive hypothesis kicks in, and we can assume
P(C1, s, s1) is true; in other words there is some k1 such that 〈C1, s〉 →k1 〈skip, s1〉.

What can we do with this? Well it turns out that this implies 〈C1 ; C2, s〉→k 〈skip ;
C2, s1〉; this is posed as an exercise below. So tagging on one application of the rule
(s-seq.skip) we have 〈C1 ; C2, s〉 →(k1+1) 〈C2, s1〉.

We have not quite evaluated 〈C1;C2, s〉 to completion using the small step semantics
but we are getting there; we can now concentrate on running 〈C2, s1〉. Re-examining
the proof tree (3.10) above we see that the judgement 〈C2, s1〉 ⇓ s′ also has a derivation,
and because of its size (IH) can again be applied, to obtain P(C2, s1, s′). So we know
there is some k2 such that 〈C1, s1〉 →

k2 〈skip, s′〉.
We can now put these two sequences of steps together to obtain the required 〈C1 ;

C2, s〉 →k1+k2+1 〈skip, s′〉.
An even more complicated possibility is that C has the form while B do D for

some Boolean expression B and command D. Here we first concentrate on B. Proposi-
tion 1, formulated for Booleans means that there is exactly one Boolean value bv such
that 〈B, s〉 ⇓ bv can be derived. Suppose this is the value false. Then the required
〈C, s〉 →1 〈skip, s〉 is readily shown, using an application of (s-while.f). The interesting
case is when this is the value true.

In this case the structure of the derivation of the judgement 〈C, s〉 must take the

Draft: February 3, 2012 19



Semantics Hilary term 2012

form
. . .

(b-?)
〈B, s〉 ⇓ true

. . .
(b-?)

〈D, s〉 ⇓ s1

. . .
(b-?)

〈while B do D, s1〉 ⇓ s′
(b-while.t)

〈while B do D, s〉 ⇓ s′

(3.11)

for some state s1. This contains a lot of information. Specifically we know:

(a) The judgement 〈D, s〉 ⇓ s1 has a derivation. Moreover its size is strictly less than
that of the derivation of 〈C, s〉 ⇓ s′, and therefore we can apply (IH) above to obtain
P(D, s, s1). That is 〈D, s〉 →k1 〈skip, s1〉 for some k1.

(b) The judgement 〈while B do D, s1〉 ⇓ s′ also has a judgement, to which (IH) also
applies. So we know 〈while B do D, s1〉 →

k2 〈skip, s〉 for some k2.1

We can now combine these two sequences, using part (i) in the exercise below, to obtain
the required 〈while B do D, s〉 →k 〈skip, s′〉 for k = k1 + k2 + 2:

〈while B do D, s〉 → 〈D ; while B do D, s〉

→k1 〈skip ; while B do D, s1〉

→ 〈while B do D, s1〉

→k2 〈skip, s1〉

There is one more possibility for the structure of C, namely if B then C1 else C2 .
We leave this to the reader. �

Exercise: Use mathematical induction to show that 〈C1, s〉 →k 〈C′1, s
′〉 implies 〈C1 ;

C2, s〉 →k 〈C′1 ; C2, s′〉. �

This theorem shows that the result of running a command using the big-step semantics
can also be obtained using the small-step semantics. We now show that the converse is
also true. But the proof is more indirect, via an auxiliary result.

Proposition 6 Suppose s̀m 〈C, s〉→ 〈C′, s′〉. Then b̀ig 〈C′, s′〉 ⇓ st implies b̀ig 〈C, s〉 ⇓ st.

Proof: Similar in style to that of Lemma 5 of the previous chapter; the proof is by
structural induction on C. Let P(C) denote the property:

If s̀m 〈C, s〉 → 〈C′, s′〉, then b̀ig 〈C′, s′〉 ⇓ st implies b̀ig 〈C, s〉 ⇓ st.

