
Semantics of programming languages (CS3017)
Course Notes 2012-2013

Matthew Hennessy
Trinity College Dublin

January 9, 2013
c©M H

Contents

1 Arithmetic expressions 3
1.1 Syntax . 3
1.2 Big-step semantics . 5
1.3 Small-step semantics . 9
1.4 Parallel evaluation . 11
1.5 Questions questions . 12

2 Induction 14
2.1 Mathematical Induction . 14

2.1.1 An example proof by mathematical induction 15
2.1.2 Defining functions using mathematical induction 18
2.1.3 Strong mathematical induction 19

2.2 Structural induction . 20
2.2.1 A Structural View of mathematical induction 20
2.2.2 Structural induction for binary trees 21
2.2.3 Structural Induction over the language of expressions 25

2.3 Rule Induction . 29
2.3.1 What is going on? . 32

2.4 The reflexive transitive closure of a relation 33
2.4.1 Alternative formulation . 35

3 The While programming language 38
3.1 Big-step semantics . 40
3.2 Small-step semantics . 46
3.3 Properties . 51
3.4 Extensions to the language While 59

3.4.1 Local declarations . 59
3.4.2 Aborting computations . 61
3.4.3 Adding parallelism . 65

4 A simple functional language 68
4.1 Local declarations . 69

4.1.1 Big-step semantics . 71
4.1.2 Small-step semantics . 74

1

Semantics Trinity term 2013

4.2 Adding Boolean expressions . 75
4.3 Typing . 77

4.3.1 Typechecking . 78
4.3.2 Typed programs don’t go wrong 83

4.4 User-defined functions . 85
4.4.1 Big-step semantics . 88
4.4.2 Small-step semantics . 92
4.4.3 Typing functions . 93

Draft: January 9, 2013 2

Chapter 1

Evaluating arithmetic
expressions

In this introductory chapter we explain the idea of formal semantics for a programming
language using as an example a very simple language for arithmetic expressions Exp,
involving numerals and two operations, addition and multiplication. Anybody reading
these notes will know very well how to evaluate these expressions. But our purpose is
to use the language to explain the formalism we will use to give semantics to languages
which are much more complicated than Exp.

1.1 Syntax
The syntax for a very simple language of arithmetic expressions Exp is given in Fig-
ure 1.1. It uses an auxiliary set of numerals, Nums, which are syntactic representa-
tions of the more abstract set of natural numbers N. The natural numbers 0, 1, 2, . . .
are mathematical objects which exist in some abstract world of concepts. They have
concrete representations in different languages. For example the natural number 5 is
represented by the string of symbols five in English and the string cinq in French; the
Romans represented it by the symbol V. In our language of arithmetic expressions it
will be represented as the corresponding symbol in bold italic font 5.

In addition to the numerals the BNF schema in Figure 1.1 also uses two extra sym-
bols, + and ×. Once more most people would know that these symbols are represen-
tations for binary mathematical operations on natural numbers, namely addition and
multiplication. Thus the first line of Figure 1.1 says that there are three ways to con-
struct an arbitrary expression E in the language Exp:

(i) If n is an arbitrary numeral then it is also an arithmetic expression. From this we
therefore already know that there an infinite number of arithmetic expressions,
namely 0, 1, 2, . . .

(ii) If we have already constructed two arithmetic expressions E1 and E2 then E1 +E2
is also an arithmetic expression in Exp.

3

Semantics Trinity term 2013

E ∈ Exp ::= n | E + E | E × E

n ∈ Nums ::= 0 | 1 | 2 | . . .

Figure 1.1: Syntax: arithmetic expressions

(iii) Similarly if E1, E2 are two expressions in Exp then E1 × E2 is also an arithmetic
expression in Exp.

Here we take the view that schemas such as that in Figure 1.1 specify the abstract
syntax of a language, rather than its concrete syntax. The latter is concerned with the
precise linear sequences of symbols which are valid terms of the language whereas
the former describes terms purely in terms of their structure. Another way of saying
this is that the schema in Figure 1.1 describes the valid abstract syntax trees of the
language, rather than linear sequences of symbols. Thus the following is a valid tree in
the language Exp:

+

3 ×

2 7

This is because it is formed by condition (ii) above because:

(a) 3 is a valid tree in Exp; this follows from condition (i)

(b) the object

×

2 7 is also in Exp. This in turn follows by condition (iii)
above, because both the objects 2 and 7 are valid trees; these two statements are an
instance of condition (i).

On the other hand a tree such as

+

×

3

×

4 6

is not in the language Exp; no matter how we try to apply the rules (i) - (iii) above we
will not be able to construct it.

However it would be tedious to have to continually draw these syntax trees and
therefore throughout the notes we use a convention for their linear representation; this
consists of using brackets in order to indicate the structure of expressions. Thus in

Draft: January 9, 2013 4

Semantics Trinity term 2013

linear representation the valid tree above will be rendered as 3 + (2 × 7). The linear
representation (3 + 2) × 7 on the other hand represents a different tree, namely

×

+

3 2

7

This linear representation of abstract tress will be rather informal; for example there
are many linear expressions, such as 3+ 2× 7, which represent no abstract syntax tree.
The over-riding principle will be that given an expression we should always know its
structure; how it is constructed using the rules (i) (ii) and (iii) above.

1.2 Big-step semantics
Anybody with the least exposure to mathematics will know how to evaluate expressions
in the language Exp; for example 3+(2×7) evaluates to 17while (3+2)×7 evaluates to
35. However this might not be the case for more complicated languages, and therefore
we need general methods for specifying how expressions are to be evaluated, or more
abstractly what should be the result of evaluating an expression. We will illustrate these
methods using the simple language Exp.

One approach would simply be to write a computer programme, an evaluator or
interpreter, which inputs an arithmetic expression and outputs the correct result. How-
ever this is unsatisfactory for a number of reasons:

(i) As an explanation it is unnecessarily complicated. Writing the programme would
involve all kinds of superfluous decisions about data-structures, and control flow.

(ii) It would also be overly prescriptive; the program would essentially give a spe-
cific algorithm for evaluating expressions, thereby offering a bias against other
possibilities.

Suppose instead we merely wanted to specify what the result should be, rather than how
the evaluation should proceed. One way to do this would be to publish a table consist-
ing of all the possible expressions together with the numeral to which they should
evaluate. Apart from being incredibly tedious this approach is doomed to failure as
there are an infinite number of possible expressions. But as is made clear in the BNF
description of the language in Figure 1.1, there is a simple structure to all expressions;
this can be exploited to give a simple specification of what the result should be from
any algorithm designed to evaluate an arbitrary expression.

But any such specification can only be understood by somebody who is familiar
with the abstract arithmetic operations of addition and subtraction. Note that this is
also true of evaluators or interpreters; it would be impossible to implement a program
to evaluate expressions if the target language had no way to execute these arithmetic
operations.

Suppose we want to evaluate an arbitrary expression E ∈ Exp. According to the
description of Exp in Figure 1.1 there are three possibilities for the structure of E:

Draft: January 9, 2013 5

Semantics Trinity term 2013

(-)

n ⇓ n

(-)

E1 ⇓ n1 E2 ⇓ n2

E1 + E2 ⇓ n3
n3 = add(n1, n2)

Figure 1.2: Big-step semantics

(i) E is some numeral n: In this case the result of evaluation should obviously be the
numeral n itself.

(ii) E has the structure E1 + E2 for some (sub)-expressions E1 and E2. In this case
the result of evaluating E should be the numeral obtained by applying the binary
addition operator to the results obtained from E1 and E2. Spelled out in more
detail, if n1 is the result of evaluating E1 and n2 is the result of evaluating E2 then
the result of evaluating E should be the numeral n3 where add(n1, n2) = n3.

(iii) E has the structure E1×E2 for some (sub)-expressions E1 and E2. In this case we
proceed as in case (ii) but using the multiplication operator mult(−,−) in place of
addition.

Note the use of numbers versus numerals in (ii) and (iii). Both add(−,−) and mult(−,−)
are abstract mathematical operations on natural numbers; so in (ii) they are applied
to the numbers n1, n2, to obtain the number n3, and the result of the valuation is the
corresponding numeral n3.

The specification given in (i)-(iii) above does not necessarily constitute a precise
algorithm for evaluating expressions but it can be used by any reasonably intelligent
person to calculate the prescribed result. For example the result of evaluating (2+ 6) +

(2 × 7) should be the numeral 22. This follows by an application of (ii) because:

(a) (2 + 6) + (2 × 7) has the form E1 + E2 where E1 is 2 + 6 and E2 is 2 × 7

(b) the result of evaluating 2 + 6 should be 8

(c) the result of evaluating 2 × 7 should be 14

(d) and add(8, 14) is the number 22.

Of course this is not the complete justification of why (2+6)+(2×7) should evaluate to
22. In addition we need to justify steps (b) and (c) above; these in turn can be justified
using applications of the principles (ii) and (iii) respectively.

With some thought the reader should be convinced that these principles, (i), (ii),
and (iii), are sufficient to determine the value of any expression from Exp no matter
how complicated. However they are expressed in natural language (English), which is
notoriously prone to mis-interpretation and mis-understanding. For Exp, a very simple
language, this is not the case, but for more complicated languages it is better to avoid
the vagaries of natural language. So instead we propose to replace specifications such

Draft: January 9, 2013 6

Semantics Trinity term 2013

as (i) - (iii) above with formal logical systems which do not suffer from the defects of
natural language.

The idea is to use logical rules whose general format is given by:

name

hypothesis . . . hypothesis

conclusion
(side-condition) (1.1)

Each rule has

• at least one conclusion, written underneath the line

• a list, possibly empty, of hypotheses, written above the line

• a side-condition, again possibly empty

• a name with which we can refer to the rule.

The intuition is that if all the hypotheses hold, and the side-condition holds, then the
conclusion also holds.

Let us now see how we can recast the informal specification of the semantics above
using this form of logical rules. The predicate in which we are interested is: the ex-
pression E should evaluate to the numeral n. Let us denote this English phrase with a
mathematical predicate or judgement

E ⇓ n

Now what we want is a set of rules which determine valid instances of this predicate.
Two such rules are given in Figure 3.2, corresponding to the informal specifications (i)
and (ii) above; the missing third rule can be supplied by the reader to correspond with
clause (iii). The first rule, (-), has no hypothesis and no side condition; such rules are
refered to as axioms. Thus it says that n ⇓ n for every numeral n; thus it corresponds to
the informal specification (i) above. The second rule, (-), corresponds to the informal
specification (ii); it has two hypotheses, namely that E1 ⇓ n1 and E2 ⇓ n2 and one side-
condition about natural numbers, n3 = add(n1, n2). If these hypotheses are known to
hold and the side-condition is true then the conclusion E1 + E2 ⇓ n3 is also true.

These rules can now be used formally to determine when, for a particular expres-
sion E and numeral n, the judgement E ⇓ n is valid. Valid judgements are those which
can be derived by any sequence of applications of the defining rules. Here is an exam-
ple of such a derivation, which determines that the judgement 3 + (2 + 1) ⇓ 6 is valid,
that is, the evaluation of the expression 3 + (2 + 1) should evaluate to the numeral 6.

(-)
3 ⇓ 3

(-)
2 ⇓ 2

(-)
1 ⇓ 1

(-)
(2 + 1) ⇓ 3

(-)
3 + (2 + 1) ⇓ 6

The derivation is presented as an inverted tree, with the required judgement to be ver-
ified, 3 + (2 + 1) ⇓ 6, at the root. The tree is generated by applications of the defining

Draft: January 9, 2013 7

Semantics Trinity term 2013

(-)
2 ⇓ 2

(-)
6 ⇓ 6

(-)
(2 + 6) ⇓ 8

(-)
2 ⇓ 2

(-)
7 ⇓ 7

(-)
(2 × 7) ⇓ 14

(-)
(2 + 6) + (2 × 7) ⇓ 22

Figure 1.3: An example derivation in the big-step semantics

rules, with the terminating leaves being generated by axioms. In this example we have
three applications of the axiom (-) and two applications of the rule (-).

Another example derivation is given in Figure 1.3; it makes reference to the (ob-
vious) missing rule (-) for dealing with expressions of the form E1 × E2. This is a
formal justification of the valid judgement (2 + 6) + (2 × 7) ⇓ 22 corresponding to the
informal justification given in natural language in the clauses (a)-(d) on page 6.

We now sum up what has been achieved in this section. To do so let us introduce
the notation

b̀ig E ⇓ n (1.2)

to mean that there is some derivation of the judgement E ⇓ n using the three rules
(-), (-) and (-). For example, because Figure 1.3 exhibits a derivation of the
judgement 2 + 6) + (2 × 7) ⇓ 22, we can conclude b̀ig 2 + 6) + (2 × 7) ⇓ 22. Then we
can say that we have given a formal semantics to the language Exp. By this we mean
that if somebody asks the question: To what value should the expression E evaluate?
we can answer: E should evaluate to a numeral n such that b̀ig E ⇓ n.

Before moving on we should say a few words about the format of the logical rules
which we use, in (1.1) above. We have not been very specific about the contents of the
various components, hypothesis, conclusion and side-condition. In general the purpose
of a rule is to constrain some predicate, the focus of the semantic definition. In this case
the predicate is ⇓, a binary infix predicate between expressions and numerals. Conse-
quently it is natural that the conclusion, and very often the hypotheses, be particular
instances of this predicate; this is the case in the rules (-) and (-) in Figure 3.2. On
the other hand side-condition should concern auxiliary predicates and functions which
play a role, but a minor role, in the definition of the main predicate. We have seen that
it is not possible to understand the semantics of Exp without knowing that the symbols
+ and × refer to the mathematical functions add(−,−) and mult(−,−) on natural num-
bers; and in our rules the side-conditions refer to properties of these auxiliary functions.
Thus although one might consider an alternative rule such as

(-.)

E1 ⇓ n1 n3 = add(n1, n2)

E1 + E2 ⇓ n3
E2 ⇓ n2

the original rule (-) in Figure 3.2 is to be preferred.

Draft: January 9, 2013 8

Semantics Trinity term 2013

(-)

E1→ E′1
(E1 + E2)→ (E′1 + E2)

(-.)

E2→ E′2
(n + E2)→ (n + E′2)

(-)

(n1 + n2)→ n3
n3 = add(n1, n2)

Figure 1.4: Small-step semantics

We should also point out that a rule such as (-) is actually a meta-rule, that is
formally represents an infinite number of concrete rules, obtained by instantiating the
meta-variables E1, E2, n1, n2 and n1. Thus among the many instances of (-) are

3 × 7 ⇓ 4 8 ⇓ 2

(3 × 7) + 8 ⇓ 6
6 = add(4, 2)

4 + 2 ⇓ 9 8 + 1 ⇓ 3

(3 × 7) + (8 + 1) ⇓ 12
12 = add(9, 3)

However the vast majority of these concrete instances are useless; if the premises can
not be established then they can not be employed in any valid derivation.

1.3 Small-step semantics
The big-step semantics of the previous section is not very constraining; it prescribes
what the answer should be when an expression is evaluated but says nothing about
how the actual evaluation is to proceed. For example, to evaluate (3 + 7) + (8 × 1)
we know that two additions have to preformed and one multiplication; but the big-
step semantics does not decree in what order these are to be carried out. For some
languages, for example those with side-effects, the order of evaluation is important. In
this section we see an alternative semantics for Exp in which constraints on the order
of the basic operations can be made. In particular it will prescribe, indirectly, that the
order of evaluations should be from left to right.

The idea is to design a predicate on expressions which decrees which operation is
to be performed first, and then describes the result of performing this operation. This
is achieved indirectly by defining judgements of the form

E1→ E2

to be read as: after performing one step of evaluation of the expression E1 the expres-
sion E2 remains to be evaluated; thus this judgement prescribes

• the first operation to be performed, transforming E1 into E2

• the remaining operations to be performed, embodied indirectly in the the residual
E1.

Draft: January 9, 2013 9

Semantics Trinity term 2013

The rules defining this small step relation→ are given in Figure 1.4, although we leave
it to the reader to design the two rules, similar to (-) and (-.), for dealing with
expressions of the form E1 × E2. Let us write

s̀m E1→ E2

to mean that there is a derivation of the judgement E1→ E2 using these rules. Thus we
have

s̀m (3 + 7) + (8 + 1) → 10 + (8 + 1)

because of the following derivation:

(-)
3 + 7→ 10

(-)
(3 + 7) + (8 + 1) → 10 + (8 + 1)

As another example we have

s̀m 10 + (8 + 1) → 10 + 9

because the following is a valid derivation:

(-)
8 + 1→ 9

(-.)
10 + (8 + 1) → 10 + 9

On the other hand we do not have

s̀m (3 + 7) + (8 + 1) → (3 + 7) + 9

because no matter how inventive we are with the rules in Figure 1.4 we will not be able
to construct a derivation of the judgement (3 + 7) + (8 + 1) → (3 + 7) + 9; the reader
is invited to try.

By trying various examples readers should be able to convince themselves that if
s̀m E1 → E2 then E2 is obtained from E1 by executing the left-most occurrence of an

operator, +,×, which has both its operands already evaluated. For example we have

s̀m (3 + 4) + (5 + 6) → 7 + (5 + 6)

s̀m 3 + (4 + (5 + 6)) → (3 + (4 + 11)

s̀m (3 + (4 + 5)) + 6 → (3 + 9) + 6)

How do we use the small-step semantics to evaluate an expression, as in the previous
section? We construct derivations again and again until a numeral is obtained. For
example we have seen that s̀m (3+7)+(8+1)→ 10+(8+1) and s̀m 10+(8+1)→ 10+9.
In other words in two steps the expression (3 + 7) + (8 + 1) can be reduced to 10 + 9;

Draft: January 9, 2013 10

Semantics Trinity term 2013

this we write as s̀m (3+ 7) + (8+ 1) →2 10+ 9. More generally for any natural number
k ≥ 0 we write

E0→
k Ek

if E0 can be reduced to Ek in k steps; that is, there are intermediate expressions Ei such
that

s̀m Eo→ E1 s̀m E1→ E2 s̀m Ek−1→ Ek

This includes the case when k is 0, when Ek must be the same as E0; that is in 0
steps E0 can only reduce to itself. For example the reader should check the following
judgements, by showing that derivations can be obtained for appropriate intermediate
expressions:

(3 + (4 + 5)) + 6 →2 12 + 6

3 + (4 + (5 + 6)) →2 3 + 15

(3 + 7) + (8 + 1) →3 19

3 + (4 + (5 + 6)) →0 3 + (4 + (5 + 6))

To fully evaluate an expression we need to indefinitely apply the operations + and
× until eventually a final numeral is obtained. Let us write

E→∗ n

to mean that there is some natural number k ≥ 0 such that E →k n; in other words E
can be reduced to the numeral n in some number k steps. The reader should verify that
the following judgements are true, by instantiating the required number k:

(3 + 7) + (8 + 1) →∗ 19
(3 + 4) + (5 + 6) →∗ 18
3 + (4 + (5 + 6)) →∗ 18

So just as the big-step semantics associates a value n to an expression E, via the
judgements b̀ig E⇓n, the small-step semantics provides an alternative method for doing
so, via the slightly more complicated judgements s̀m E→∗ n.

1.4 Parallel evaluation
As we have seen, the small-step semantics prescribes a particular order in which the
operators in an expression are applied, namely left-to-right. Suppose we wish to relax
this; suppose we just want to dictate that all the operators are applied but wish to leave
the precise sequencing open. One of the roles of a formal semantics is to act as a
reference for compiler writers or implementers. Leaving the order of evaluation open
could then allow, for example, compiler writers to take advantage of technologies such
as multi-core to increase the efficiency of an implementation.

Draft: January 9, 2013 11

Semantics Trinity term 2013

(-)

E1→ch E′1
(E1 + E2)→ch (E′1 + E2)

(-)

E2→ch E′2
(E1 + E2)→ch (E1 + E′2)

(-)

(n1 + n2)→ch n3
n3 = add(n1, n1)

Figure 1.5: Parallel semantics

In Figure 1.5 we give an alternative small-step semantics, with judgements of the
form E1 →ch E2, with the subscript referring to choice. Two rules are inherited from
Figure 1.4 but the rule (-.) is replaced with the less restrictive (-). The net effect
of the presence of the two rules (-) and (-) is that when evaluating an expression
of the form E1 + E2 the compiler or interpreter may choose to work on either of E1 or
E2. For example we have the derivation:

(-)
8 + 1→ch 9

(-)
(3 + 7) + (8 + 1) →ch (3 + 7) + 9

Using c̀h E1→ch E2 to denote the fact that the judgement E1→ch E2 can be derived using
the rules from Figure 1.5, we therefore have

c̀h (3 + 7) + (8 + 1) →ch (3 + 7) + 9 (1.3)

in addition to

c̀h (3 + 7) + (8 + 1) →ch 10 + (8 + 1) (1.4)

Recall from the previous section that this reduction (1.4) is not possible in the
standard left-to-right semantics. On the other hand note that every application of the
rule (-.) is also an application of the more general (-). This means that any
derivation in the left-to-right semantics is also a derivation in the parallel semantics. It
follows that

s̀m E1→ E2 implies c̀h E1→ch E2 (1.5)

In other words the parallel semantics is more general than the left-to-right; it allows
all the derivations of the left-to-right semantics but in addition it allows others such as
(1.4) above.

1.5 Questions questions
We have now seen three different semantics for the simple language of expressions
Exp, and various questions arise naturally. For example, intuitively we expect every

Draft: January 9, 2013 12

Semantics Trinity term 2013

expression in Exp to have a corresponding value. In terms of the big-step semantics
we expect the following to be true:

(Q1) For every expression E in Exp there exists some numeral n such
that b̀ig E ⇓ n.

The advantage of a formal semantics is that statements such as (Q1) can be formally
proved, or indeed disproved. The predicate ⇓ between expressions and numerals is
formally defined using a set of logical rules, those in Figure 3.2, and therefore (Q1)
amounts to a mathematical statement about the mathematical object ⇓. As such it is
either mathematically true or false, which can be demonstrated using standard mathe-
matical techniques. These techniques will be seen in the next chapter.

The same property, often refered to as Normalisation, can also be asked of the
other two semantics we have seen. These amount to:

(Q2) For every expression E in Exp there exists some numeral n such
that E→∗ n.

(Q3) For every expression E in Exp there exists some numeral n such
that E→∗ch n.

Again because these are formal mathematical statements we will see how they can be
demonstrated formally.

Another property we would naturally expect of a mechanism for evaluating ex-
pressions is a form of internal consistency. It would be unfortunate if there was some
expression with multiple possible values; that is some expression E such that the first
time it is evaluated we would get E ⇓ n1 while a subsequent evaluation gives E ⇓ n2
where n2 is different than n1. The property which rules out this phenomenon is refered
to as Determinacy. For each of the three semantics this is defined as follows:

If b̀ig E ⇓ n1 and b̀ig E ⇓ n2 then n1 = n2. (Q4)

If E→∗ n1 and E→∗ n2 then n1 = n2. (Q5)

If E→∗ch n1 and E→∗ch n2 then n1 = n2. (Q6)

The combination of Normalisation and Determinacy means that each of the semantics
we have developed for Exp determines one and only one value for every expression.

There are also interesting questions involving the consistency between the different
semantics. For example it would be unfortunate if, for some some expression E, one
semantics gave 20 as the resulting value, while another gave 25. Ensuring that this can
not arise amounts to proving mutual consistency of the different semantics. Specifically
it would require proofs for the following mathematical statements:

b̀ig E ⇓ n implies E→∗ n (Q7)

E→∗ch n implies b̀ig E ⇓ n (Q8)

These, together with (1.5) above, will mean that each of the three different semantics
will associate exactly the same value with a given expression E.

Draft: January 9, 2013 13

Chapter 2

Induction, in all its forms

We start with a review of mathematical induction, a very powerful proof method for
proving properties which hold of all natural numbers. Recall that the set of natural
numbers N is infinite so we cannot simply demonstrate that the property in question
holds for each particular number. In Chapter 2.2 we then see that this proof method
can be generalised to any set of objects which share in some sense a common struc-
ture; to be more precise there must be some collection of operations, or constructors,
with which all objects in the set can be constructed. This more general proof method
is called structural induction. It is exemplified first by considering the set of binary
trees but the main application is to the language of arithmetic expressions Exp from
Chapter 1. We show how all the properties of Exp discussed in Chapter 1.5 can be
proved using structural induction.

However it turns out that in general structural induction will not be sufficiently
powerful for our purposes. In Chapter 3 we will see a language While for which
structural induction is inadequate. In particular some of the properties discussed in
Chapter 1.5 hold also for all programs in While, but to prove some of them we will
need a more powerful form of induction. This is called rule induction and is the topic
of Chapter 2.3.

2.1 Mathematical Induction
The simplest form of induction is mathematical induction, that is to say, induction over
the natural numbers N = {0, 1, 2, . . .}. The principle can be described thus:

Given a property P(−) of natural numbers, to prove that P(n) holds for all natural
numbers n ∈ N, it is enough to

(i) Base case: prove that P(0) holds, and

(ii) Inductive case: under the assumption that P(k) holds for an arbitrary natural
number k, prove that the statement P(k + 1) follows.

The Inductive case: requires you to provide a hypothetical argument; you do not prove
that the property P(k + 1) actually holds; instead you show that if for some arbitrary

14

Semantics Trinity term 2013

and unknown number k the statement P(k) were true then the property P(k + 1) would
logically follow. In (ii) P(k) is often referred to as the inductive hypothesis, abbreviated
to (IH). So it could be rephrased as

(ii) Inductive case: Assume the inductive hypothesis (IH) = P(k) for some ar-
bitrary but unknown number k. From IH show that the statement P(k + 1)
follows.

It should be clear why this principle is valid: if we can prove (i) and (ii) above, then
we know

• P(0) holds, by (i).

• Since P(0) holds, P(1) holds, by (ii).

• Since P(1) holds, P(2) holds by (ii).

• Since P(2) holds, P(3) holds by (ii).

• And so on. . .

Therefore, P(n) holds for any n, regardless of the size of n.
This conclusion can only be drawn because every natural number can be reached

by starting at zero and adding one repeatedly. The two elements of the induction can
be read as saying

• Prove that the property P is true at the place where you start, that is 0.

• Prove that the operation of adding one preserves P, that is, if P(k) is true then
P(k + 1) is true.

Since every natural number can be built by starting at zero and adding one repeatedly,
every natural number has the property P: as you build the number, P is true of every-
thing you build along the way, and it’s still true when you’ve built the number you’re
really interested in.

2.1.1 An example proof by mathematical induction
Suppose we are set the problem of proving the statement:

For every natural number n, (8n − 2n) is divisible by 6

How do we go about it ? Since it is a statement about every natural number, then it
will probably involve a proof by mathematical induction. So

(Step 1:) Identify the precise statement P(n) which needs to be proved. In this case

P(n): 8n − 2n is divisible by 6

Every proof (by induction) of a statement

For every natural number n the statement P(n) is true

Draft: January 9, 2013 15

Semantics Trinity term 2013

always has the same structure. There are always two cases, the Base case, and the
Inductive step. The next step is

(Step 2:) State the Base case, namely P(0). In this example this amounts to

(80 − 20) is divisible by 6

Then

(Step 3:) Use your ingenuity, and repertoire of mathematical facts, to prove the Base
case. This is usually relatively straightforward. In this example the proof
revolves around the two arithmetic facts, m0 is 1 for any m, and 0 is divisible
by any number, thus divisible by 6.

Having finished the Base case we move on to

(Step 4:) State the Inductive step. This is always the hypothetical inference:

For an arbitrary natural number k, P(k) implies P(k + 1)

Even though at this stage you might not know how you are going to prove this, it is
best to unravel the statement. In other words write down

(a) what the inductive hypothesis actually is

(b) what we are required to deduce from it.

In this example we have

(a) We are assuming

(8k − 2k) is divisible by 6 (IH)

(b) We are required to deduce from (IH) that

(8(k+1) − 2(k+1)) is divisible by 6 required statement

The next step is

(Step 5:) Show how the required statement follows from the inductive hypothesis (IH).

This is always non-trivial, and requires ingenuity. Normally it means massaging the
required statement until somewhere inside it you can see the possibility for applying
the inductive hypothesis (IH). For this example see the proof given in Figure 2.1.

Having completed the Base case and the Inductive step, the overall proof is now
completed. Finally

(Step 6:) Write up the proof in a coherent manner, showing it’s structure, as we have
just outlined it.

For an example write-up of a proof see Figure 2.1. The layout used there can be used
for any proof by mathematical induction.

Draft: January 9, 2013 16

Semantics Trinity term 2013

Let P(n) be the statement (8n − 2n) is divisible by 6.
We prove by mathematical induction that the statement P(n) is true, for every natural number n.

Proof: There are two cases.

Base case: We prove P(0) is true; namely (80 − 20) is divisible by 6.
The proof is by direct calculations, using the fact that m0 = 1 for any number m. So

80 − 20 = 1 − 1
= 0

By the definition of division, 0 is divisible by 6; it follows that (80 − 20) is divisible by 6. This is the end of the
Base case.

Inductive case: We have to prove that for an arbitrary natural number k, the hypothetical statement P(k) implies
P(k + 1) is true. To this end suppose P(k) is true. So we are assuming, for some arbitrary k,

(8k − 2k) is divisible by 6 (IH)

Using this inductive hypothesis (IH) we have to show P(k + 1) follows, namely

8(k+1) − 2(k+1) is divisible by 6 (2.1)

First let us manipulate the expression in question:

8(k+1) − 2(k+1) = 8 ∗ 8k − 2(k+1)

= 8 ∗ (8k − 2k) + 8 ∗ 2k − 2(k+1)

= 8 ∗ (8k − 2k) + 8 ∗ 2k − 2 ∗ 2k

= 8 ∗ (8k − 2k) + 6 ∗ 2k

So we only have to prove 8 ∗ (8k − 2k) + 6 ∗ 2k is divisible by 6. But

(a) by the inductive hypothesis (IH), we know that (8k − 2k) is divisible by 6, and therefore 8 ∗ (8k − 2k) is also
divisible by 6

(b) by definition, 6 ∗ 2k is divisible by 6

(c) by properties of addition, if A is divisible by 6, and B is divisible by 6 then so is A + B.

Applying (a), (b), and (c) we can conclude 8∗(8k−2k)+6∗2k is divisible by 6. In other words we have established
(2.1), from the Inductive Hypothesis (IH).
This is the end of the inductive case.

It follows by mathematical induction, that P(n) is true for every natural number n.

Figure 2.1: A proof by mathematical induction

Draft: January 9, 2013 17

Semantics Trinity term 2013

2.1.2 Defining functions using mathematical induction
As well as using induction to prove properties of natural numbers, we can use it to
define functions which operate on natural numbers. Just as proof by induction proves
a property P(n) by considering the case of zero and the case of adding one to a number
known to satisfy P, so definition of a function f by induction works by giving the
definition of f (0) directly, and building the value of f (k + 1) out of the supposed value
of f (k).

Restating this principle, to define a function f : N→ X it is sufficient to

(i) Base case: define f (0) to be some element in the range X

(ii) Inductive step: show how to calculate f (k + 1) in terms of f (k), possibly using
additional operations.

Mathematical induction ensures us that if (i) and (ii) are carried out then we are assured
that f is indeed defined for every n ∈ N.

For example suppose we want to define the function sum : N → N where sum(n)
returns the sum of the first n natural numbers 0 + 1 + 2 + . . . + n. Using induction the
function is fully defined by the two clauses

(i) Base case: sum(0) = 0

(ii) Inductive step: sum(k + 1) = sum(k) + k

In (i) we have identified directly sum(0) while in (ii) we have shown how to calculate
sum(k + 1) on the assumption that we already know sum(k); specifically this says that
to obtain the value of sum(k+1) you add the number k to the supposed value of sum(k).

There is actually a well-known formula for calculating the sum of the first k num-
bers, namely k(k+1)

2 ; and mathematical induction can be used to prove this assertion.

Exercise 1 Use mathematical induction to prove that sum(n) =
n(n+1)

2 for every n ∈ N.
�

As another example of the use of mathematical induction let us reconsider the informal
notation E→n F we have used for executing the small-step semantics of the language
Exp. We can now formally define these relations as follows:

(i) Base case: E→0 F whenever F is the same as E.

(ii) Inductive step: E→(k+1) F whenever there is some expression G such that s̀m E→
G and G→k F.

In (i) we have explicitly defined the relation→0 while in (ii) we have shown how→(k+1)

is determined by→k. Therefore mathematical induction ensures us that the relation→n

is formally defined for every n ∈ N.
With this formal definition we can now prove various properties of this evaluation

semantics. Here is an example:

Lemma 1 For every E ∈ Exp, if E→k F then E + G→k F + G for any expression G.

Draft: January 9, 2013 18

Semantics Trinity term 2013

Proof: We use mathematical induction on the property

P(k): E1→
k E2 implies E1 + G→k E2 + G for any E1, E2

We need to show

(a) Base case: P(0) is true. This is obvious. For if E1 →
0 E2 then by case (i), the

base case, in the definition of →n, E2 must actually be E1 and therefore trivially
E1 + G→0 E2 + G.

(b) Inductive step: We assume the inductive hypothesis (IH) which says that P(k) is
true. From this we have to show that P(k + 1) follows.

To this end suppose E1→
(k+1) E2; we have to show that this implies E1 + G→(k+1)

E2 + G. From the definition of →(k+1) we know that there is some expression E3
such that s̀m E1→E3 and E3→

k E2. Now (IH) can be applied to the latter to obtain
E3 + G→k E2 + G. Also an application of the rule (-) added on to the derivation
of the judgement E1→ E3 gives a derivation of E1 + G→ E3 + G; that is we obtain

s̀m E1 + G→ E3 + G. Combining these two, using case (ii), the inductive step, in
the definition of→n, we get the required E1 + G→(k+1) E2 + G. �

Exercise 2 Prove that if E→k1 F and F→k2 G then E→(k1+k2) G. �

Exercise 3 Use mathematical induction on k to prove that, for any numeral n, E→k F
implies E + n→k n + F. �

2.1.3 Strong mathematical induction
There is an alternative way to formulate mathematical induction, called strong or com-
plete mathematical induction, which is sometimes more convenient to use. It also have
the advantage that it does not differentiate between the Base case and the Inductive
step.

Suppose P(−) is a property of the natural numbers. In order to prove that P(n) is
true for every n ∈ N strong mathematical induction says that it is sufficient to do the
following:

(i) Assume the inductive hypothesis (IH) which says that P(k) is true for all k strictly
less then some arbitrary number m

(ii) Show that P(m) follows from (IH).

Despite its name this form of induction is actually no stronger than ordinary mathemat-
ical induction; but it is sometimes more convenient to use. The standard example is the
proof of the following statement:

Every number greater than 1 is either a prime number or is the product
p1 × p2 × . . . × pk of prime numbers pi, for 1 < i ≤ k.

Recall that n is a prime number if it is greater than 1 and it can not be broken down into
composite numbers; that is if n = n1 × n2 then n1 is either 1 or n.

To prove this statement we prove the property

Draft: January 9, 2013 19

Semantics Trinity term 2013

P(n): n is either less then or equal to 1, a prime, or else it is the product
of primes

by strong mathematical induction. So our inductive hypothesis (IH) is that P(k) is true
for every k strictly less than some number m. We have to show that P(m) follows from
this (IH).

The proof proceeds by a case analysis on m:

(i) m is prime: in this case P(m) is immediate.

(ii) m is less than or equal to 1: again the result is trivial.

(iii) The only remaining possibility is that m is greater than 1 and is not a prime; this
means that m can be written as m1 × m2 where m1 is neither 1 nor m itself. This
implies that both m1 and m2 are strictly less than m and therefore (IH) comes
into play; we can now assume that both P(m1) and P(m2) hold. Since neither
can be 1 this means that both are either prime or else a product of primes. Since
m = m1 × m2 it follows that m is a product of primes. So in this case P(m) also
holds.

2.2 Structural induction
Here we see a more general form of induction which applies any set of objects which
can be viewed structurally; that is there is some collection of constructors which can be
used to build all objects in the set. To explain this idea more fully we first give a struc-
tural account of the natural numbers, in such a way that mathematical induction, from
the previous section, becomes an instance of the more general structural induction.

We then give another example of induction, on binary trees, based on their structure.
We apply the same technique to the language of expressions Exp, giving us a powerful
method of deriving their properties. In the final section we apply this technique to prove
interesting properties of the big-step and small-step semantics of Exp, for example
those discussed in Section 1.5.

2.2.1 A Structural View of mathematical induction
We said in the last section that mathematical induction is a valid principle because every
natural number can be built using 0 as a starting point and the operation of adding one
as a method of building new numbers from old. We can turn mathematical induction
into a form of structural induction by viewing numbers as expressions generated by the
following BNF grammar:

N ∈ Nat ::= zero | succ(N)

Here succ, short for successor, should be thought of as the operation of adding one to
its argument. Therefore the expression zero represents the number 0, and 3 is repre-
sented by the expression

succ(succ(succ(zero)))

Draft: January 9, 2013 20

Semantics Trinity term 2013

With this view, it really is the case that a number in Nat is built by starting from zero
and repeatedly applying succ. Numbers, when thought of like this, are finite, structured
objects. The structure can be described as follows.

A number is either zero, which is indecomposable, or has the form succ(N),
where N is another number.

The principle of induction now says that to prove P(N) for all numbers N ∈ Nat, it
suffices to do two things:

(i) Base case: Prove that P(zero) holds.

(ii) Inductive step: The IH (inductive hypothesis) is that P(K) holds for some arbi-
trary number K. Prove that P(succ(K)) follows from this assumption.

Note that when trying to prove P(succ(K)), the inductive hypothesis tells us that we
may assume P holds of the substructure of succ(K), that is, we may assume P(K)
holds.

This principle is identical to that given on page 14, but written in a structural way.
The reason it is valid is the same as before:

• P(zero) holds,

• so P(succ(zero)) holds,

• so P(succ(succ(zero))) holds,

• so P(succ(succ(succ(zero)))) holds,

• and so on. . .

That is to say, we have shown that every way of building a number preserves the prop-
erty P, and that P is true of the basic building block zero; so P is true of every number
in Nat.