We are going to prove P(C) for every command C. So suppose s̀m 〈C, s〉→ 〈C′, s′〉 and
b̀ig 〈C′, s′〉 ⇓ st. From the definition of the language, in Figure 3.1, we know that there

are five possibilities for C. But here we look at only one case, the most interesting one,
when C has the form while B do D.

1This is where rule induction is essential. With structural induction we would not be able to make this
step in the proof.

Draft: February 3, 2012 20



Semantics Hilary term 2012

In this case the argument depends on the unique Boolean value bv such that b̀ig B ⇓
bv. The easy case is when this is false. Here the small-step derivation can only
use the rule (s-while.t), and therefore takes the form 〈C, s〉 → 〈skip, s〉. In other words
〈C′, s′〉 must be 〈skip, s〉. So the big-step judgement 〈skip, s〉 ⇓ st can only be infered
using the rule (b-skip) from Figure 3.3, and so the state st must be s. But the required
〈C, s〉 ⇓ st now follows by an application of (b-while.f).

Now suppose b̀ig 〈B, s〉 ⇓ true. Then the judgement 〈C, s〉→ 〈C′, s′〉 must look like
〈while B do D, s〉→〈D;while B do D, s〉, that is 〈C′, s′〉must be 〈D;while B do D, s〉.

Let us know look at the derivation of the big-step judgement 〈D;while B do D, s〉⇓
st. This must be constructing using an application of the rule (b-seq), and so we must
have a derivation of

(a) 〈D, s〉 ⇓ s1

(b) and 〈while B do D, s1〉 ⇓ st

For some intermediate state s1. But now, because we are assuming b̀ig 〈B, s〉 ⇓ true,
an application of the big-step rule (b-while.t) appended to the derivations of (a) and (b),
will give the required derivation of the judgement 〈while B do D, s〉 ⇓ st. �

Exercise: Fill in the remaining four cases in the proof of the previous theorem. �

Theorem 7 s̀m 〈C, s〉 →∗ 〈skip, st〉 implies b̀ig 〈C, s〉 ⇓ st.

Proof: The previous result can be generalised to:

For any natural number k ≥ 0, 〈C, s〉→k 〈C′, s′〉 and b̀ig 〈C′, s′〉 ⇓ st implies
b̀ig 〈C, s〉 ⇓ st.

The proof is a straightforward argument by mathematical induction on k.
Now suppose 〈C, s〉 →∗ 〈skip, s′〉. Recall that this means there is some natural

number k such that 〈C, s〉 →k 〈skip, st〉. But we also have a trivial derivation to show
b̀ig 〈skip, st〉 ⇓ st. The required result, b̀ig 〈C, s〉 ⇓ s′ , now follows trivially from the

above generalisation. �

Summing up:
What have we achieved? First we have given two different semantics to a simple lan-
guage Com of imperative commands, a big-step one and a small-step one. Moreover
we have shown, in Theorem 5 and Theorem 7, that they coincide on the behaviour they
prescribe for commands. Specifically the following statements are equivalent:

• b̀ig 〈C, s〉 ⇓ s′

• 〈C, s〉 →∗ 〈skip, s′〉.

Draft: February 3, 2012 21



Semantics Hilary term 2012

Moreover we have shown that the small-step semantics is consistent in the sense of
Determinacy, Theorem 4: for every configuration 〈C, s〉 there is at most one terminal
state s′ such that 〈C, s〉 →∗ 〈skip, s′〉. Incidently the equivalence above also ensures
that the big-step semantics is also consistent in this sense.

On page 4 we explained our intuitive understanding of commands, as transforma-
tions over states of a computer memory. A command starts from an initial state, makes
a sequence of updates to the memory, and ending up eventually with the memory in
a terminal state, hopefully. We can now formally describe this transformation, using
either of the semantic frameworks.