This structural viewpoint, and the associated form of induction, called structural
induction, is widely applicable.

2.2.2 Structural induction for binary trees
Binary trees are a commonly used data structure. Roughly, a binary tree is either a
single leaf node, or a branch node which has two sub-trees. That is, trees take the form
of a leaf or has the form

T1 T2

where T1 and T2 are the two sub-trees of the bigger tree. For example,

Draft: January 9, 2013 21

Semantics Trinity term 2013

is one such composite tree, in which both of the sub-trees are leaf nodes. Another
example is

Here the left sub-tree is a single leaf node, while the right sub-tree is the simple com-
posite tree from above.

To make it easier to talk about trees like this, let us introduce a BNF-like syntax
for them, similar to that for natural numbers Nat, thereby viewing binary trees as a
data-structure.

T ∈ bTree ::= leaf | Branch(T,T)

Note the similarity with Nat. There is one seed or starting point; for Nat this is zero
while for binary trees it is leaf. There is also one generator in each case; for Nat this
is the unary operator succ(−) which takes one argument, while for binary trees it is the
binary operator Branch(−,−) requiring two arguments.

In this syntax the four trees above are written as

leaf, Branch(T1,T2), Branch(leaf, leaf), Branch(leaf,Branch(leaf, leaf))

respectively.
The principle of structural induction over binary trees states that to prove a property

P(T) for all trees T ∈ bTree, it is sufficient to do the following two things:

(i) Base case: Prove that P(leaf) holds.

(ii) Inductive step: The inductive hypothesis IH is that P(T1) and P(T2) hold for
some arbitrary trees T1 and T2. Then from this assumption prove that P(Branch(T1,T2))
follows.

Again, in the inductive step, we require a hypothetical argument; from the assumption
that the property holds of T1 and T2 we need to prove that as a logical consequence the
property also holds of the tree Branch(T1,T2). The conclusion from the Base case and
this hypothetical argument is that P(T) is indeed true for every tree T in bTree.

To put this another way: to do a proof by induction on the structure of trees, con-
sider all possible cases of what a tree can look like. The grammar above tells us that
there are two cases.

• The case of leaf. Prove that P(leaf) holds directly.

• The case of Branch(T1,T2). In this case, the inductive hypothesis says that we
may assume that P(T1) and P(T2) hold while we are trying to prove P(Branch(T1,T2)).
We do not know anything else about T1 and T2: they could be any size or shape,
as long as they are binary trees which satisfy P.

Draft: January 9, 2013 22

Semantics Trinity term 2013

Using exactly the same principle as before, we may give definitions of functions
which take binary trees as their arguments, by induction on the structure of the trees.
This applies any function with the type f : bTree → X, that is the domain of f must
be the set of binary trees but the range can be any set.

As you can probably guess by now, to define a function f which takes an arbitrary
binary tree, we must

(i) Base case: Define f (leaf) directly.

(ii) Inductive step: Define f (Branch(T1,T2)) in terms of f (T1) and f (T2), and pos-
sibly some other mathematical constructs.

This definition looks like a recursive function definition in a functional programming
language, with the proviso that we may make recursive calls only to f (T1) and f (T2).
That is to say, the recursive calls must be with the immediate sub-trees of the tree in
which we are interested.

Another way to think of such a function definition is that it says how to build up
the value of f (T), in the same way that the tree T is built up, for any tree T in bTree.
Since any tree can be built starting with some leafs and putting things together using
Branch(−,−), a definition like this lets us calculate f (T) bit-by-bit.

Here is an example of a pair of inductive definitions over trees, and a proof of a
relationship between them. We first define the function leaves : bTree → N which
returns the number of leaf leafs in a tree.

(i) Base case: leaves(leaf) = 1.

(ii) Inductive step: leaves(Branch(T1,T2)) = leaves(T1) + leaves(T2).

We now define another function, branches : bTree → N, which counts the number of
Branch(−,−) nodes in a tree.

(i) Base case: branches(leaf) = 0.

(ii) Inductive step: branches(Branch(T1,T2)) = branches(T1)+branches(T2)+1.

Let us illustrate how branches works. Consider the tree

Branch(Branch(leaf, leaf), leaf)

which diagrammatically looks like

This clearly has two branch nodes. Let us see how the function branches calculates
this by building this tree up from the bottom.

First, the left sub-tree is built by taking two leafs and putting them together with
a Branch(−,−). So the left sub-tree has the structure Branch(T1,T2) where both T1

Draft: January 9, 2013 23

Semantics Trinity term 2013

and T2 are the trivial tree leaf. The definition of the function branches says that the
value on a leaf is 0, while the value of a Branch(−,−) is obtained by adding together
the values for the things you’re putting together, and adding one. Therefore, the value
of branches on the left sub-tree is 0 + 0 + 1 = 1.

The value of branches on the right sub-tree is 0, since this tree is just a leaf. The
whole tree is built by putting the left and right sub-trees together with a Branch(−,−).
The definition of branches again tells us to add together the values for each sub-tree,
and add one. Therefore, the overall value is 1 + 0 + 1 = 2, as we expected.

The purpose of this discussion is of course just to show you how the value of an
inductively defined function on a tree is built from the bottom up, in the same way
the tree is built. You can also see it as going from the top down, in the usual way of
thinking about recursively defined functions: to calculate f (Branch(T1,T2)), we break
the tree down into its two sub-trees, calculate f (T1) and f (T2) with a recursive call, and
combine the values of those in some way to get the final value.

Let us now prove, by induction on the structure of trees, that for any tree T ,

leaves(T) = branches(T) + 1.

Let us refer to this property as P(T). To show that P(T) is true of all binary trees
T ∈ bTree the principle of induction says that we must do two things.

(i) Base case: Prove that P(leaf) is true; that is leaves(leaf) = branches(leaf) + 1.

(ii) Inductive step: The inductive hypothesis (IH) is that P(T1) and P(T2) are both
true, for some arbitrary T1 and T2. So we can assume (IH), namely that

leaves(T1) = branches(T1) + 1 and leaves(T2) = branches(T2) + 1

From this assumption we have to derive P(Branch(T1,T2)), namely that

leaves(Branch(T1,T2)) = branches(Branch(T1,T2)) + 1. (2.2)

Proof:

(i) Base case: By definition, leaves(leaf) = 1 = 1 + branches(leaf) as required,
since branches(leaf) = 0.

(ii) Inductive step: By definition, leaves(Branch(T1,T2)) = leaves(T1)+leaves(T2).
By the inductive hypothesis (IH),

leaves(T1) = branches(T1) + 1 and leaves(T2) = branches(T2) + 1

We therefore have

leaves(Branch(T1,T2)) = branches(T1) + 1 + branches(T2) + 1
= (branches(T1) + branches(T2) + 1) + 1 (2.3)

By definition of the function branches,

branches(Branch(T1,T2)) = branches(T1) + branches(T2) + 1

Plugging this into (2.3) we get the required (2.2) above. �

Draft: January 9, 2013 24

Semantics Trinity term 2013

2.2.3 Structural Induction over the language of expressions
The syntax of our illustrative language Exp of expressions also gives a collection of
structured, finite, but arbitrarily large objects over which induction may be used.

Recall from Figure 1.1 in Chapter 1 that the syntax of Exp is given by:

E ∈ Exp ::= n ∈ Nums | E + E | E × E.

Here n ranges over the numerals 0, 1, 2 and so on. This means that in this language
there are in fact an infinite number of seeds or starting points. Contrast this with the
structured sets discussed in the two previous sections. For Nat in Chapter 2.2.1 there is
a unique seed zero and for bTree in Chapter 2.2.2 we also have the unique seed leaf.
But for Exp we have two generators, (− + −) and (− × −), both binary, while for Nat
there is only one (unary) generator succ(−). bTree also has only one generator, but
this is binary, Branch(−,−).

The principle of induction for expressions reflects these differences as follows. If
P is a property of expressions, then to prove that P(E) holds for any E, it suffices to do
the following:

(i) Base cases: Prove that P(n) holds for every numeral n.

(ii) Inductive step: Here the inductive hypothesis (IH) is that P(E1) and P(E2) hold
for some arbitrary E1 and E2. Assuming (IH) we must show that both P(E1 + E2)
and P(E1 × E2) follow.

The conclusion will then be that P(E) is true of every expression E ∈ Exp.
Again, this induction principle can be seen as a case-analysis: expressions come in

two forms:

• numerals, which cannot be decomposed, so we have to prove P(n) directly for
each of them; and

• composite expressions E1 + E2 and E1 × E2, which can be decomposed into sub-
expressions E1 and E2. In this case, induction says that we may assume P(E1)
and P(E2) when trying to prove P(E1 + E2) and P(E1 × E2).

Let us now see how this form of structural induction will enable us to prove interesting
properties of the big- and small-step semantics for this language of expressions.

As our first example proof we show the big-step semantics always returns at least
one answer for every expression.

Proposition 2 (Normalisation) For every expression E ∈ Exp, there is some number
m such that b̀ig E ⇓ m.

Proof: By structural induction on E. The property P(E) of expressions we wish to
prove is

P(E): there is some number m such that b̀ig E ⇓ m

The principle of structural induction says that to prove P(E) holds for every expression
E we are required to establish two facts:

Draft: January 9, 2013 25

Semantics Trinity term 2013

(i) Base cases: P(n) holds for every numeral n.

For any numeral n, the axiom of the big-step semantics, (-), gives a trivial
derivation of n ⇓ n. So in this case the required number m is n.

(ii) Inductive step: The inductive hypothesis (IH) is that P(E1) and P(E2) hold for
some arbitrary E1 and E2. From IH we are required to prove both P(E1 + E2) and
P(E1 × E2) follow. We shall consider the case of E1 + E2 in detail; the case of
E1 × E2 is similar.

We must show P(E1 + E2), namely that for some number m it is the case that
b̀ig (E1 + E2) ⇓ m.

By the inductive hypothesis (IH) , we may assume that there are numbers m1 and
m2 for which the judgements E1 ⇓ m1 and E2 ⇓ m2 are derivable. We can combine
these derivations, followed by an application of the rule (-),

E1 ⇓ m1 E2 ⇓ m2

E1 + E2 ⇓ m3

where m3 = add(m1,m2). to obtain a derivation of E1 + E2 ⇓ m3. So m3 is the
required witness number which makes P(E1 + E2) true. �

Proving that the big-step semantics returns exactly one result is only slightly more
complicated.

Proposition 3 (Determinacy) For every expression E ∈ Exp, if b̀ig E ⇓m1 and b̀ig E ⇓
m2 then m1 = m2.

Proof: Again we use structural over E, this time with the property

P(E): whenever b̀ig E ⇓ m1 and b̀ig E ⇓ m2 it follows that m1 = m2.

From the principle of structural induction in order to establish P(E) we need to establish
two facts:

(i) Base cases: P(n) holds for every numeral n.

So suppose n ⇓ m1 and n ⇓ m2 both have derivations. The only possible rule which
can be used to derive these judgements is (-). From this observation it follows
immediately that m1 and m2 must be the same number, namely n.

(ii) Inductive step: The induction hypothesis is that both P(E1) and P(E2) are true.
We need to prove that the statements P(E1 +E2) and P(E1×E2) both follow. Here
we consider the case (E1 × E2) in detail; the other case is very similar. But we
have to assume that the big-step semantics has some rule to handle multiplicative
expressions. Let us assume the obvious one:

(-)

E1 ⇓ n1 E2 ⇓ n2

E1 × E2 ⇓ n3
n3 = mult(n1, n2)

Draft: January 9, 2013 26

Semantics Trinity term 2013

where mult(−,−) is the binary mathematical operation which takes two numbers
and returns the result of multiplying them together.

So suppose (E1×E2)⇓m1 and (E1×E2)⇓m2 are both derivable for some numbers
m1,m2. We need to show that these two numbers coincide. Again we look at how
these judgements can be derived; there are only three possible rules, (-) and
(-) and (-). So it should be apparent that the derivation of (E1×E2)⇓m1 has to
involve an application of the last rule. In fact we must have that m1 = mult(k1, k2)
where

(a) E1 ⇓ k1

(b) E2 ⇓ k2

But the same analysis can be applied to the derivation of (E1 + E2) ⇓ m2; we must
have m2 = mult(n1, n2) where

(c) E1 ⇓ n1

(d) E2 ⇓ n2

Now property P(E1) applied to (a) and (c) ensures that k1 = n1 while P(E2)
applied to (b) and (d) gives k2 = n2. Combining these we get the required m1 = m2
follows. �

Determinacy and Normalisation combined ensures that the big-step semantics is
coherent; it associates precisely one result with every expression in Exp. We could
address the same issues for the the small-step semantics but instead let us consider the
relationship between the two forms of semantics.

Proposition 4 For every E ∈ Exp, b̀ig E ⇓ m implies E→∗ m.

Proof: Again we use structural induction on E. Recall that we are using E →∗ n as a
shorthand for the statement for some number k, E→k n. Consequently the property of
E we have to prove is

P(E): if b̀ig E ⇓ m then there is some number k such that E→k m

To prove this, structural induction requires us to establish the following:

(i) Base cases: P(n) for every numeral n. This is straightforward. Suppose n ⇓ m
is derivable. This must mean that m = n as this judgement can only be derived
using the rule (-). So the required number of steps k is 0 since n→0 n.

(ii) Inductive step: Here we assume the inductive hypothesis IH that both P(E1) and
P(E2) are true. From this assumption we are required to prove that both P(E1+E2)
follow. As usual we only consider one case, say P(E1 + E2).

So suppose (E1 + E2) ⇓ m is derivable; we have to find some number k such that
(E1 + E2)→k m.

Draft: January 9, 2013 27

Semantics Trinity term 2013

There is a derivation of the judgement (E1 + E2) ⇓ m using the rules (-), (-)

and (-). Whatever form this derivation takes it must end with an application
of (-), of the form

E1 ⇓ m1 E2 ⇓ m2

(E1 + E2) ⇓ m

where m = add(m1,m2).

But P(E1) now tells us that there is some k1 such that E1 →
k1 m1, and we have

already seen in Lemma 1 that this in turn means that (E1 + E2)→k1 (m1 + E2) has
a derivation.

Similarly from P(E2) and E2 ⇓ m2 we know that there is some k2 such that E2→
k2

m2. From this it is possible to show, using the same technique as that used in the
proof of Lemma 1, that (m1 + E2)→k2 (m1 + m2); in fact this is posed as Exercise 8
at the end of this chapter.

Putting both of these executions together we get

(E1 + E2)→k1 (m1 + E2)→k2 (m1 + m2)→ m

with the final step being an application of the rule (-). In other words the
required k is (k1 + k2 + 1). �

The converse of Proposition 4, namely E →∗ m implies b̀ig E ⇓ m, is not so easy
to prove. Because of the asymmetry in the premise E →∗ m it is hard to come up
with a suitable application of structural induction. The proof we propose it somewhat
indirect, relying on the following result, which we prove for the choice variation of the
small-step semantics from Chapter 1.4 which allows the arguments to an operator to be
evaluated independently:

Lemma 5 Suppose c̀h E→ch F. Then b̀ig F ⇓ m implies b̀ig E ⇓ m.

Proof: Can you do this? Structural induction on E should be used. �

Proposition 6 For every E ∈ Exp, E→∗ch m implies b̀ig E ⇓ m.

Proof: Recall that E→∗ch m actually means that E→k
ch m for some number k. Formally

we have not actually defined the relations E→k
ch F; however they are defined in exactly

the same manner as the relations E→k F, in Section 2.1.2. So we prove the following
statement to be true using mathematical induction:

P(k) for any expression E, E→k
ch m implies b̀ig E ⇓ m

from which the result follows.
The statement P(k) will be true for every number k if we can prove the following

two facts:

(i) Base case: P(0). This case is easy; if E→0
chm then E must actually be the numeral

m and one application of the rule (-) then gives the required derivation of E ⇓m.

Draft: January 9, 2013 28

Semantics Trinity term 2013

(ii) Inductive step: Here we may assume the inductive hypothesis P(k) to be true.
From this assumption we are required to show that P(k + 1) follows.

To this end suppose E→(k+1)
ch m; from this we need to show how to derive derive

E ⇓ m. By definition we know that s̀m E →ch F for some expression F such that
F →k

ch m. But we can apply the inductive hypothesis P(k) to F and we get that
b̀ig F ⇓ m. The required conclusion E ⇓ m now follows by the previous lemma,

Lemma 5. �

To end this section let us briefly consider how our various formulations of the se-
mantics of the language Exp can be used to associated a meaning to all expressions in
the language.

Because of the results established in the previous section we now know that the
various semantics we have proposed for the language Exp are consistent, and moreover
they agree with each other; the following statements are equivalent:

(1) b̀ig E ⇓ n

(2) E→∗ n

(3) E→∗ch n

Proposition 4 ensures that (1) implies (2) while Proposition 6 means that (3) implies
(1). The intermediate (2) implies (3) is obvious since the inductive rules which define
the left-to-right small-step semantics are included in those which define→ch.

Consequently it does not actually matter which we use when proposing the defini-
tive reference semantics to the language Exp. Let the meaning function

[[−]] : Exp→ Nums

be defined by letting [[E]] = n, where E ⇓ n. Proposition 2 (Normalisation) and Propo-
sition 3 (Determinacy) ensure that this is indeed a well-defined function. Moreover
we know that the meaning of expressions can be corrected calculated by interpreters
which use a left-to-right strategy, and by interpreters which use alternative strategies
for deciding the order in which the arguments to an operator should be evaluated.

2.3 Rule Induction
The language of expressions Exp is particularly straightforward, in the sense that the
behaviour of E is completely determined by the behaviour of its components. For this
reason structural induction is sufficiently powerful to establish the various properties
of the different semantics we have given to Exp. This will rarely be the case for more
complicated languages, particularly those with recursive or inductive control features.
Here we give a brief glimpse of a much more powerful and widely applicable proof
technique.

The essential idea is to ignore any structure that objects might have and instead
concentrate on the size of the derivations of judgements. For example consider the

Draft: January 9, 2013 29

Semantics Trinity term 2013

following simple pair of rules, defining an infix binary relation D between numbers in
N:

()

n D 0
n ∈ N

()

n D m

n D (m + n)

Here are two example derivations:

()
7 D 0

()
7 D 7

()
7 D 14

()
7 D 21

()
2 D 0

()
2 D 2

()
2 D 4

From these derivations we know that both the judgements 7 D 21 and 2 D 4 are deriv-
able from the rules. But we also know that the size of the derivation of the former is
strictly less than that of the latter. So the idea of rule induction is to prove properties
of judgements by mathematical induction on the size of their derivations. This makes
sense because every derived judgement has some size associated with it; this could be
taken to be the size of its smallest proof.

Consequently if we want to prove a statement of the form

n D m implies P(n,m) (2.4)

or in other words the property P(n,m) is true whenever n D m, then we can use mathe-
matical induction on the size of the derivation of n D m. In fact it is more convenient
to use strong mathematical induction, as explained in Section 2.1.3.

Let us consider an example. Suppose we want to show:

n D m implies m = n × k for some natural number k (2.5)

Incidently this just means that the two rules () and () correctly capture the notion
of division. Let P(n,m) denote the property m = n × k for some natural number k.
We prove that n D m implies P(n,m) by strong mathematical induction on the size of
derivation of the judgement n D m from the rules () and ().

So suppose we have a derivation of n D m. Using strong mathematical induction
means that we have as an inductive hypothesis (IH) that

P(k1, k2) is true for any k1, k2 for which there is a derivation of k1 D k2
whose size is less than the size of this derivation of n D m.

We have to show that P(n,m) is a logical consequence of (IH).
So we know that n D m can be derived using the axioms () and (). What does

this derivation look like? There are two possibilities:

(a) It is simply an application of the axiom (). In other words it looks like

()
n D m

Draft: January 9, 2013 30

Semantics Trinity term 2013

But this can only be the case if m is actually 0, and P(n, 0) is trivially true, the
required witness k in (2.5) above being 0.

(b) The only other possibility is that the derivation has the form
. . .

. . .
n D m1

()
n D (m1 + n)

where m = m1 + n. But this means that the judgement n D m1 also has a derivation
from the rules. And moreover the size of this derivation is strictly less than that of
n D m. So (IH) applies and we know that there is some k1 such that m1 = n × k1.
Now P(n,m) is an immediate consequence as m = n× (k1 +1); the required witness
k in in (2.5) above is k1 + 1.

We have explained rule induction by example, but the general principle should be
apparent. We ignore the components of the judgements involved and instead carry out
(strong) mathematical induction of the size of their derivations.

There is another, more abstract, view of rule induction. We can view () and () as
properties of binary relations over numbers, which are enjoyed by the relation we are
trying to define (− D −). Formally the rules are used to define the relation by saying:

k1 D k2 exactly when there is a derivation of the judgement k1 D k2 using
the two rules () and ()

An equivalent way to express this is to say that

D is the least relation which satisfies the rules () and ().

By this we mean

(i) The relation D satisfies the rules; that is

(a) n D 0 for every number n
(b) if n D m for any numbers n,m then n D (m + n) is also true

(ii) if X is any other relation that satisfies the rules (a) and (b) then D is a subset of
X; that is n D m implies n X m.

It is property (ii) which gives the principle of rule induction. For let P(n,m) be
some arbitrary property of numbers; this can also be viewed as a binary relation over
numbers. So in order to establish the general statement (2.4) above it is sufficient to
show that P(n,m) satisfies the two properties () (). This means we have to prove

(a) P(n, 0) for every number n

(b) If P(n,m) for any numbers n,m then P(n,m + n) is also true.

If we now re-examine the actual proof given of the specific instance (2.5) above, we see
that it consists precisely in establishing these two properties; although it was expressed
within a framework of strong mathematical induction.

So we have seen two slightly different formulations of rule induction for a set of
inductive rules. To prove that a property P follows from the rules we can

Draft: January 9, 2013 31

Semantics Trinity term 2013

(I) either use strong mathematical induction over the size of derivations

(II) or prove the property P satisfies the inductive rules.

Many people find the former easier to apply.

2.3.1 What is going on?
Here we offer a slightly more detailed account of the formal basis for rule induction,
inductively defined sets.

Let U be a universe of discourse. An axiom is of an element of U, while a rule
takes the form

h1, h2, . . . hn

c
where n > 0 and

• each hi an element of T , called hypotheses

• c an element of T , called the conclusion.

Then a deductive systemD over the universeU consists of a set of axioms and rules.

Example Rule induction was explained in the previous section using the universe
Ud consisting of all judgements of the form n D m, where n,m ∈ N. The associated
deductive systemDd consists of

(i) Axioms: all judgements of the form n D 0 where n ∈ N

(ii) Rules: these are all statements of the form

n D m
n D (m + n)

where both n,m are from N.

On the other hand the small-step semantics for Exp has as a universeUs all judge-
ments of the form E→F, where E, F are expressions from Exp. The deductive system
Dsis given by

(i) Axioms: all judgements of the form

• (n1 + n2)→ n3 where n3 = add(n1, n1)

• or (n1 × n2)→ n3 where n3 = mult(n1, n1)

(ii) Rules: these take one of the following forms:

•
E1→ E′1

(E1 + E2)→ (E′1 + E2)

for all expressions E1, E2, E′1, E
′
2

Draft: January 9, 2013 32

Semantics Trinity term 2013

• or
E→ E′

(n + E)→ (n + E′)
for all expressions E, E′ and all numerals n �

The purpose of a deductive system D is to determine a subset of the universe of dis-
course U, namely all those which can be derived from the axioms by applying the
rules. Let us denote this set byD(U). So for example:

• The judgements 3 D 0, 4 D 12 and 7 D 42 are all in Dd(Ud); they can all be
derived using the axioms and inference rule inDd.

• None of the judgements 0 D 6, 2 D 7, 3 D 13 are in Dd(Ud), although they all
are in the universeUd.

• The judgement (3 + 4) + (2 × 8)→ 3 + (2 × 8) is in inDs(Us).

• The judgement (3 + 4) + (2 × 8)→ (3 + 4) + 16 is not inDs(Us).

To explain the defining characteristics of the setD(U) we need one more concept.
Let X be a subset of the universeU. Then X is said to satisfy the deductive system D
if

(a) for every axiom a inD, a ∈ X

(b) for every rule h1,h2,...hn
c in D, if each hypothesis hi is in X then so is the conclusion

c.

Theorem 7 (Inductive sets)

(1) The setD(U) satisfies the deductive systemD.

(2) If X is any set which satisfies the deductive systemD thenD(U) ⊆ X.

Proof: These are relatively straightforward; (1) follows immediately from the defini-
tion of D(U). To prove (2) suppose that u ∈ D(U); a proof by strong mathematical
induction on the length of the proof of u in the inductive systemDwill show that u ∈ X.

�

It is property (2) of inductive sets which provides the justification for rule induction.

2.4 The reflexive transitive closure of a relation
Up to now we have been using E →∗ F as a shorthand notation for E→k F for some
number k ≥ 0, where the evaluation relations →k have been defined by mathematical
induction on k ∈ N in Chapter 2.1.2. Here, as an exercise in the use of rule induction,
we show how E →∗ F, the reflexive transitive closure of E → F, can be given an
independent definition, and how this informal shorthand notation can be justified.

Recall that a relation (binary) R with domain D and range E is simply a subset of
pairs from D × E; if D is the same set as E we say that R is a (binary) relation over D.
We use (at least) two different notations to describe elements from a relation:

Draft: January 9, 2013 33

Semantics Trinity term 2013

a

b

dc

p

f

n

e

Representing a relation S ⊆ D × D where

• D is the set {a, b, c, d, f , n, p}

• and S consists of the pairs

(a, b)
(b, p)
(c, p), (c, b), (c, n)
(e, c), (e, f)
(f , d), (f , f)
(n, e)

Figure 2.2: Representing a relation

• x R y

• (x, y) ∈ R

Both say that R relates x to y. Sometimes relations can be described diagrammatically;
an example is given in Figure 2.2. Thus we have e S f is true while e S p is false.

We now formalise the notion of the reflexive transitive closure of an arbitrary re-
lation R ⊆ D × D. This will be denoted by R∗ and if the relation R is represented
diagrammatically as in Figure 2.2 then R∗ has an intuitive explanation: x R y precisely
when there is a path through the graph starting from x and ending with y. So, as we
will see

• e S∗ p n S∗ d e S∗ b will all be true

• e S∗ a f S∗ n p S∗ b will all be false.

The formal definition of reflexive transitive closure is given in Figure 2.3. If R is
a relation over the set D then its reflexive transitive closure R∗ ⊆ D × D is the least

Draft: January 9, 2013 34

Semantics Trinity term 2013

(-I)

x R∗ x
x ∈ D

(-T)

x R y y R∗ z

x R∗ z

Figure 2.3: Inductive definition of reflexive transitive closure of R ⊆ D × D

relation which satisfies the two rules (-I) and (-T). In other words d1 R
∗d2 if and

only if we can find a derivation of d1 R
∗d2 using these two rules. In Figure 4.3 we give

a derivation of the judgement
n S∗ d

where S is the relation defined in Figure 2.2. Similar judgements can also be given for
e S∗ p, c S∗ d and e S∗ b.

Exercise 4 Is it always true that x R∗ y whenever x R y? �

n S e

e S f

f S d
(-I)

d S∗ d

f S∗ d
(-T)

e S∗ d
(-T)

n S∗ d

Figure 2.4: An example derivation: n S∗ d

2.4.1 Alternative formulation
For R ⊆ D×D, instead of defining the single relation R∗ we define a series of relations
Rn, one for every natural number n in N. The definition is by mathematical induction,
of course, and is only a minor generalisation of the definition of the relations E →k F
in Section 2.1.2. First the base case: we define the relation R0. Then the inductive
step: under the hypothesis that we have already defined the relation Rk we show how
to define the relation R(k+1). Mathematical induction ensures that we will have then
defined the relation Rn for every natural number n in N.

(i) Base case: x R0 y whenever x = y and x ∈ D

(ii) Inductive step: Assume we have already defined the relation Rk. Then the rela-
tion R(k+1) by letting

x R(k+1) z

Draft: January 9, 2013 35

Semantics Trinity term 2013

whenever we can find some element y ∈ D such that

x R y and y Rk z (2.6)

So for example, refering to Figure 2.2,

a S2 p e S3 p c S7 d and e S10 d

We now formally show that there is there is an intimate connection between the
reflexive transitive closure of a relation, R∗ , and the family of relations Rn , n in N.

Proposition 8 For every n in N, if x Rn z then x R∗ z, for every x, z in the domain of
R.

Proof: This has the form of a statement which is amenable to proof by mathematical
induction. So let P(n) be the statement

if x Rn z then x R∗ z for every x, z in the domain of R.

To prove that P(n) is true for every n in N we have to establish two facts:

(i) Base case: We prove P(0) is true, namely x R0 z implies x R∗ z.

To this end suppose x R0 z. By definition of R0 this can only be true if x = z
and x is in the domain of of R, say the set D. Then applying the rule (-I) from
Figure 2.3 we can conclude that x R∗ z.
This is the end of the base case.

(ii) Inductive step: Here we have to prove for an arbitrary k in N the hypothetical
statement

P(k + 1) follows from the inductive hypothesis P(k).

So we are assuming

for any x, z in the domain of R , if x Rk z then x R∗ z (IH)

Using this inductive hypothesis (IH) we have to show that P(k+1) follows, namely
x R(k+1) z implies x R∗ z.

So suppose x R(k+1) z is true.

Exercise 5 Finish this proof. �

The converse to this proposition is also true. The proof uses Rule induction on the
inductive definition of R∗; let us use the form (II) of rule induction, as explained on
page 31. This involves casting the converse in terms of a proposition P which satisfies
the inductive rules which define R∗.

Proposition 9 If x R∗ z, then there is some number n in N such that x Rn z.

Draft: January 9, 2013 36

Semantics Trinity term 2013

Proof: By Rule induction on the judgement x R∗ z. Recall from Figure 2.3 that this
relation is defined using two rules; therefore the associated rule induction will have two
cases associated with it.

Let P(x, z) be the statement

there is some n in N such that x Rn z.

To prove x R∗ z implies P(x, z) we have to establish that the relation P satisfies the two
rules from Figure 2.3 which define R∗.

(a) The rule (-I). Here we have to prove that P(x, x) for every x in the domain of R.

This is straightforward since if x is in the domain of R then by the definition of R0

we know x R0 x; so in this case the required n in N is 0.

(b) The rule (-T). Here we have to prove the hypothetical statement

x R y and P(y, z) implies P(x, z)

To this end suppose P(y, z) is true. So we are assuming that

there is some natural number k such that y Rk z (IH)

Using this hypothesis, and the fact that x R y, we have to show that P(x, z) follows;
we have to show there is some n in N such that x Rn z.

The required n in N is easy to calculate. From (2.6) above in the definition of Rn

we can calculate that x R(k+1) z, because x R y and according to (IH) y Rk z; so the
required n is (k + 1). �

Exercise 6 Give an alternative proof of Proposition 9 using the form (I) of rule induc-
tion.

Exercise 7 Show, using rule induction on the definition of R, that if x R∗ y and y R z
then x R∗ z also holds.

Then use this property to show that x R∗ y and y R∗ z implies x R∗ z. �

Exercise 8 Use rule induction to prove E→∗ F implies n + E→∗ n + F. �

Draft: January 9, 2013 37

Chapter 3

The While programming
language

The abstract syntax of the imperative programming language While is given in Fig-
ure 3.1. The main syntactic category is Com, for commands, and anybody with even
minimal exposure to programming should be familiar with the constructs. Here is a
sample command, or program:

2 := 1;
3 := 0;
while ¬ (1 = 2) do
2 := 2 + 1;
3 := 3 + 1

which subsequently we we refer to as C1.

Exercise 9 What do you think the command or program C1 does? �

According to Figure 3.1 the language of commands contains five constructs, which we
explain intuitively in turn.

• Assignments: These take the form := E where E is an arithmetic expression
and is the name of some location or variable in memory. So the language
assumes some given set of locations names L, and we use , , . . . for typical
elements. The syntax of commands also depends on a separate language for
acceptable arithmetic expressions, E. An example abstract syntax for these is
also given in Figure 3.1. This in turn uses n as a meta-variable to range over the
set of numerals, Nums, used in Chapter 1. Apart from these, we are allowed to
use one operator + to construct arithmetic expressions, although others can be
easily added such as the multiplication operator × used in Chapters 1.

Thus a typical example of an assignment command is

 := + 2

Intuitively this refers to the command:

38

Semantics Trinity term 2013

C ∈ Com ::= := E | if B then C else C

| C ; C | while B do C | skip

B ∈ Bool ::= true | false | E = E | B&B | ¬ B

E ∈ Arith ::= ∈ Locs | n ∈ Nums | (E + E)

Figure 3.1: The language While

– look up the current value, a numeral, in the location

– replace the current value stored in location by 2 plus the value found in

• Sequencing, C1 ; C2. The intention here should be obvious. First execute the
command C1; when this is finished execute the command C2.

• Test, if B thenC1 elseC2. Intuitively this evaluates the Boolean expression B;
if the resulting value is true then the command C1 is executed, if it is false C2
is executed. Figure 3.1 contains a separate BNF for the collection of Boolean ex-
pressions. This contains the two constants true, false and two operators, nega-
tion represented by ¬ B and binary conjunction B&B; obviously other Boolean
operators can be defined in terms of these two. We also all E1 = E2 as a Boolean
expression, where E1 and E2 can be any arithmetic expressions.

• Repetition, while B doC. This is one of the many repetitive control commands
found in common sequential programming languages. The intuition here is that
the command C is to be repeatedly executed until the Boolean guard B can be
evaluated to false. Note that this is a somewhat dangerous command; if B
always evaluates to tt then this command will execute forever, repeating the
command C indefinitely.

• Skip, skip. This construct, the final one, is a bit of a non-entity in that its
execution has no effect. We could do without this construct in the language but
it will prove to be very useful in Chapter 3.2.

We should point out that in Figure 3.1, as usual, we are describing abstract syntax
rather than concrete syntax. If we want to describe a particular command in a linear
manner we must ensure that its abstract structure is apparent, by using brackets or as
in the example command on page 38 using indentation and white space. For more
discussion on this point see page 4 of Chapter 1.

Draft: January 9, 2013 39

Semantics Trinity term 2013

3.1 Big-step semantics
In order to design a big-step semantics for the language While we need to have an
intuition about what we expect commands to do. Following the informal descriptions
of the individual constructs above, intuitively we expect a command to execute a se-
quence of assignments, with the precise sequence depending on the flow of control in
the construct, dictated by the evaluation of Boolean expressions in the test and while
components. An individual assignment is a transformation on the memory of a machine
on which the command is expected to run. A command is expected to start executing
relative to an initial memory state, effect a series of updates to the memory, and then
halt. Therefore we can describe the overall effect of a command as a transformation
from an initial memory state to the terminal memory state. Our big-step semantics will
prescribe the allowed transformations, without prescribing in any great detail how the
the transformations are to be performed.

Before proceeding further we need to introduce some notation for memory states.
An individual memory location holds a value, which for While, is a numeral. Therefore
a snapshot of the memory, which we refer to as a state, is captured completely by a
function from locations to numerals:

s : L→ Nums

We use standard mathematical notation for states, with s() denoting the numeral cur-
rently held in location ; the collection of all possible states is denoted by States; that
is States is a convenient notation for the function space L → Nums. In addition
we need one new piece of notation for modifying states. For any state s, the new state
s[7→ n] returns the same numeral as the old state s for every location different from
, and for it returns the numeral n. Formally s[7→ n] is defined by:

s[7→ n]() =

{
n if =

s() otherwise

The big-step semantics for While has as judgements

〈C, si〉 ⇓ st

where C is a command from Com and si, st are states. The intention is that this judge-
ment captures the following informal intuition:

when the command C is run to completion from the initial state si it even-
tually terminates in the state st.

However the behaviour of commands depends on the behaviour of arithmetic and
Boolean expressions, and therefore we can only formalise their behaviour if we already
have a formal account of how expressions work. Consider, for example, the commands

• if = then 1 := + 1 else 2 := + (+ 2)

• while ¬ (1 = 2) do 2 := 2 + 1 ; 3 := 3 + 1

Draft: January 9, 2013 40

Semantics Trinity term 2013

(-)

〈n, s〉 ⇓ n

(-)

〈, s〉 ⇓ s()

(-)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 + E2, s〉 ⇓ n3

n3 = add(n1, n2)

Figure 3.2: Big-step semantics of arithmetic expressions

In order to explain these commands we need to know how to evaluate expressions such
as + (+ 2) and Boolean expressions ¬ (1 = 2). Consequently before embarking
on commands we have to first give a formal semantics to the auxiliary languages Arith
and Bool, from Figure 3.1. We have already considered arithmetic expressions in detail
in the Chapter 1. However here they are a little more complicated as their meaning in
general depends on the current state of the command which uses them; we can not know
the value of the expression + (+ 2) without knowing what numerals are currently
stored in the locations and .

So we first give a big-step semantics for both arithmetic expressions and Booleans.
The judgements here are or the form

〈E, s〉 ⇓ n 〈B, s〉 ⇓ bv

meaning

the value of expression E relative to the state s is the numeral n

and

the (Boolean) value of the Boolean expression B relative to the state s is
bv.

Note that the form of these judgements imply that we do not expect the evaluation of
expressions to affect the state. We are also using bv as a meta-variable which ranges
over the possible Boolean values; that is in these judgements bv stands for either the
value true or the value false.

The rules for arithmetic expressions are given in Figure 3.2, and are a simple exten-
sion of the big-step semantics from Chapter 1; there is one new rule, (-), for looking
up the current value in a location.

Exercise 10 Design a big-step semantics for Boolean expressions. Intuitively every
Boolean expression should evaluate to either true or false. So the rules should be
such that for every Boolean expression B and every state s, we can derive either the
judgement 〈B, s〉 ⇓ true or 〈B, s〉 ⇓ false. However to express the evaluation rules it

Draft: January 9, 2013 41

Semantics Trinity term 2013

(-)

〈skip, s〉 ⇓ s

(-)

〈E, s〉 ⇓ n

〈 := E, s〉 ⇓ s[7→ n]

(-)

〈C1, s〉 ⇓ s1
〈C2, s1〉 ⇓ s′

〈C1 ; C2, s〉 ⇓ s′

(-.)