We use (States ⇀ States) to denote the set of partial functions from States to
States; we need to consider partial functions rather than total functions because as we
have seen commands do not necessarily terminate. Then for every command C in the
language While, we define the partial function [[C]] over states as follows:

[[C]](s) =

s′, if b̀ig 〈C, s〉 ⇓ s′

undefined, otherwise

Note that this is well-defined; as we have seen for every initial state s there is at most
one terminal state s′ such that 〈C, s〉 ⇓ s′. Thus this meaning function has the following
type:

[[−]] : Com→ (States⇀ States)

For example [[LP]], given in (3.1) above, is the partial function which is only defined for
states s satisfying s(l) = 0. If s is such a state then [[LP]](s) = s. In other words [[LP]]
is a partial identity function, whose domain is the set of states s such that s(l) = 0.
On the other hand [[LP1]], where LP1 is the command defined on page 9, is the totally
undefined function; it has the empty domain.

Exercise: Describe, using standard mathematical notation, the partial function [[C1]],
where C1 is the command given on page 2.

3.4 Extensions to the language While
In this section we examine various extensions to the basic imperative language While,
exploring how both big-step and small-step semantic rules can be used to capture the
intended behaviour of the added constructs.

3.4.1 Local declarations
Many languages allow you to collect code into separate blocks, which may contain
internal declarations, or local parameters; for example think of methods in Java. Here
we examine a simple instance of this general programming construct.

The intuitive idea behind the command

begin loc l := E ; C end

is that

Draft: February 3, 2012 22



Semantics Hilary term 2012

B ∈ Bool ::= . . .

E ∈ Arith ::= . . .

C ∈ Com ::= l := E | if B then C else C

| C ; C | skip | while B do C

| begin D ; C end

D ∈ Dec ::= loc l := E

Figure 3.6: The language Whileblock, an extension to While

• the location l is local to the execution of the command C

• the initial value of l for this local execution is obtained from the value of the
expression E.

Let C1 be the command

l := 1 ; begin loc l := 2 ; k := l end

Then in a big-step semantics we would expect, for every state s,

〈C1, s〉 ⇓ s′

for some s′. In fact because of the particular command C1 the final values stored in
s′(l), s′(k) do not actually depend on the initial state s. But we would expect

(i) s′(k) = 2

(ii) s′(l) = 1

The first expectation, (i), is because the local execution of the command k := l is
relative to the local declaration loc l := 2. The second (ii) is because we expect the
original value of l to be restated when the local execution is finished. This is important
for executing commands such as C2:

l1 := 1 ; l2 := 2 ; begin loc l1 := 7 ; l2 := l1 end ; k := (l1 + l2)

Here we would expect the judgement

〈C2, s〉 ⇓ s′′

where s′′(k) is 8 rather than 14. This is because, intuitively when the block terminates
we expect the value stored in the location l2 to be restored to that which it contained
prior to the block executing.

Draft: February 3, 2012 23



Semantics Hilary term 2012

(b-block)

〈E, s〉 ⇓ v
〈C, s[l 7→ v]〉 ⇓ s′

〈begin loc l := E ; C end, s〉 ⇓ s′[l 7→ s(l)]

Figure 3.7: Big-step rule for blocks

A big-step semantic rule for blocks, (b-block), is given in Figure 3.7. It says that the
only judgements to be made for block commands take the form

〈begin loc l := E ; C end, s〉 ⇓ st

where the terminal state st has the form s′[l 7→ s(l)]; in other words the value associ-
ated with l in the terminal state st is exactly the same as in the initial state s. Moreover
to calculate the terminal state st we must:

(i) First evaluate the expression E in the initial state, 〈E, s〉 ⇓ v.

(ii) Then execute the local body C in the initial state s modified so that the value v is
associated with the identifier l, 〈C, s[l 7→ v]〉 ⇓ s′.

(iii) The starting value associated with l, namely s(l), is reinstated in the final state,
st = s′[l 7→ s(l)].

Exercises:

(1) Use this new rule, together with the existing ones for While, to find a state s′ such
that 〈C1, s〉 ⇓ s′ where the command C1 is given above. Justify your answer by
giving a formal derivation using the inference rules.

(2) Do the same for the command C2 also given above.