〈B, s〉 ⇓ true
〈C1, s〉 ⇓ s′

〈if B then C1 else C2, s〉 ⇓ s′

(-.)

〈B, s〉 ⇓ false
〈C2, s〉 ⇓ s′

〈if B then C1 else C2, s〉 ⇓ s′

(-.)

〈B, s〉 ⇓ false

〈while B do C, s〉 ⇓ s

(-.)

〈B, s〉 ⇓ true
〈C, s〉 ⇓ s1
〈while B do C, s1〉 ⇓ s′

〈while B do C, s〉 ⇓ s′

Figure 3.3: Big-step semantics of While

is best to introduce a meta-variable bv to represent either of these Boolean values, as
suggested above. Recall that the rules in Figure 3.2 are facilitated by the use of n as a
meta-variable for the numerals 0, 1, �

These auxiliary judgements are now used in Figure 3.3, containing the defining
rules for commands. Basically for each syntactic construct in Com we have a particular
rule, or pair of rules, which directly formalises the intuition given above, on pages 38
and 39. We look briefly at each of these in turn.

The command := E is a single statement. Intuitively from start state s

• we calculate the current value of the expression E, 〈E, s〉 ⇓ n.

• The final state is then obtained by updating the value in location , s[7→ n]

This is the import of the rule (-).
To calculate the final state which results from executing C1 ; C2 in initial state s

• we first execute C1 in initial state s, to obtain the intermediate state s1.

Draft: January 9, 2013 42

Semantics Trinity term 2013

• We then execute C2 from this intermediate state s1 to obtain the final state s′.
This is then the final state after the successful execution of the composed com-
mand C1 ; C2 from the initial state s.

The rule (-) is a direct formalisation of this informal description.
The effect of executing the test if B then C1 else C2 from the state s depends on

the value of the Boolean expression B relative to s; so it is convenient to express the
semantics using two sub-rules, one which can be applied when 〈B, s〉 ⇓ true and the
other when 〈B, s〉 ⇓ false. These, (-.) and (-.), formalise the obvious intuition that
executing if B then C1 else C2 amount to the execution of C1 when B is true and C2
when it is false.

The only non-trivial command to consider is C = while B do C; the intuitive
explanation given on page 39 is not very precise, refering as it does to the repeated
execution of C until We can be a little more precise by considering two sub-cases:

(i) If the Boolean guard B evaluates to false immediately in the initial state s, then
the body C is never executed and the command immediately terminates with the
same the final state, s. This is formalised in the rule (-.).

(ii) If B evaluates to true we expect the body C to be executed at least once.

Firming up on exactly what should happen in case (ii) we expect C to successfully
terminate in an intermediate state, say s1 and then for the execution of C to be repeated,
but this time from the newly obtained state s1. This is formalised in the rule (-.).
Note that this inference rule is qualitatively different than all the other rules we have
seen so far. Up to now, the behaviour of a compound command is determined entirely
by the behaviour of its individual components. For example, according to the rule
(-), the behaviour of the compound C1 ; C2 is determined completely by that of
individual components, C1 and C2; similarly if B then C1 else C2 is explained in
the rules (-.) and (-.) purely in terms of the behaviour of the individual components
B, C1 and C2. However this is not the case with the rule (-.); to conclude the
judgement 〈while B do C, s〉 ⇓ s′ we have a premise which still involves the command
while B do C itself.

The final possible command is the ineffective skip; its execution has no effect on
the state and therefore we have the axiom 〈skip, s〉 ⇓ s in Rule (-).

Let us now look at a sample derivation in the logical system determined by these
rules. Consider the command C1 given on page 38. In order to set out the derivation
we use the following abbreviations:

C11 for 2 := 1 ; 3 := 0
C12 for 2 := 2 + 1 ; 3 := 3 + 1

B for ¬ (1 = 2)
W for while ¬ (1 = 2) do C12

So the command C1 can be alternatively described by C11 ; W. We also use the notation
smnk to denote a state of the memory in which the location 1 contains the numeral m,

Draft: January 9, 2013 43

Semantics Trinity term 2013

Su
b-

pr
oo

f
A

:

..
.

〈B
,s

33
2〉
⇓
f
a
l
s
e

(
-

.

)
〈W
,s

33
2〉
⇓

s 3
32

(
-

)

〈
2

:=
 2

+
1
,s

32
1〉
⇓

s 3
31

(
-

)

〈
3

:=
 3

+
1
,s

33
1〉
⇓

s 3
32

(
-

)

〈C
12
,s

32
1〉
⇓

s 3
32

..
.

〈B
,s

32
1〉
⇓
t
r
u
e

(
-

.

)
〈W
,s

32
1〉
⇓

s 3
22

Su
b-

pr
oo

f
B

:

(
-

)

〈
2

:=
 2

+
1
,s

31
0〉
⇓

s 3
20

(
-

)

〈
3

:=
 3

+
1
,s

32
0〉
⇓

s 3
21

(
-

)

〈C
12
,s

31
0〉
⇓

s 3
21

(
-

)

〈
2

:=
1
,s

37
7〉
⇓

s 3
17

(
-

)

〈
3

:=
0
,s

31
7〉
⇓

s 3
10

(
-

)

〈C
11
,s

37
7〉
⇓

s 3
10

A
(

-

.

)
〈W
,s

32
1〉
⇓

s 3
22

..
.

〈B
,s

31
0〉
⇓
t
r
u
e

B
(

-

)

〈C
12
,s

31
0〉
⇓

s 3
21

(
-

.

)
〈W
,s

31
0〉
⇓

s 3
32

(
-

)

〈C
1,

s 3
77
〉
⇓

s 3
32

Fi
gu

re
3.

4:
A

n
ex

am
pl

e
de

riv
at

io
n

Draft: January 9, 2013 44

Semantics Trinity term 2013

2 contains n and 3 contains k; these are the only locations used by the command C1.
With these abbreviations a formal derivation of the judgement

〈C1, s377〉 ⇓ s322

is given in Figure 3.4. So if a compiler is to agree with our formal semantics it must
ensure that if C1 is executed from the initial state s377 it must eventually terminate with
s322 as the final state.

In the sequel, generalising the notation introduced in page 8 of Chapter 1.2, we
write

b̀ig 〈C, si〉 ⇓ st

to mean that we can derive the judgement 〈C, si〉 ⇓ st using the rules in Figure 3.3.
Of course in such a derivation we would also expect to use the rules in Figure 3.2 to
construct derivations for arithmetical expressions occurring in the command C; and we
would also need rules for Boolean expressions.

Intuitively we expect there to be commands in the language While which loop, or
continue executing indefinitely. Let us see how this is reflected in the big-step seman-
tics. Consider the command

while (¬ = 0) do := + 1 (3.1)

which we denote by LP and let s be any state such that s() > 0. Our intuition says
that executing LP from the initial state s would lead to non-termination. So it would be
unfortunate if we could derive the judgement

b̀ig 〈LP, s〉 ⇓ st (3.2)

for some state st; this would contradict our intuition as this judgement is supposed to
capture the idea that command LP, executed from the initial state s eventually termi-
nates, with terminal state st.

So how do we know that (3.2) is not true for any state st ? We can prove it by
contradiction. Suppose a judgement 〈LP, s〉 ⇓ s′ could be derived for some state s′ and
some state s such that s() > 0. In fact there might be many such derivations. We zero
in on one of these supposed derivations, one which is at least as short as any other such
derivation. So suppose the one we choose is a derivation of the judgement 〈LP, s1〉 ⇓ s2
for a some particular states s1, s2 such that s1() > 0, and suppose its derivation uses k
applications of the rules in Figure 3.3. What this means that if there is any derivation
of any other judgement of the form 〈LP, s〉 ⇓ s′, where s() > 0 then that derivation
must use at least k rules, and possibly more.

So now let us examine the derivation of the 〈LP, s1〉⇓s2, with the shortest derivation,
using k rules. How can this judgement be derived? Because 〈¬ = 0, s1〉 ⇓ true every
derivation, including this shortest one, must involve an application of the rule (-.).
Specifically the structure of the shortest derivation must take the form

〈¬ = 0, s1〉 ⇓ true 〈 := + 1, s1〉 ⇓ s3

.

〈LP, s3〉 ⇓ s1
(-.)

〈LP, s〉 ⇓ s1

Draft: January 9, 2013 45

Semantics Trinity term 2013

Now because b̀ig 〈 := +1, s1〉⇓s3 we know that s3() > 0. And in the above derivation
the actually provides a derivation for the judgement 〈LP, s3〉 ⇓ s1. Moreover
the size of this derivation is actually smaller than that of 〈LP, s1〉 ⇓ s2; it uses strictly
fewer than k rules. But this is a contradiction since we assumed that this derivation of
〈LP, s1〉 ⇓ s2 was shortest, with k rules.

Exercise 11 Consider the alternative command LP1 = while true do skip. Prove
that for any arbitrary state s we can not derive a judgement of the form 〈LP1, s〉 ⇓ st

for any state st. �

3.2 Small-step semantics
The big-step semantics of the previous section merely specifies what the final state
should be when a command is executed from some initial state; it does not put con-
straints on how the execution from the initial state to the final state is to proceed. Intu-
itively executing a command involves performing some sequence of basic operations,
determined by the control flow in the command; the basic operations consist of

(a) updates to the memory, effected by assignment statements

(b) evaluation of Boolean guards, in test or while statements; the results of these eval-
uations determine the flow of control.

In this section we give a more detailed semantics for While which describes, at least
indirectly, this sequence of basic operations which should be performed in order to
execute a given command.

The judgements in the small-step semantics for While take the form

〈C, s〉 → 〈C′, s′〉

meaning:

one step in the execution of the command C relative to the state s changes
the state to s′ and leaves the residual command C′ to be executed.

Thus the transition from C to C′ is achieved by performing the first basic operation,
while the execution of the residual C′ will determine the remaining basic operations
necessary to execute C to completion.

This semantics also depends on how both arithmetic expressions and Booleans are
evaluated. But since we are mainly interested in commands our inference rules, in Fig-
ure 3.5, are given relative to the big-step semantics of both arithmetics and Booleans.
The degenerate command skip plays a fundamental role in these rules. Intuitively
the execution of skip relative to any initial state s involves the execution of no basic
operations, and thus we would expect that the judgement

〈skip, s〉 → 〈C, s′〉

can not be derived for any 〈C, s′〉; indeed the pair 〈skip, s〉 will indicate a terminal
configuration, which requires no further execution.

Draft: January 9, 2013 46

Semantics Trinity term 2013

(-)

〈E, s〉 ⇓ n

〈 := E, s〉 → 〈skip, s[7→ n]〉

(-.)

〈C1, s〉 → 〈C′1, s
′〉

〈C1 ; C2, s〉 → 〈C′1 ; C2, s′〉

(-.)

〈skip ; C2, s〉 → 〈C2, s〉

(-.)

〈B, s〉 ⇓ true

〈if B then C1 else C2, s〉 → 〈C1, s〉

(-.)

〈B, s〉 ⇓ false

〈if B then C1 else C2, s〉 → 〈C2, s〉

(-.)

〈B, s〉 ⇓ false

〈while B do C, s〉 → 〈skip, s〉

(-.)

〈B, s〉 ⇓ true

〈while B do C, s〉 → 〈C ; while B do C, s〉

Figure 3.5: Small-step semantics of While

Let us now briefly look at the rules in Figure 3.5. Executing the command := E
involves performing one basic operation, namely updating the numeral stored in to
be whatever the expression E evaluates to. Thus in (-)

• E is evaluated to the numeral n, that is 〈E, s〉 ⇓ n

• the state s changes to the modified store s[7→ n]

• the residual, what remains to be executed is skip; that is the command has now
been completely executed.

The execution of a statement of the form C1 ;C1 is a little more complicated. There
are two cases, depending on whether or not there are any basic operations left to be
performed in C1. If there is then there will be a judgement of the form 〈C1, s〉→〈C′1, s

′〉,
representing the execution of this basic operation. Then the execution of the first step
of the compound command C1 ;C2 is given by the judgement 〈C1 ;C2, s〉→〈C′1 ;C2, s′〉;
this is the import of (-.).

However there may be nothing left to execute in C1; although it is not yet appar-
ent, this will only be the case if C1 is precisely the degenerate command skip. This

Draft: January 9, 2013 47

Semantics Trinity term 2013

accounts for the second rule (-.), which formalises the idea that if C1 has termi-
nated, the execution of C2 should be started. Note that this rule introduces steps into
the small-step semantics which do not correspond directly to either (a) or (b) above;
these may be considered to be housekeeping steps.

Example Consider the execution of the compound command 2 := 1 ; 3 := 0 from
the initial state s377; here we are using the notation for states introduced in the pre-
vious section. Using the two rules we have discussed already, we have the following
derivation:

(-)
〈2 := 1, s377〉 → 〈skip, s317〉

(-.)
〈2 := 1 ; 3 := 0, s377〉 → 〈skip ; 3 := 0, s317〉

Therefore we can write s̀m 〈2 := 1 ; 3 := 0, s377〉 → 〈skip ; 3 := 0, s317〉 which
represents the first step in the execution of the compound command, from initial state
s377, an update of the memory.

We also have s̀m 〈skip;3 := 0, s317〉→〈3 := 0, s317〉, a housekeeping step, because
of the derivation

(-.)
〈skip ; 3 := 0, s317〉 → 〈3 := 0, s317〉

We also have s̀m 〈3 := 0, s317〉 → 〈skip, s310〉 because of the derivation consisting of
one application of the rule (-.)

(-.)
〈3 := 0, s317〉 → 〈skip, s310〉

Again this step represents an update to the memory. Recall that we view configurations
such as 〈skip, s310〉 to be terminal, as nothing more needs to be executed. Thus we
have executed the command 2 := 1 ; 3 := 0 to completion in three steps, from the
start state s377. Borrowing the notation from Chapter 1 we have

〈2 := 1 ; 3 := 0, s377〉 →
3 〈skip, s310〉 �

Returning to our discussion of the inference rules in Figure 3.5, the treatment of the
test, if B thenC1 elseC2 is captured in the two rules (-.) and (-.). Depending
on what Boolean value B evaluates to, we move on to execute either C1 or C2. Note
that with these rules, the evaluation of the Boolean together with the resulting decision
is taken to be a single execution step.

Finally we come to the interesting construct while B doC. The behaviour depends
naturally on the value of the guard B in the current state. Intuitively if this evaluates to
false then the body C is not to be executed; in short the computation is over. This is
formalised in (-.). On the other hand if it is true, 〈B, s〉 ⇓ true, then we expect the
body to executed at least once, and the execution of the overall command to be repeated.
This is conveniently expressed in (-.) by the transition from while B do C to the
command C ; while B do C.

Draft: January 9, 2013 48

Semantics Trinity term 2013

Let us revisit the command C1 on page 38, which re-using the abbreviations on
page 43 is equivalently expressed as C11 ; W. Let us use the small-step semantics to
execute it from the initial state s377.

Intuitively the first step in this computation is the update of the location 2 with the
numeral 1, and this is borne out formally by the following derivation:

(-)
〈2 := 1, s377〉 → 〈skip, s317〉

(-.)
〈C11, s377〉 → 〈(skip ; 3 := 1), s317〉

(-.)
〈C1, s377〉 → 〈(skip ; 3 := 0) ; W, s317〉

So we have the judgement s̀m 〈C1, s377〉 → 〈(skip ; 3 := 0) ; W, s317〉.
The second step is the rather uninteresting housekeeping move

s̀m 〈(skip ; 3 := 0) ; W, s317〉 → 〈3 := 0 ; W, s317〉

justified by the formal derivation

(-.)
〈skip ; 3 := 0, s377〉 → 〈3 := 1, s317〉

(-.)
〈(skip ; 3 := 0) ; W, s317〉 → 〈3 := 0 ; W, s317〉

We leave the reader to check the derivation of the two subsequent moves

s̀m 〈3 := 0 ; W, s317〉 → 〈skip ; W, s311〉 s̀m 〈skip ; W, s310〉 → 〈W, s310〉

Thus in four steps we have reached the execution of the while command; using the
notation of Chapter 1 this is expressed formally as:

〈C1, s377〉 →
4 〈while ¬ (1 = 2) do C12, s310〉 (3.3)

We are not getting very far.
We have not seen the rules for evaluating Boolean expressions, but let us assume

that that they are such that 〈¬ (1 = 2), s310〉 ⇓ true can be derived. Then the next step

s̀m 〈while ¬ (1 = 2) do C12, s310〉 → 〈C12 ; W, s310〉 (3.4)

is justified by an application of the rule (-.), in the nearly trivial derivation:

〈¬ (1 = 2), s310〉 ⇓ true
(-.)

〈while ¬ (1 = 2) do C12, s310〉 → 〈C12 ; W, s310〉

The command C12 consisting of two assignments is now executed, taking four steps

s̀m 〈C12 ; W, s310〉 →
4 〈while ¬ (1 = 2) do C12, s321〉 (3.5)

and we are back to executing the while command once more; but note the state has
changed.

Draft: January 9, 2013 49

Semantics Trinity term 2013

Another round of five derivations gives

〈while ¬ (1 = 2) do C12, s321〉 →
5 〈while ¬ (1 = 2) do C12, s332〉 (3.6)

Now, since presumably 〈¬ (1 = 2), s332〉 ⇓ false is also derivable, and therefore a
near trivial derivation using the rule (-.) justifies the final step

s̀m 〈while ¬ (1 = 2) do C12, s322〉 → 〈skip, s332〉 (3.7)

Combining all the judgements (3.3), (3.4), (3.5), (3.6) and (3.7) we have the com-
plete execution

〈C1, s377〉 →
15 〈skip, s322〉

To end this section let us revisit the non-terminating command LP = while ¬ =

0 do := + 1 discussed on page 45 of Chapter 3.1. Again let s be any state satisfying
s() > 0. Assuming 〈¬ = 0, s〉 ⇓ true is derivable, an application of the rule (-.)

will justify the judgement

s̀m 〈LP, s〉 → 〈(:= + 1) ; LP, s〉

We then have

s̀m 〈(:= + 1) ; LP, s〉 → 〈(skip ; LP, s1〉 and s̀m 〈skip ; LP, s1〉 → 〈LP, s1〉

where s1 is some state which also satisfies s1() > 0. In other words,

〈LP, s〉 →3 〈LP, s1〉

In three steps we are back where we started.
So in the small-step semantics non-termination is manifest by computation se-

quences which go on indefinitely. In our particular case:

〈LP, s〉 →3 〈LP, s1〉 →
3 〈LP, s2〉 →

3 →3 〈LP, sk〉 →
3 . . .

where s() > 0 and si() > 0 for every i.

Exercise 12 Give a small-step semantics to arithmetic and Boolean expressions. �

Exercise 13 Use your small-step semantics of arithmetics and Boolean expressions to
rewrite the semantics of commands in Figure 3.5, so that no big-step semantics is used.

�

Draft: January 9, 2013 50

Semantics Trinity term 2013

3.3 Properties
In this section we review the two semantics we have given for the language While in the
previous two sections, Chapter 3.1 and Chapter 3.2. In particular we are interested in
the relationship between them, and ensuring that they are self-consistent. Section 2.2.3
serves as a model for the development, and most of the mathematical arguments we
used already appear there. However in places we have to use a more complicated form
of induction, rule induction, in place of structural induction. But for the moment let us
describe structural induction as it applies to commands in While. From the BNF defi-
nition in Figure 3.1 we see that there are five methods for constructing commands from
Com. There are two kinds of seeds or starting points, and three kinds of constructors:

• Base cases:

– the constant skip is a command

– For every location name and arithmetic expression E, := E is a com-
mand.

• Inductive steps:

– If C1 and C2 are commands, then so is C1 ; C2.

– If C1 and C2 are commands then if B thenC1 elseC2 is also a command,
for every Boolean expression B.

– If C is a command, then so is while B do C, again for every Boolean
expression B.

So suppose we wish to prove that some property P(C) is true for every command C ∈
Com. Structural induction will ensure that this will be true provided we prove five
separate properties:

• Base cases:

– Prove, in some way or another, that P(skip) is true.

– Prove that P(:= E) is true for every location name and arithmetic ex-
pression E.

• Inductive steps:

– Under the assumption that both P(C1) and P(C2) are true, for some arbitrary
pair of commands C1, C2 prove that P(C1 ; C2) follows.

– Similarly, under the same two assumptions P(C1) and P(C2) prove that
P(if B then C1 else C2 is a consequence, for every Boolean expression
B.

– Finally, assuming that P(C) is true for some arbitrary command C, prove
that P(while B do C) follows as a logical consequence, again for every
Boolean expression B.

Draft: January 9, 2013 51

Semantics Trinity term 2013

So these kinds of proofs will be long, with much detail. But normally the details will be
fairly mundane and the entire process is open to automatic or semi-automatic software
assistance.

But note that in general properties of commands will depend on related properties
of the auxiliary arithmetic and Boolean expressions; this is to be expected, as the se-
mantic definitions for commands depend on an a priori semantics for arithmetic and
Boolean expressions. In particular we have used a big-step semantics for these aux-
iliary languages. Here are two particularly useful properties of these semantic defini-
tions.

Proposition 10 For every expression E ∈ Arith and every state s

(i) (Normalisation) there exists some numeral n such that b̀ig 〈E, s〉 ⇓ n

(ii) (Determinacy) if b̀ig 〈E, s〉 ⇓ n1 and b̀ig 〈E, s〉 ⇓ n2 then n1 = n2.

Proof: Both use structural induction on the language Arith ; the arguments are virtually
identical to those used in Chapter 2.2.3 for the slightly simpler language Exp.

We have not actually given a big-step semantics for Boolean expressions, but in the
sequel we will assume that one has been given and that it also enjoys these properties.

First let us look at the small-step semantics.

Exercise 14 Let C be any command different from skip. Use structural induction to
prove that for every state s there is a derivation of the judgement 〈C, s〉 → 〈C′, s′〉 for
some configuration 〈C′, s′〉. �

Proposition 11 For every command C ∈ Com and every state s, if s̀m 〈C, s〉→ 〈C1, s1〉

and s̀m 〈C, s〉 → 〈C1, s1〉 then C1 is identical to C2 and s1 is identical to s2.

Proof: By structural induction on the command C. Here the property of commands we
want to prove P(C) is:

for every state s, if s̀m 〈C, s〉→ 〈C1, s1〉 and s̀m 〈C, s〉→ 〈C1, s1〉 then C1 =

C2 and s1 = s2.

As explained above, we now have five different statements about P(−) to prove:

(i) A base case, when C is skip. Here P(skip) is vacuously true, as it is not possible
to derive any judgement of the form 〈skip, s〉 → 〈D, s′〉, for any pair 〈D, s′〉.

(ii) Another base case, when C is := E. From Proposition 10 we know that, for a
given state s, there is exactly one number n such that b̀ig 〈E, s〉 ⇓ n. Looking at
the collection of rules in Figure 3.5, there is only one possible rule to apply to
the pair 〈 := E, s〉, namely (-). Consequently, if s̀m 〈 := E, s〉 → 〈C1, s1〉 and

s̀m 〈 := E, s〉 → 〈C1, s1〉 then both C1 and C2 must be skip, and both s1 and s2
must be the same state, s[7→ n].

Draft: January 9, 2013 52

Semantics Trinity term 2013

(iii) An inductive case, when C is D1 ; D2. Here we are allowed to assume that P(D1)
and P(D2) are true, and from these we must show that P(D1 ; D2) follows. So
suppose we have a derivation of both judgements

〈D1 ; D2, s〉 → 〈C1, s1〉 and 〈D1 ; D2, s〉 → 〈C2, s2〉 (3.8)

Lets do a case analysis on the structure of D1. First suppose it is the trivial
command skip. Then, looking at the inference rules in Figure 3.5 we see that the
only possible rule which can be used to infer these judgements is (-.); note
in particular that (-.) can not be used, as an appropriate premise, 〈skip, s〉→
〈C′, s′〉 can not be found. So both of the above derivations must have exactly the
same the form, namely:

(-.)
〈skip ; D2, s〉 → 〈D2, s1〉

In other words both C1 and C2 are the same command D2, and s1 and s2 are the
same state, s.

On the other hand if D1 is different than skip, a perusal of Figure 3.5 will see that
the only possible rule which can be used is (-.). So the pair of derivations
must be of the form

. . .
?

〈D1, s〉 → 〈D′1, s
′〉

(-.)
〈D1 ; D2, s〉 → 〈D′1 ; D2, s′〉

and

. . .
??

〈D1, s〉 → 〈D′′1 , s
′′〉

(-.)
〈D1 ; D2, s〉 → 〈D′′1 ; D2, s′′〉

So that in (3.8) above, 〈C1, s1〉 has the form 〈D′1 ; D2, s′〉 and 〈C2, s2〉 the form
〈D′′1 ; D2, s′′〉.

But to construct these derivations we must already have derivations of both the
judgements 〈D1, s〉 → 〈D′1, s

′〉 and 〈D1, s〉 → 〈D′′1 , s
′′〉. Here we can now apply

the first inductive hypothesis, P(D1), to obtain D′1 is the same as D′′1 and s′ =

s′′. From this we immediately have our requirement, that 〈C1, s1〉 coincides with
〈C2, s2〉.

Note that in this case we have only used one of the inductive hypotheses, P(D1).

(iv) Another inductive case, when C is while B do D, for some Boolean expression
B and command D. Here we are allowed to assume that P(D) is true, and from
this hypothesis to demonstrate that P(C) follows. To this end suppose we have
derivations of two judgements of the form

〈while B do D, s〉 → 〈C1, s1〉 and 〈while B do D, s〉 → 〈C2, s2〉 (3.9)

using the rules from Figure 3.5. These derivations have to use the rules (-.)

and (-.), which depend on the semantics of the Boolean expression B. So to
start with let us look at its evaluation. By Proposition 10, or more correctly the
version of this proposition for Boolean expressions, there is exactly one Boolean
value bv such that the judgement 〈B, s〉 ⇓ bv can be derived. There are only two

Draft: January 9, 2013 53

Semantics Trinity term 2013

possibilities for bv, namely true and false respectively. Let us look at these
two possibilities in turn.

First suppose that 〈B, s〉 ⇓ false. In this case the rule (-.) can not be used in
the derivation of either of the derivations of the judgements in (3.9) above. In fact
both can only use (-.) and therefore both have exactly the same derivation,
namely:

〈B, s〉 ⇓ false
(-.)

〈while B do D, s〉 → 〈skip, s〉

So in this case obviously C1 and C2 are the same command, skip, and s1 and s2
are the same state, namely s.

Now we consider the case when 〈B, s〉 ⇓ true. In this case both the derivations
have to use the rule (-.). But again the derivations have to have exactly the
same form, namely:

〈B, s〉 ⇓ true
(-.)

〈while B do D, s〉 → 〈D ; while B do D, s〉

So here again we have shown that C1 and C2 in (3.9) above coincide, as they both
must be the command D ; while B do D; also s1 and s2 are the same state s.

Note that in this case we did not actually need to ever use the inductive hypothesis
P(D).

There is one more possibility for C, that it is of the form if B then C1 else C2;
this we leave to the reader to verify.

Corollary 12 For every command C ∈ Com, every state s and every natural number k,
if 〈C, s〉→k 〈C1, s1〉 and 〈C, s〉→k 〈C1, s2〉 then C1 is identical to C2 and s1 is identical
to s2.

Proof: This time we use mathematical induction on the number of steps k. The base
case, when k = 0 is trivial, while the inductive case uses the previous proposition. �

Exercise 15 Write out the proof of Corollary 12 in detail. �

Theorem 13 (Determinacy) For every command C ∈ Com, every state s, if 〈C, s〉 →∗

〈skip, s1〉 and 〈C, s〉 →∗ 〈skip, s2〉 then s1 = s2.

Proof: This is a rather simple consequence of the previous result. We know by defini-
tion that

〈C, s〉 →k1 〈skip, s1〉

〈C, s〉 →k2 〈skip, s2〉

Draft: January 9, 2013 54

Semantics Trinity term 2013

for some pair of natural numbers k1, k2. Without loss of generality let us suppose that
k1 ≤ k2. Then we actual have

〈C, s〉 →k1 〈skip, s1〉

〈C, s〉 →k1 〈C′, s′2〉 →
k3 〈skip, s2〉

for some 〈C′, s′2〉, where k3 is the difference between k1 and k2. But by Corollary 12
this must mean that the intermediate command C′ must actually be skip and the state
s′2 must coincide with s1. But we have already remarked that no small-steps can be
taken by the terminal command skip. This means that k3 must be 0, and therefore that
s2 must be the same as s′2, that is s1.

We now consider the relationship between the two forms of semantics.

Theorem 14 b̀ig 〈C, s〉 ⇓ s′ implies 〈C, s〉 →∗ 〈skip, s′〉

Proof: Similar in style to that of Proposition 4 of Chapter 2.2.3. But because of the
complicated inference rule (-.) we can not use structural induction over the com-
mand C. Instead we use rule induction, as explained in Section 2.3. Specifically,
as explained there, we use strong mathematical induction on the size of the shortest
derivation of the judgement 〈C, s〉 ⇓ s′.

Recall that 〈C, s〉 →∗ 〈skip, s′〉 is a shorthand notation for there is some natural
number k such that 〈C, s〉→k 〈skip, s′〉. So to proceed with the proof let us take this to
be the property in which we are interested. Let P(C, s, s′) denote the property:

there is some natural number k such that 〈C, s〉 →k 〈skip, s′〉.

We have to show b̀ig 〈C, s〉 ⇓ s′ implies P(C, s, s′), which we do by rule induction. So
let the inductive hypothesis (IH) be:

b̀ig 〈D, sD〉 ⇓ s′D implies P(D, sD, s′D) whenever the judgement 〈D, sD〉 ⇓ s′D
has a derivation whose size is strictly smaller than the shortest derivation
of the judgement 〈C, s〉 ⇓ s′.

We have to show that from the hypothesis (IH) we can derive b̀ig 〈C, s〉 ⇓ s′ implies
P(C, s, s′).

So suppose b̀ig 〈C, s〉 ⇓ s′, and let us look at the shortest derivation of the judgement
〈C, s〉 ⇓ s′. There are lots of possibilities for the form of this derivation. To consider
them all let us do a case analysis on the structure of C. As we know there are five
possibilities; we examine a few.

Suppose C is skip . Then P(C, s, s′) is trivially true, since 〈skip, s〉→0 〈skip, s〉.

Suppose C is the assignment command := E . Since b̀ig 〈C, s〉 ⇓ s′ we know that
the state s′ must be s[7→ n], where n is the unique number such that 〈E, s〉 ⇓ n; we
know this is unique from Proposition 10. Then it is easy to use the rule (-) from
Figure 3.5 to show that 〈C, s〉 →1 〈skip, s′〉.

Draft: January 9, 2013 55

Semantics Trinity term 2013

Next suppose that C has the structure C1 ; C2 . Then the structure of the derivation
of the judgement 〈C, s〉 ⇓ s′ must be of the form

. . .
(-?)

〈C1, s〉 ⇓ s1

. . .
(-?)

〈C2, s1〉 ⇓ s′
(-)

〈C1 ; C2, s〉 ⇓ s′
(3.10)

for some state s′. From this we know that the judgement 〈C1, s〉 ⇓ s1 has a derivation;
more importantly the size of this derivation is strictly smaller than the derivation of
〈C, s〉 we are considering. So the inductive hypothesis kicks in, and we can assume
P(C1, s, s1) is true; in other words there is some k1 such that 〈C1, s〉 →k1 〈skip, s1〉.

What can we do with this? Well it turns out that this implies 〈C1 ; C2, s〉→k 〈skip ;
C2, s1〉; this is posed as Exercise 16 below. So tagging on one application of the rule
(-.) we have 〈C1 ; C2, s〉 →(k1+1) 〈C2, s1〉.

We have not quite evaluated 〈C1;C2, s〉 to completion using the small step semantics
but we are getting there; we can now concentrate on running 〈C2, s1〉. Re-examining
the proof tree (3.10) above we see that the judgement 〈C2, s1〉 ⇓ s′ also has a derivation,
and because of its size (IH) can again be applied, to obtain P(C2, s1, s′). So we know
there is some k2 such that 〈C1, s1〉 →

k2 〈skip, s′〉.
We can now put these two sequences of steps together to obtain the required 〈C1 ;

C2, s〉 →k1+k2+1 〈skip, s′〉.

An even more complicated possibility is that C has the form while B do D for
some Boolean expression B and command D. Here we first concentrate on B. Propo-
sition 10, formulated for Booleans means that there is exactly one Boolean value bv
such that 〈B, s〉⇓bv can be derived. Suppose this is the value false. Then the required
〈C, s〉 →1 〈skip, s〉 is readily shown, using an application of (-.). The interesting
case is when this is the value true.

In this case the structure of the derivation of the judgement 〈C, s〉 must take the
form

. . .
(-?)

〈B, s〉 ⇓ true

. . .
(-?)

〈D, s〉 ⇓ s1

. . .
(-?)

〈while B do D, s1〉 ⇓ s′
(-.)

〈while B do D, s〉 ⇓ s′

(3.11)

for some state s1. This contains a lot of information. Specifically we know:

(a) The judgement 〈D, s〉 ⇓ s1 has a derivation. Moreover its size is strictly less than
that of the derivation of 〈C, s〉 ⇓ s′, and therefore we can apply (IH) above to obtain
P(D, s, s1). That is 〈D, s〉 →k1 〈skip, s1〉 for some k1.

(b) The judgement 〈while B do D, s1〉 ⇓ s′ also has a judgement, to which (IH) also
applies. So we know 〈while B do D, s1〉 →

k2 〈skip, s〉 for some k2.1

1This is where rule induction is essential. With structural induction we would not be able to make this
step in the proof.

Draft: January 9, 2013 56

Semantics Trinity term 2013

We can now combine these two sequences, again using Exercise 16 below, to obtain
the required 〈while B do D, s〉 →k 〈skip, s′〉 for k = k1 + k2 + 2:

〈while B do D, s〉 → 〈D ; while B do D, s〉

→k1 〈skip ; while B do D, s1〉

→ 〈while B do D, s1〉

→k2 〈skip, s1〉

There is one more possibility for the structure of C, namely if B then C1 else C2 .
We leave this to the reader. �

Exercise 16 Use mathematical induction to show that 〈C1, s〉→k 〈C′1, s
′〉 implies 〈C1 ;

C2, s〉 →k 〈C′1 ; C2, s′〉. �

This theorem shows that the result of running a command using the big-step semantics
can also be obtained using the small-step semantics. We now show that the converse is
also true. But the proof is more indirect, via an auxiliary result.

Proposition 15 Suppose s̀m 〈C, s〉→〈C′, s′〉. Then b̀ig 〈C′, s′〉⇓ st implies b̀ig 〈C, s〉⇓ st.

Proof: Similar in style to that of Lemma 5 of Chapter 2.2.1; the proof is by structural
induction on C. Let P(C) denote the property:

If s̀m 〈C, s〉 → 〈C′, s′〉, then b̀ig 〈C′, s′〉 ⇓ st implies b̀ig 〈C, s〉 ⇓ st.

We are going to prove P(C) for every command C. So suppose s̀m 〈C, s〉→ 〈C′, s′〉 and
b̀ig 〈C′, s′〉 ⇓ st. From the definition of the language, in Figure 3.1, we know that there

are five possibilities for C. But here we look at only one case, the most interesting one,
when C has the form while B do D.

In this case the argument depends on the unique Boolean value bv such that b̀ig B ⇓
bv. The easy case is when this is false. Here the small-step derivation can only use
the rule (-.), and therefore takes the form 〈C, s〉→〈skip, s〉. In other words 〈C′, s′〉
must be 〈skip, s〉. So the big-step judgement 〈skip, s〉 ⇓ st can only be infered using
the rule (-) from Figure 3.3, and so the state st must be s. But the required 〈C, s〉 ⇓ st

now follows by an application of (-.).
Now suppose b̀ig 〈B, s〉 ⇓ true. Then the judgement 〈C, s〉→ 〈C′, s′〉 must look like

〈while B do D, s〉→〈D;while B do D, s〉, that is 〈C′, s′〉must be 〈D;while B do D, s〉.
Let us know look at the derivation of the big-step judgement 〈D;while B do D, s〉⇓

st. This must be constructed using an application of the rule (-), and so we must have
a derivation of

(a) 〈D, s〉 ⇓ s1

(b) and 〈while B do D, s1〉 ⇓ st

for some intermediate state s1. But now, because we are assuming b̀ig 〈B, s〉 ⇓ true, an
application of the big-step rule (-.) appended to the derivations of (a) and (b), will
give the required derivation of the judgement 〈while B do D, s〉 ⇓ st.

Draft: January 9, 2013 57

Semantics Trinity term 2013

Exercise 17 Fill in the remaining four cases in the proof of the previous proposition.
�

Theorem 16 s̀m 〈C, s〉 →∗ 〈skip, st〉 implies b̀ig 〈C, s〉 ⇓ st. �

Proof: The previous proposition can be generalised to:

For any natural number k ≥ 0, 〈C, s〉→k 〈C′, s′〉 and b̀ig 〈C′, s′〉 ⇓ st implies
b̀ig 〈C, s〉 ⇓ st.

The proof is a straightforward argument by mathematical induction on k.
Now suppose 〈C, s〉 →∗ 〈skip, s′〉. Recall that this means there is some natural

number k such that 〈C, s〉 →k 〈skip, st〉. But we also have a trivial derivation to show
b̀ig 〈skip, st〉 ⇓ st. The required result, b̀ig 〈C, s〉 ⇓ s′ , now follows trivially from the

above generalisation.

Summing up: What have we achieved? First we have given two different semantics
to a simple language Com of imperative commands, a big-step one and a small-step
one. Moreover we have shown, in Theorem 14 and Theorem 16, that they coincide on
the behaviour they prescribe for commands. Specifically the following statements are
equivalent:

• b̀ig 〈C, s〉 ⇓ st

• 〈C, s〉 →∗ 〈skip, st〉.