(3) Consider the following command C3:

k := 3 ; l := 2 ; begin loc k := 1;
l := k;
begin loc l := 2 ; k := l + k end

l := k + l ; m := l + 1

end

What are the final values of the identifiers l and k after C3 has been executed? In
other words if

〈C, s〉 ⇓ s′

what are the numerals s′(l), s′(k) and s′(m) ?

(4) Design a small-step semantics for this extension to Whileblock.
Note: This is not easy as it requires inventing new notation for changing and rein-
stating states.

Draft: February 3, 2012 24



Semantics Hilary term 2012

B ∈ Bool ::= . . .

E ∈ Arith ::= (E − E) | . . .
C ∈ Com ::= l := E | if B then C else C

| C ; C | skip | while B do C

| abort

Figure 3.8: Another extension to While, called Whileabort

3.4.2 Aborting computations
Another extension to While is given in Figure 3.8. There are two additions. To
Booleans we have added the extra construct (E1 − E2). The idea here is that this can
lead to problems if the value of E2 is greater than that of E1, since the only arithmetic
values in the language are the non-negative numerals. In this case the execution in
which this evaluation is being carried out should be aborted. In order to emphasise
this idea of aborting an execution we have also added an extra command abort to the
language. An attempt to execute this command will also lead to an immediate abortion
of the execution.

This extended language contains all of the constructs of the original language While
and we would not expect our extended rules to change in any way the semantics of
these commands, that is any commands which do not use abort or the troublesome
subtraction operator (E1 − E2). But in order to see intuitively what problems can arise
consider the following commands:

C1 : l := 1 ; abort ; l := 2
C2 : l := 1 ; if (l − 7) ≤ 4 then l := 4 else l := 3
C3 : l := 3 ; while l > 0 do

( l := (l − 1);
abort;
l := (l − 1) )

C4 : l := 3 ; while l > 0 do

if (l − 2) > 1 then l := 0 else l := (l − 1)

No matter what initial state s we use we would expect the execution of all of these
programs to be aborted. Of course in each case some sub-commands will have been
executed and so the state s will have been changed. For example running C1 will result
in an aborted computation in which the resulting state s′ satisfies s′(l) = 1.

To differentiate between successful computations and unsuccessful ones we design

Draft: February 3, 2012 25



Semantics Hilary term 2012

(b-minus)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 − E2, s〉 ⇓ n3

n3 = minus(n1, n2),
n1 ≥ n3

(b-minus.abort)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 − E2, s〉 ⇓ abort

n1 < n2

(b-prop.l)

〈E1, s〉 ⇓ abort

〈E1 op E2, s〉 ⇓ abort

(b-prop.r)

〈E2, s〉 ⇓ abort

〈E1 op E2, s〉 ⇓ abort

Figure 3.9: Extra rules for arithmetic expressions in Whileabort

two judgements

〈C, s〉 ⇓ 〈skip, s′〉 〈C, s〉 ⇓ 〈abort, s′〉

The first says that running C with initial state s leads to a successful (terminating)
computation with final state s′. For commands C from the base language While these
judgements should be the same as 〈C, s〉 ⇓ s′, whose inference inference rules are given
in Figure 3.3. This use of skip to indicate successful termination is similar to how it
is used in the small-step semantics from Figure 3.5 . The second form above says says
that running C with state s leads to an unsuccessful or aborted computation, in which
the state has changed from s to s′.

Of course evaluating arithmetic or Boolean expressions can also be unsuccessful
and so we have to amend their big-step semantics as well. Judgements for these will
now take the form

• 〈E, s〉 ⇓ n successful evaluation of E to value n

• 〈E, s〉 ⇓ abort unsuccessful attempt at evaluating E

• 〈B, s〉 ⇓ bv successful evaluation of B to the Boolean value bv

• 〈B, s〉 ⇓ abort unsuccessful attempt at evaluating B

The inference rules for arithmetic expressions are given in Figure 3.9, although we
have omitted the repetition of the rules (b-num), (b-loc) and (b-add) from Figure 3.2. The
first two rules (b-minus) and (b-minus.abort) are straightforward; they implement our intu-
ition of what should happen when a minus operation is performed. But the propagation
rules (b-prop.l) and (b-prop.r) are also important as they allow us to infer judgements such
as

(3 − 7) + (4 + 1) ⇓ abort and (2 + 3) − (2 − 6) ⇓ abort

The rules use the meta-variable op to stand for either of the operators + or −.

Draft: February 3, 2012 26



Semantics Hilary term 2012

(b-skip)

〈skip, s〉 ⇓ 〈skip, s〉

(b-abort)

〈abort, s〉 ⇓ 〈abort, s〉

(b-assign.s)

〈E, s〉 ⇓ n

〈l := E, s〉 ⇓ 〈skip, s[l 7→ n]〉

(b-assign.a)

〈E, s〉 ⇓ abort

〈l := E, s〉 ⇓ 〈abort, s〉

(b-seq.s)

〈C1, s〉 ⇓ 〈skip, s1〉

〈C2, s1〉 ⇓ 〈r, s′〉

〈C1 ; C2, s〉 ⇓ 〈r, s′〉

(b-seq.a)

〈C1, s〉 ⇓ 〈abort, s′〉

〈C1 ; C2, s〉 ⇓ 〈abort, s′〉

(b-if.t)

〈B, s〉 ⇓ true
〈C1, s〉 ⇓ 〈r, s′〉

〈if B then C1 else C2, s〉 ⇓ 〈r, s′〉

(b-if.a)

〈B, s〉 ⇓ abort

〈if B then C1 else C2, s〉 ⇓ 〈abort, s〉

(b-if.f)

〈B, s〉 ⇓ false
〈C2, s〉 ⇓ 〈r, s′〉

〈if B then C1 else C2, s〉 ⇓ 〈r, s′〉

(b-while.un)

〈if B then (C ; while B do C) else skip, s〉 ⇓ 〈r, s′〉

〈while B do C, s〉 ⇓ 〈r, s′〉

Figure 3.10: Big-step inference rules for commands in Whileabort

Exercise: Give the inference rules for Boolean expressions in Whileabort. �

The rules for commands are given in Figure 3.10. The execution of the one-
instruction command (l := E), in the rules (b-assign.s) and (b-assign.f), depends on whether
the evaluation of E is successful; note that in the latter case the state remains un-
changed. To execute C1 ; C2 we first evaluate C1. If this is successful, with terminal
state s1, we continue with the execution of C2 with s1 as an initial state; this may or
may not abort, and to cover both possibilities in rule (b-seq.r) we use the meta-variable r
to range over both skip and abort. If on the other hand the attempted execution of C1

Draft: February 3, 2012 27



Semantics Hilary term 2012

B ∈ Bool ::= . . .

E ∈ Arith ::= . . .

C ∈ Com ::= l := E | if B then C else C

| C ; C | skip | while B do C

| C parC

Figure 3.11: Whilepar: adding parallelism to While

is unsuccessful then the rule (b-seq.f) allows us to conclude that the execution of (C1 ;C2)
is also unsuccessful. The rules for executing (if B then C1 else C2 are adapted in a
similar manner from those in Figure 3.3, with a new rule for when the evaluation of the
Boolean B is unsuccessful.

Finally, for the command (while B do C) we could also have adapted the rules
(b-while.t) and (b-while.f) from Figure 3.3. Instead, for the sake of variety we use the rule
(b-while.un), an unwinding rule. It says that the result of executing (while B doC) is ex-
actly the same as the execution of the command if B then (while B doC) else skip.

Exercise: Use the inference in Figure 3.3 to execute the four commands Ci given on
page 25 relative to an arbitrary initial state s; the behaviour should not actually depend
on the values stored in s.

3.4.3 Adding parallelism
In the new language Whileparthe idea of the new construct (C1 par C2) is that, intu-
itively, the individual commands C1 and C2 be executed in parallel, with no particular
preference being given to one or the other; this means that their executions are to be
interleaved, which will lead to non-deterministic behaviour. For example consider the
command C:

l := 0 par (l := 1 ; l := l + 1) (3.12)

Then the single assignment l := 0 can be executed

• before the compound command l := 1 ; l := l + 1 is executed

• after it has been executed

• or in between the execution of the sub-commands l := 1.