Moreover we have shown that the small-step semantics is consistent in the sense of
Determinacy, Theorem 13: for every configuration 〈C, s〉 there is at most one terminal
state st such that 〈C, s〉 →∗ 〈skip, st〉. Incidently the equivalence above also ensures
that the big-step semantics is also consistent in this sense.

On page 40 we explained our intuitive understanding of commands, as transforma-
tions over states of a computer memory. A command starts from an initial state, makes
a sequence of updates to the memory, and ending up eventually with the memory in
a terminal state, hopefully. We can now formally describe this transformation, using
either of the semantic frameworks.

We use (States ⇀ States) to denote the set of partial functions from States to
States; we need to consider partial functions rather than total functions because as we
have seen commands do not necessarily terminate. Then for every command C in the
language While, we define the partial function [[C]] over states as follows:

[[C]](s) =

st, if b̀ig 〈C, s〉 ⇓ st

undefined, otherwise

Note that this is well-defined; as we have seen for every initial state s there is at most
one terminal state st such that 〈C, s〉 ⇓ st. Thus this meaning function has the following
type:

[[−]] : Com→ (States ⇀ States)

Draft: January 9, 2013 58

Semantics Trinity term 2013

B ∈ Bool ::= . . .

E ∈ Arith ::= . . .

C ∈ Com ::= := E | if B then C else C

| C ; C | skip | while B do C

| begin [D] C end

D ∈ Dec ::= loc := E

Figure 3.6: The language Whileblock, an extension to While

For example [[LP]], given in (3.1) above, is the partial function which is only defined for
states s satisfying s() = 0. If s is such a state then [[LP]](s) = s. In other words [[LP]]
is a partial identity function, whose domain is the set of states s such that s() = 0. On
the other hand [[LP1]], where LP1 is the command defined on page 46, is the totally
undefined function; it has the empty domain.

Exercise 18 Describe, using standard mathematical notation, the partial function [[C1]],
where C1 is the command given on page 38. �

3.4 Extensions to the language While
In this section we examine various extensions to the basic imperative language While,
exploring how both big-step and small-step semantic rules can be used to capture the
intended behaviour of the added constructs.

3.4.1 Local declarations
Many languages allow you to collect code into separate blocks, which may contain
internal declarations, or local parameters; for example think of methods in Java. Here
we examine a simple instance of this general programming construct.

The intuitive idea behind the command

begin [loc := E] C end

is that

• the location is local to the execution of the command C

• the initial value of for this local execution is obtained from the value of the
expression E.

Draft: January 9, 2013 59

Semantics Trinity term 2013

(-)

〈E, s〉 ⇓ v
〈C, s[7→ v]〉 ⇓ s′

〈begin [loc := E] C end, s〉 ⇓ s′[7→ s()]

Figure 3.7: Big-step rule for blocks

Let C1 be the command

 := 1 ; begin [loc := 2] := end

Then in a big-step semantics we would expect, for every state s,

〈C1, s〉 ⇓ st

for some st. In fact because of the particular command C1 the final values stored in
st(), st() do not actually depend on the initial state s. But we would expect

(i) st() = 2

(ii) st() = 1

The first expectation, (i), is because the local execution of the command := is
relative to the local declaration loc := 2. The second (ii) is because we expect the
original value of to be restated when the local execution is finished. This is important
for executing commands such as C2:

1 := 1 ; 2 := 2 ; begin [loc 1 := 7] 2 := 1 end ; := (1 + 2)

Here we would expect the judgement

〈C2, s〉 ⇓ s′t

where s′t() is 8 rather than 14. This is because, intuitively when the block terminates
we expect the value stored in the location 2 to be restored to that which it contained
prior to the block executing.

A big-step semantic rule for blocks, (-), is given in Figure 3.7. It says that the
only judgements to be made for block commands take the form

〈begin [loc := E] C end, s〉 ⇓ st

where the terminal state st has the form s′[7→ s()]; in other words the value associ-
ated with in the terminal state st is exactly the same as in the initial state s. Moreover
to calculate the terminal state st itself we must:

(i) First evaluate the expression E in the initial state, 〈E, s〉 ⇓ v.

Draft: January 9, 2013 60

Semantics Trinity term 2013

(ii) Then execute the local body C in the initial state s modified so that the value v is
associated with the identifier , 〈C, s[7→ v]〉 ⇓ s′.

(iii) The starting value associated with , namely s(), is reinstated in the final state,
st = s′[7→ s()].

Exercise 19

(1) Use this new rule, together with the existing ones for While, to find a state st such
that 〈C1, s〉 ⇓ st where the command C1 is given above. Justify your answer by
giving a formal derivation using the inference rules.

(2) Do the same for the command C2 also given above.

(3) Consider the following command C3:

 := 3 ; := 2 ; begin loc := 1;
 := ;
begin [loc := 2] := + end

 := + ; := + 1

end

What are the final values of the identifiers and after C3 has been executed? In
other words if

〈C, s〉 ⇓ st

what are the numerals st(), st() and st() ?

Answer:
st() = 3, st() = 1 and st() = 6

(4) Design a small-step semantics for this extension to Whileblock.
Note: This is not easy as it requires inventing new notation for changing and rein-
stating states. �

3.4.2 Aborting computations
Another extension to While is given in Figure 3.8. There are two additions. To
Booleans we have added the extra construct (E1 − E2). The idea here is that this can
lead to problems if the value of E2 is greater than that of E1, since the only arithmetic
values in the language are the non-negative numerals. In this case the execution in
which this evaluation is being carried out should be aborted. In order to emphasise
this idea of aborting an execution we have also added an extra command abort to the
language. An attempt to execute this command will also lead to an immediate abortion
of the execution.

This extended language contains all of the constructs of the original language While
and we would not expect our extended rules to change in any way the semantics of

Draft: January 9, 2013 61

Semantics Trinity term 2013

B ∈ Bool ::= . . .

E ∈ Arith ::= (E − E) | . . .
C ∈ Com ::= := E | if B then C else C

| C ; C | skip | while B do C

| abort

Figure 3.8: Another extension to While, called Whileabort

these commands, that is any commands which do not use abort or the troublesome
subtraction operator (E1 − E2). But in order to see intuitively what problems can arise
consider the following commands:

C1 : := 1 ; abort ; := 2
C2 : := 1 ; if (− 7) ≤ 4 then := 4 else := 3
C3 : := 3 ; while > 0 do

(:= (− 1);
abort;
 := (− 1))

C4 : := 3 ; while > 0 do
if (− 2) > 1 then := 0 else := (− 1)

No matter what initial state s we use we would expect the execution of all of these
programs to be aborted. Of course in each case some sub-commands will have been
executed and so the state s may have been changed. For example running C1 will result
in an aborted computation in which the resulting state st satisfies st() = 1.

To differentiate between successful computations and unsuccessful ones we design
two judgements

〈C, s〉 ⇓ 〈skip, s′〉 〈C, s〉 ⇓ 〈abort, s′〉

The first says that running C with initial state s leads to a successful (terminating)
computation with final state s′. For commands C from the base language While these
judgements should be the same as 〈C, s〉 ⇓ s′, whose inference inference rules are given
in Figure 3.3. This use of skip to indicate successful termination is similar to how it
is used in the small-step semantics from Figure 3.5 . The second form above says says
that running C with state s leads to an unsuccessful or aborted computation, in which
the state has changed from s to s′.

Of course evaluating arithmetic or Boolean expressions can also be unsuccessful
and so we have to amend their big-step semantics as well. Judgements for these will
now take the form

Draft: January 9, 2013 62

Semantics Trinity term 2013

(-)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 − E2, s〉 ⇓ n3

n3 = minus(n1, n2),
n1 ≥ n3

(-.)

〈E1, s〉 ⇓ n1 〈E2, s〉 ⇓ n2
〈E1 − E2, s〉 ⇓ abort

n1 < n2

(-.)

〈E1, s〉 ⇓ abort

〈E1 op E2, s〉 ⇓ abort

(-.)

〈E2, s〉 ⇓ abort

〈E1 op E2, s〉 ⇓ abort

Figure 3.9: Extra rules for arithmetic expressions in Whileabort

(i) 〈E, s〉 ⇓ n successful evaluation of E to value n

(ii) 〈E, s〉 ⇓ abort unsuccessful attempt at evaluating E

(iii) 〈B, s〉 ⇓ bv successful evaluation of B to the Boolean value bv

(iv) 〈B, s〉 ⇓ abort unsuccessful attempt at evaluating B

The inference rules for arithmetic expressions are given in Figure 3.9, although we
have omitted the repetition of the rules (-), (-) and (-) from Figure 3.2. The first
two rules (-) and (-.) are straightforward; they implement our intuition of
what should happen when a minus operation is performed. But the propagation rules
(-.) and (-.) are also important as they allow us to infer judgements such as

(3 − 7) + (4 + 1) ⇓ abort and (2 + 3) − (2 − 6) ⇓ abort

The rules use the meta-variable op to stand for either of the operators + or −.

Exercise 20 Give the inference rules for the judgements for Boolean expressions of
Whileabort in (iii) and (iv) above. �

The rules for commands are given in Figure 3.10. The execution of the one-
instruction command (:= E), in the rules (-.) and (-.), depends on whether
the evaluation of E is successful; note that in the latter case the state remains un-
changed. To execute C1 ; C2 we first evaluate C1. If this is successful, with terminal
state s1, we continue with the execution of C2 with s1 as an initial state; this may or
may not abort, and to cover both possibilities in rule (-.) we use the meta-variable r
to range over both skip and abort. If on the other hand the attempted execution of C1
is unsuccessful then the rule (-.) allows us to conclude that the execution of (C1 ;C2)
is also unsuccessful. The rules for executing (if B then C1 else C2 are adapted in a
similar manner from those in Figure 3.3, with a new rule for when the evaluation of the
Boolean B is unsuccessful.

Draft: January 9, 2013 63

Semantics Trinity term 2013

(-)

〈skip, s〉 ⇓ 〈skip, s〉

(-)

〈abort, s〉 ⇓ 〈abort, s〉

(-.)

〈E, s〉 ⇓ n

〈 := E, s〉 ⇓ 〈skip, s[7→ n]〉

(-.)

〈E, s〉 ⇓ abort

〈 := E, s〉 ⇓ 〈abort, s〉

(-.)

〈C1, s〉 ⇓ 〈skip, s1〉

〈C2, s1〉 ⇓ 〈r, s′〉

〈C1 ; C2, s〉 ⇓ 〈r, s′〉

(-.)

〈C1, s〉 ⇓ 〈abort, s′〉

〈C1 ; C2, s〉 ⇓ 〈abort, s′〉

(-.)

〈B, s〉 ⇓ true
〈C1, s〉 ⇓ 〈r, s′〉

〈if B then C1 else C2, s〉 ⇓ 〈r, s′〉

(-.)

〈B, s〉 ⇓ abort

〈if B then C1 else C2, s〉 ⇓ 〈abort, s〉

(-.)

〈B, s〉 ⇓ false
〈C2, s〉 ⇓ 〈r, s′〉

〈if B then C1 else C2, s〉 ⇓ 〈r, s′〉

(-.)

〈if B then (C ; while B do C) else skip, s〉 ⇓ 〈r, s′〉

〈while B do C, s〉 ⇓ 〈r, s′〉

Figure 3.10: Big-step inference rules for commands in Whileabort

Finally, for the command (while B do C) we could also have adapted the rules
(-.) and (-.) from Figure 3.3. Instead, for the sake of variety we use the rule
(-.), an unwinding rule. It says that the result of executing (while B do C) is ex-
actly the same as the execution of the command if B then (while B doC) else skip.

Exercise 21 Use the inference in Figure 3.3 to execute the four commands Ci given
on page 62 relative to an arbitrary initial state s; the behaviour should not actually
depend on the values stored in s.

Draft: January 9, 2013 64

Semantics Trinity term 2013

B ∈ Bool ::= . . .

E ∈ Arith ::= . . .

C ∈ Com ::= := E | if B then C else C

| C ; C | skip | while B do C

| C parC

Figure 3.11: Whilepar: adding parallelism to While

Answer:

• 〈C1, s〉 ⇓ s1

• 〈C2, s〉 ⇓ s1

• 〈C3, s〉 ⇓ s2

• 〈C4, s〉 ⇓ s1

where sk denotes s[7→ k].

3.4.3 Adding parallelism
In the new language Whilepar the idea of the new construct (C1 par C2) is that, intu-
itively, the individual commands C1 and C2 be executed in parallel, with no particular
preference being given to one or the other; this means that their executions are to be
interleaved, which will lead to non-deterministic behaviour. For example consider the
command C:

 := 0 par (:= 1 ; := + 1) (3.12)

Then the single assignment := 0 can be executed

• before the compound command := 1 ; := + 1 is executed

• after it has been executed

• or in between the execution of the sub-commands := 1 and := + 1 .

So when the command (3.12) has terminated the final value associated with the location
 can either be 2, 0 or 1.

Because of this interleaving of operations it would be very difficult to give a big-
step semantics for the language Whilepar. The problem is exemplified by the same
command (3.12). Using the existing big-step semantics for While we know

〈 := 0, s〉 ⇓ s[7→ 0] 〈 := 1 ; := + 1, s〉 ⇓ s[7→ 2]

Draft: January 9, 2013 65

Semantics Trinity term 2013

(-)

〈C1, s〉 → 〈C′1, s
′〉

〈C1 parC2, s〉 → 〈C′1 parC2, s′〉

(-)

〈C2, s〉 → 〈C′2, s
′〉

〈C1 parC2, s〉 → 〈C1 parC′2, s
′〉

(-)

〈skip parC, s〉 → 〈C, s〉

(-)

〈C par skip, s〉 → 〈C, s〉

Figure 3.12: Rules for parallelism

But how can we use these two judgements to deduce that when C is executed that the
identifier might have the value 1 associated with it?

Instead we show how the small-step semantics of While can be adapted for Whilepar.
Rules for the new construct are given in Figure 3.12. The first two, (-), (-), say
that the next step in the execution of C1 par C2 can be either a step from C1 or a step
from C2, while the second pair of rules handle the termination of either sub-command;
recall we use the configuration 〈skip, s〉 to indicate an execution which has terminated.

Exercise 22 Use the rules in Figure 3.12, together with those in Figure 3.5 to find all
states s′ such that 〈C, s〉 →∗ 〈skip, s′〉, where C is given in (3.12) above. This should
not depend on the initial state s.

Exercise 23 Do the same for the command C2:

(:= + 1) par (:= + 1 ; := +)

relative to an initial state s satisfying s() = s() = 0.

Answer:
The possible final states are s13, s32 or s23. �

In Whilepar communication between parallel commands is via the state; informa-
tion passes between concurrent commands by allowing them to share variables or
identifiers. Within such a framework it is very difficult to limit interference between
commands and many real programming languages have constructs for alleviating this
problem; constructs such as semaphores, locks, critical regions, etc.. Here we briefly
examine one such construct, Conditional critical regions.

We add to Whilepar the construct

await B protect C end

Draft: January 9, 2013 66

Semantics Trinity term 2013

The intuition is that this command can only be executed when the Boolean B is true,
and then the entire command C is to be executed to completion without interruption or
interference. For example consider the command D1:

x := 0 par await x = 0 protect x := 1 ; x := x + 1 end (3.13)

This should be a deterministic program; if it is executed relative to a state s then it will
terminate and the only possible terminal state is s[x 7→ 2].

As another example consider D2 defined by

(await true protect := 1 ; := + 1 end)
par (3.14)

(await true protect := 2 ; := + 1 end)

Here the two Boolean guards, true, are vacuous, so which protected command is ex-
ecuted first is chosen non-deterministically. But they are executed in isolation, without
interference from each other. For example if executed with an initial state s satisfy-
ing s() = s() = 0 then there are only two possible terminal states; the first has ,
containing 1, 3 respectively, while the second has 2, 1.

There is a bit of a trick in the required rule for this new command, as it uses the
reflexive transitive closure of the small-step relation→ in the hypothesis:

(-)
〈B, s〉 ⇓ 〈tt, s1〉 〈C, s1〉 →

∗ 〈skip, s′〉

〈await B protect C end, s〉 → 〈skip, s′〉

Exercise 24 Use this rule, together with those from Figure 3.5, to give formal deriva-
tions confirming the expected behaviour of the two commands D1,D2 in (3.13) and
(3.14) above.

Draft: January 9, 2013 67

Chapter 4

A simple functional language

In this chapter we develop a very simple language based on function definitions, which
may be considered as the beginnings of the core of a functional programming language
such as ML or Haskell. The starting point is the language of arithmetic expressions
Exp from Chapter 1, where we developed a big-step and a small-step semantics for
it. Moreover Chapter 2.2.3 was devoted to proving properties of these semantic defi-
nitions. Here we gradually extend the language, in three distinct steps, until the core
functional language is reached. For each intermediate language we give a big-step and
a small-step semantics, and extend the proofs in Chapter 2.2.3 to establishing their
properties.

In the first section we extend Exp with a construct for local declarations, a feature
common to most programming languages. Proving properties of their big-step and
small-step semantics provides us with some opportunities to use rule induction from
Chapter 2.3; however we will also see that alternative forms of induction can also be
used for this language.

We then add Boolean expressions to the language, Chapter 4.2, to obtain ExpB.
But unlike in the language While from Chapter 3, we do not have separate syntac-
tic categories for arithmetics and Booleans. Instead arithmetic operators and Boolean
operators may be arbitrarily applied to arguments. In the resulting language run-time
errors may occur, in the sense that unlike Exp there are expressions whose evaluations
get stuck. This is another common phenomenon in programming languages, and pro-
vides us with the opportunity to introduce another topic of interest, namely typing. In
Chapter 4.3 we discuss this concepts in detail, explaining topics such as typechecking,
progress and preservation, via the rather simple language ExpB.

In the final section 4.4 we add user-defined functions, to obtain the core functional
language which we call Fpl.

68

Semantics Trinity term 2013

E ∈ Exploc ::= x ∈ Vars | n ∈ Nums | (E + E) | (E × E)
| let x = E in E

Figure 4.1: Syntax of let expressions

4.1 Local declarations
Let us start by reconsidering the language of arithmetic expressions Exp from Chap-
ter 1. Consider the evaluation of the expression

(1 + 2) × ((1 + 2) + 4) (4.1)

By following the big-step or small-step semantics there is considerable danger that the
sub-expression (1 + 2) is actually evaluated twice. In order to avoid this possibility let
us extend the language by a new construct which allows the sharing of sub-expressions.
The idea is to replace the expression (4.1) with

E0 : let x = (1 + 2) in x × (x + 4) (4.2)

More generally we introduce into the language the new form of expression

let x = E1 in E2

called a local declaration. Here E2 is referred to as the body of the expression while
x = E1 is called the declaration; the variable x is declared (locally) to be the expression
E1. So in (4.2) above x = (1 + 2) is the declaration which is local to the body, which
in this case is the expression expression x × (x + 4). So when evaluating this body the
variable x stands for it’s declared value, that is the value of (1 + 2). In other words to
evaluate the expression (4.2):

(1) first evaluate the expression (1 + 2) in order to get the declared value of x
(2) then evaluate the body of the expression, with x standing for its declared value.

The abstract syntax for the extended language Exploc is given in Figure 4.1 and
uses a set Vars of variables. The extra syntax appears to be quite simple, but in fact the
introduction of variables into the language makes the situation unexpectedly complex.