So when the command (3.12) has terminated the final value associated with the location
l can either be 2, 0 or 1.

Draft: February 3, 2012 28



Semantics Hilary term 2012

(s-lpar)

〈C1, s〉 → 〈C′1, s
′〉

〈C1 parC2, s〉 → 〈C′1 parC2, s′〉

(s-rpar)

〈C2, s〉 → 〈C′2, s
′〉

〈C1 parC2, s〉 → 〈C1 parC′2, s
′〉

(s-lpars)

〈skip parC, s〉 → 〈C, s〉

(s-rpars)

〈C par skip, s〉 → 〈C, s〉

Figure 3.12: Rules for parallelism

Because of this interleaving of operations it would be very difficult to give a big-
step semantics for the language Whilepar. The problem is exemplified by the same
command (3.12). Using the existing big-step semantics for While we know

〈l := 0, s〉 ⇓ s[l 7→ 0] 〈l := 1 ; l := l + 1, s〉 ⇓ s[l 7→ 2]

But how can we use these two judgements to deduce that when C is executed that the
identifier l might have the value 1 associated with it?

Instead we show how the small-step semantics of While can be adapted for Whilepar.
Rules for the new construct are given in Figure 3.12. The first two, (s-lpar), (s-rpar), say
that the next step in the execution of C1 par C2 can be either a step from C1 or a step
from C2, while the second pair of rules handle the termination of either sub-command;
recall we use the configuration 〈skip, s〉 to indicate an execution which has terminated.

Exercise: Use the rules in Figure 3.12, together with those in Figure 3.5 to find all
states s′ such that 〈C, s〉 →∗ 〈skip, s′〉, where C is given in (3.12) above. This should
not depend on the initial state s.

Exercise: Do the same for the command C2:

(l := k + 1) par (k := l + 1 ; k := k + l)

relative to an initial state s satisfying s(l) = s(k) = 0.

In Whileparcommunication between parallel commands is via the state; information
passes between concurrent commands occurs by allowing them to share variables or
identifiers. Within such a framework it is very difficult to limit interference between
commands and many real programming languages have constructs for alleviating this
problems; constructs such as semaphores, locks, critical regions, etc.. Here we briefly
examine one such construct, Conditional critical regions.

We add to Whilepar the construct

await B protect C end

Draft: February 3, 2012 29



Semantics Hilary term 2012

The intuition is that this command can only be executed when the Boolean B is true,
and then the entire command C is to be executed to completion without interruption or
interference. For example consider the command D1:

x := 0 par await x = 0 protect x := 1 ; x := x + 1 end (3.13)

This should be a deterministic program; if it is executed relative to a state s then it will
terminate and the only possible terminal state is s[x 7→ 2].

As another example consider D2 defined by

(await true protect l := 1 ; l := k + 1 end)
par (3.14)

(await true protect k := 2 ; k := l + 1 end)

Here the two Boolean guards, true, are vacuous, so which protected command is ex-
ecuted first is chosen non-deterministically. But they are executed in isolation, without
interference from each other. For example if executed with an initial state s satisfying
s(l) = s(k) = 0 then there are only two possible terminal states; the first has l,k
containing 1, 2 respectively, while the second has 2, 1.

There is a bit of a trick in the required rule for this new command, as it uses the
reflexive transitive closure of the small-step relation→ in the hypothesis:

(b-await)
〈B, s〉 ⇓ 〈tt, s1〉 〈C, s1〉 →

∗ 〈skip, s′〉

〈await B protect C end, s〉 → 〈skip, s′〉

Exercise: Use this rule, together with those from Figure 3.5, to give formal derivations
confirming the expected behaviour of the two commands D1,D2 in (3.13) and (3.14)
above.

Draft: February 3, 2012 30