The first problem is that many expressions do not now naturally evaluate to any
value. Consider

E1 : let y = (2 + 3) in (y × y + z × z) (4.3)

Here y is declared to be standing for the value of the expression (2+3), and the body of
E1, namely (y× y + z× z), is meant to be evaluated relative to this declaration. However
the variable z also occurring in the body has no corresponding declaration; so E1 can

Draft: January 9, 2013 69

Semantics Trinity term 2013

not actually be evaluated. Nevertheless expressions such as E1 are useful as they can
be used in the construction of more expressions such as

E2 : let z = (1 + 2) in E1

Intuitively E2 can be evaluated, to the value 34, as we end up evaluating the expression
y × y + z × z relative to the declaration that z stands for the value of (1 + 2) and y for
that of (2 + 3), both of which can in turn be evaluated. However

E3 : let z = (w + 3) in E1

can not be evaluated; to evaluate (y × y + z × z) relative to the declaration that y stands
for the value of (2 + 3) and z for that of (w + 3) we need to know what the variable w
stands for.

The second problem is that in nested declarations variables may be used in multiple
roles. To discuss this let us introduce some informal notation. In the expression E1,
or rather in the body of E1 in (4.3) above, we say that the variable y has a bound
occurrence, as in the declaration it is bound to the expression (2+3); on the other hand
z occurs free as, intuitively, it is not governed by any declaration. Consider for example

E4 : let z = 2 + z in (z × z × y)

Here y has a free occurrence and z has two free occurrences in the body of the dec-
laration; but also it has a free occurrence in the declared value (2 + z). To evaluate
E4 we have to evaluate the body (z × z × y), relative to some declaration of y, and the
declaration that z stands for the expression (2 + z); but here in turn, in this expression
we need to know what this occurrence of z stands for.

A related problem is multiple declarations for the same variable.

E5 : let x = 1 in let x = (1 + 2) in (x × (x + 4)) (4.4)

Should this evaluate to 5 or 21?
The crucial concept, which we need to define formally, is the set of variables which

occur free in an expression, that is which have an occurrence which is not governed by
a declaration.

Definition [Free variables] The set of free variables in an expression E, written fv(E),
is defined by structural induction on E, as follows:

(i) fv(x) = {x} fv(n) = {}

(ii) fv(let y = E1 in E2) = fv(E1) ∪ (fv(E2) − {y})
(iii) fv(E1 op E2) = fv(E1) ∪ fv(E2)

where op is either of the arithmetic operators, +,×. �

So for example fv(E1) = {z}, fv(E3) = {w}, fv(E4) = {y, z}, while fv(E2) = ∅. Intu-
itively if x ∈ fv(E) then in order to evaluate E we need, at least, to declare some value
to associate to x. Consequently we can only evaluate expressions which have no free
variables.

Draft: January 9, 2013 70

Semantics Trinity term 2013

Definition [Programs] We define a program to be any term E in the language Exploc
such that fv(E) = ∅.

To emphasise the difference between programs and expressions, we use P,Q, . . . to
represent arbitrary programs. �

Note that for an expression E of the form let x = E1 in E2 to be a program the sub-
expression E1 must be a program, since by definition fv(E1) ⊆ fv(E). But E2 need not
be a program; it is allowed to have x as a free variable.

4.1.1 Big-step semantics
The big-step semantics of Exploc take the form of judgements

P ⇓ n

where P is a program in Exploc and n is a numeral; as with the previous arithmetic
expressions in Chapter 1 this is supposed to mean:

the evaluation of the program P results in the value n.

The inference rules for the judgements are in Figure 4.2, with the rules (-), (-), and
the missing rule for multiplication, taken from the big-step semantics for Exp. The new
rule for let-expressions (-) states that in order to evaluate the program let x = P in E
we must

(1) first evaluate the program P to a value say m

(2) then evaluate the body E, with x declared to be m.

In fact rather than worrying about what it means to evaluate an expression relative to a
declaration (2) is replaced by

(2) then evaluate the program which results from replacing the variable x in the body
E by the value m, that is evaluate the program E{|m/x|}.

So for example (let x = (1 + 2) in (x × (x + 4))) ⇓ 21 because (1 + 2) ⇓ 3 and
(3 × (3 + 4)) ⇓ 21, that is (x × (x + 4){|3/x|} ⇓ 21.

Unfortunately what it actually means to substitute a value m for a variable in an
expression E is not very straightforward. For example, refering to (4.2) above, E0{|

1/x|}
should not result in let 1 = (1+2) in (1×(1+4)) for the simple reason that this is not a
valid expression in the language. Nor should it result in let x = (1+2) in (1× (1+4)).
Intuitively the occurrence of x in the body of E0, (x × (x + 4). refers to the value of
the declared expression (1 + 2) in the declaration E, and so the substitution {|1/x|} should
have no effect on the body of E0. Incidentally one consequence of this decision is that
the evaluation of E5 in (4.4) above will result in the value 21; inner declarations will
have precedence over outer ones.

It turns out that when we perform a substitution for a variable we should only
physically substitute its free occurrences. The formal definition is as follows, where
we allow substitution by arbitrary programs:

Draft: January 9, 2013 71

Semantics Trinity term 2013

(-)

n ⇓ n

(-)

P1 ⇓ n1 P2 ⇓ n2

(P1 + P2) ⇓ n3
n3 = add(n1, n2)

(-)

P ⇓ m
E{|m/x|} ⇓ n

let x = P in E ⇓ n

(-)

P1 ⇓ n1 P2 ⇓ n2

(P1 × P2) ⇓ n3
n3 = mult(n1, n2)

Figure 4.2: Big-step semantics of let expressions

(-)
1 ⇓ 1

(-)
2 ⇓ 2

(-)
1 ⇓ 1

(-)
(2 + z){|1/z|} ⇓ 3

(-)
3 ⇓ 3

(-)
4 ⇓ 4

(-)
(z + 4){|3/z|} ⇓ 7

(-)
(let z = (2 + z) in z + 4){|1/z|} ⇓ 7

(-)
let z = 1 in (let z = (2 + z) in z + 4) ⇓ 7

Figure 4.3: An example derivation

Definition [Substitution] Let E be an arbitrary expression in Exploc and P a program.
Then E{|P/x|}, the result of substituting the program P for all free occurrences of the
variable x in the expression E is defined by structural induction on E as follows:

(i) x{|P/x|} = P
(ii) y{|P/x|} = y, if y is a variable different from x

(iii) (E1 op E2){|P/x|} = (E1{|
P/x|}) op (E2{|

P/x|})
(iv) (let x = E1 in E2){|P/x|} = let x = (E1{|

P/x|}) in E2
(v) (let y = E1 in E2){|P/x|} = let y = (E1{|

P/x|}) in (E2{|
P/x|}), if y is a variable

different from x �

The crucial clause is (iv). For example substituting (1 + 2) for x in the expression
let x = (x + 3) in (x × x) results in the expression let x = ((1 + 2) + 3) in (x × x);
the occurrences of x in the body, (x × x), are already bound in the declaration let x =

(x + 3) in . . . and are therefore left untouched.
An example derivation is given in Figure 4.3, where this subtlety plays a role, in the

evaluation of repeated declarations of the same variable z in let z = . . . in (let z =

. . . in . . .). The tricky point in the derivation is the observation that (let z = (2 +

z) in z + 4){|1/z|} turns out to be (let z = (2 + z){|1/z|} in z + 4. Therefore the derivation
of (let z = (2 + z) in z + 4){|1/z|} ⇓ 7 using an application of the rule (-) requires the
hypotheses (2 + z){|1/z|} ⇓ 3 and (z + 4){|3/z|} ⇓ 7.

Draft: January 9, 2013 72

Semantics Trinity term 2013

In Chapter 2.2.3 we proved various interesting properties of the big-step semantics
of expressions from the language Exp using structural induction. Here we show how
these can be extended to Exploc.

Proposition 17 (Determinacy) For every program P, if b̀ig P ⇓ m and b̀ig P ⇓ n then
m = n. �

Proof: The proof of the corresponding result for Exp was by structural induction on
expressions. But here structural induction can not be used. For if P is the let expression
let x = Q in E then with structural induction we will be able to assume the required
property of Q, that is Q ⇓ k1 and Q ⇓ k2 implies k1 = k2. But we have no assump-
tion about E because in general E will not be a program; normally it will have free
occurrences of x.

We prove the result by Rule induction. For every program Q and numeral k let
P(Q, k) be the property:

for every number m, if Q ⇓ m then m = k.

We use Rule induction to prove that P ⇓ n implies P(P, n).
To do so we assume the inductive hypothesis (IH):

P(Q, k) is true for every pair (Q, k) which has a proof of Q⇓k smaller than
a proof of P ⇓ n.

From this assumption we need to prove that P ⇓ n implies P(P, n).
So suppose P ⇓ n. To show that P(P, n) let us further assume that P ⇓ m; from these

two assumptions we need to show that m = n. To so so let us look a the proof of P ⇓ n,
and in particular the last rule used. According to Figure 4.2 there are four possibilities.
Let us look at the most interesting, (-): P has the form let x = P1 in E and the last

rule used is
P1 ⇓ n1 E{|n1/x|} ⇓ n

P ⇓ n
for some number n1. But the proof of the judgement

P ⇓ m must also use (-), and therefore we must have
P1 ⇓ m1 E{|m1/x|} ⇓ m

P ⇓ m
for some

number m1.
Now the inductive hypothesis (IH) applies to the pair (P1, n1); so n1 and m1 must be

the same number. This is turn means that E{|n1/x|} and E{|m1/x|} must be the same program.
Moreover (IH) applies to the pair (E{|n1/x|}, n), which means that m must be equal to n.

There are three other possibilities for the last rule used in the derivation of the
judgement P⇓n, namely (-), (-), and (-); each are handled in exactly the same
way as the case we have just seen. �

Proposition 18 (Normalisation) For every program P in Exploc there is a value n such
that b̀ig P ⇓ n.

Proof:[Outline] Once more we can not use structural induction here because the sub-
components of the program let x = Q in E are not necessarily programs. Luckily
there is an easy alternative. Let |P| be the number of symbols occurring in the program
P. Then there is an easy proof using mathematical induction on |P| that there is always
some n such that P⇓n. The proof proceeds by examining the possible forms that P can
take, and uses the fact that |E| = |E{|k/x|}|. �

Draft: January 9, 2013 73

Semantics Trinity term 2013

Exercise 25 Fill in the details of the proof of Proposition 18. �

Let us now revisit the discussion at the beginning of this section. Local declarations
were introduced in order to avoid the repeated evaluation of a sub-expression with
multiple occurrences, such as (1 + 2) in (4.1) above. We now prove that this is indeed
the case. First a lemma.

Lemma 19 Suppose b̀ig P ⇓ np. Then for any expression containing at most one free
variable x, b̀ig E{|P/x|} ⇓ n if and only if b̀ig E{|np/x|} ⇓ n.

Proof: For what is by the now the standard reason this also can not be proved by
structural induction on E. So how can this be proved?

Now suppose E is an expression as in the statement of the lemma, with at most one free
variable x. This variable may have multiple occurrences and so the program P may also
have multiple occurrences in the expression E{|P/x|}, which means that when evaluating
E{|P/x|} the program P may be evaluated multiple times. However in (let x = P in E)
it is evaluated exactly once; moreover the evaluation of this latter expression gives the
correct result:

Proposition 20 Suppose E is an expression which contains at most one free variable
x. Then b̀ig E{|P/x|} ⇓ n if and only if b̀ig (let x = P in E) ⇓ n.

Proof: Follows immediately from Lemma 19. Normalisation tells us that there exists
some numeral np such that b̀ig P ⇓ np; moreover Determinacy means that it is unique.

Now suppose b̀ig E{|P/x|} ⇓ n. Then by the lemma there is a derivation of E{|np/x|} ⇓ n.
The rule (-) from Figure 4.2 now allows us to construct a derivation of that (let x =

P in E) ⇓ n.
Conversely suppose b̀ig (let x = P in E) ⇓ n. This can only be inferred by an

application of this rule (-) and so we must be also able to derive E{|np/x|} ⇓ n. Once
more the lemma now allows us to conclude that b̀ig E{|P/x|} ⇓ n. �

4.1.2 Small-step semantics
The judgements for the small-step semantics of Exploc take the form

P→ P′

and the inference rules, given in Figure 4.4, are mostly inherited from those for Exp.
The new rules, (-) and (-.), say that in order to evaluate the expression let x =

P in E

• first evaluate P to some value n
• then start evaluating E, in which the free variable x has been replaced by the

value n.

Exercise 26 Supply the rules missing from Figure 4.4 for the programs of the form
(P1 × P2). �

Draft: January 9, 2013 74

Semantics Trinity term 2013

(-)

P1→ P′1
(P1 + P2)→ (P′1 + P2)

(-)

(n1 + n2)→ n3
n3 = add(n1, n2)

(-.)

P2→ P′2
(n + P2)→ (n + P′2)

(-)

P→ P′

let x = P in E→ let x = P′ in E

(-.)

let x = n in E→ E{|n/x|}

Figure 4.4: Small-step semantics of let expressions

Proposition 21 (Progress) For every program P in Exploc, either P is a value or there
is some program P′ such that s̀m P→ P′.

Proof: Here we can use structural induction on P. �

Corollary 22 For every program P in Exploc, there exists some numeral n such that
P→∗ n.

Proof: This is a simple consequence of the previous proposition. First a proof by
structural induction on P1 will show that if P1 → P2 then |P2| < |P1|; here we are
using |P| to mean the number of symbols used in P. This means that as the small-step
semantics is repeatedly applied the size of the program decreases with each step. This
can not go on forever.

So let k be such that P→k P1 for some P1 but P→(k+1) P2 for no P2. Progress,
Proposition 21, means that P1 must be a value, that is some numeral n. �

Theorem 23 For every program P in Exploc, b̀ig P ⇓ n implies P→∗ n.

Proof: See the corresponding proof for arithmetic expressions, Proposition 4 in Chap-
ter 2.2.3 �

Theorem 24 For every program P in Exploc, P→∗ n implies b̀ig P ⇓ n.

Proof: Again a minor extension of the corresponding proof for arithmetic expressions,
Proposition 6 in Chapter 2.2.3, although that result is for the choice variation of the
small-step semantics. �

4.2 Adding Boolean expressions
.

Draft: January 9, 2013 75

Semantics Trinity term 2013

E ∈ ExpB ::= v

| (E + E) | (E × E) | let x = E in E

| E and E | ¬ E | E = E | if E then E else E

v ∈ Val ::= x ∈ Vars | n ∈ Nums | tt | ff

Figure 4.5: Adding Booleans; the language ExpB

(-)

P→ P′

if P then P1 else P2→ if P′ then P1 else P2

(-.)

if tt then P1 else P2→ P1

(-.)

if ff then P1 else P2→ P2

(-.)

P1→ P′1
(P1 and P2)→ (P′1 and P2)

(-.)

P2→ P′2
(v + P2)→ (v + P′2)

(-)

(bv1 and bv2)→ bv
bv = conj(bv1, bv2)

(-)

P→ P′

¬ P1→¬ P′

(-.)

¬ tt→ ff

(-.)

¬ ff→ tt

Figure 4.6: Extra small-step inference rules for ExpB

In Figure 4.5 we give the syntax for an extension of the language Exploc with
Boolean operators and values. For convenience there is now a separate syntactic class
of values. Recall that in Exp the numerals n are syntactic representations for the nat-
ural numbers n. In the same way we have two syntactic representations tt, ff for the
two Boolean values true and false. Then the syntactic class of expressions is extended
with two new operators, Boolean conjunction and negation E and F, ¬ E, an equal-
ity operator, E1 = E2, for any two arithmetic expressions, and a branching construct,
if E then . . . else Note that unlike the language of commands While, whose
BNF is given in Figure 3.1 of Chapter 3, we do not have separate syntactic classes for
Booleans and arithmetics; this will make life a little more interesting.

The small-step semantics for the extended language is by now straightforward; the
extra rules for the new constructs are given in Figure 4.4. The rules for the if then else

Draft: January 9, 2013 76

Semantics Trinity term 2013

construct formalises the following informal idea:

• To start executing the program if P then P1 else P2, execute one step of the
program P, rule (-).

• On the other hand, if P is already evaluated to a value

– if this value is tt then start evaluating P1, rule (-.)

– if it is ff then start evaluating P2, rule (-.).

The evaluation of the program P1 and P2 proceeds in a left-to-right fashion, in a man-
ner similar to the evaluation of P1 + P2. The third rule, (-), uses the function
conj(bv1, bv2) which operates on Boolean values; if both bv1 and bv2 are true then this
returns true, otherwise it returns false. Note that for these rules we are using bv as a
meta-variable over Boolean values, and bv to range over their corresponding syntactic
representations tt and ff. The evaluation of ¬ P proceeds using the same strategy.

Exercise 27 Design a big-step semantics for the language ExpB. �

Exercise 28 Prove that your big-step semantics agrees with the small-step semantics
given in Figure 4.6. That is prove

(i) P ⇓ v implies P→∗ v
(ii) P→∗ v implies P ⇓ v. �

In extending the language Exploc to the language ExpB one significant property is
lost; it is no longer the case that for every program P there exists some value v such
that P→∗ v. For example take P to be if (3 + 4) then 6 else 1. Using the rule (-)

this can be reduced to the program if 7 then 6 else 1 but now neither of the rules
(-.) or (-.) can be applied and therefore the computation is stuck. The rules assume
that in programs of the form if P1 then P2 else P3 the sub-program P1 will always
reduce to a Boolean value, but this is not necessarily the case.

This situation arises quite frequently in programming languages; programs can be
syntactically correct with respect to the BNF of the language but their execution leads
to run-time errors. But many of these run-time errors can be eliminated by a syntactic
analysis of the program prior to execution. This is the topic of the next section.

4.3 Typing
In the language ExpB we expect the program (P1 + P2) to return a numeral, since + is
a symbol representing addition. Similarly we expect (Q1 and Q2) to return a Boolean
value, either tt or ff. But equally well, in the former we expect both P1 and P2 to
evaluate to numerals while in the latter we expect Q1 and Q2 to evaluate to Booleans;
otherwise the corresponding operations, arithmetic addition and Boolean conjunction
respectively, can not be performed.

These remarks form the basis of a method for syntactically analysing programs to
ensure that when they are executed run-time errors do not occur. The kind of errors
which can be captured include

Draft: January 9, 2013 77

Semantics Trinity term 2013

• attempting to apply an arithmetic operation to a Boolean value
• attempting to apply a Boolean operation to a numeral
• having to execute a program of the form if n then P2 else P3; that is finding

an arithmetic value in a place where a Boolean value is expected.

The basic idea of the syntactic analysis is straightforward. We classify programs into
three kinds:

(1) those which should return an arithmetic value
(2) those which should return a Boolean value
(3) those which are can not be evaluated

We say the first are programs with the type int while those in (2) the type bool.
The analysis would then involve trying to decide the type of a given program. More

concretely it would take the form of a type inference algorithm which would input an
arbitrary program in ExpB and return one of three possible values, the type int, the type
bool, or the token wrong. We would expect such algorithms to be correct, in the sense
that:

(a) if int is returned for program P, then P is guaranteed to evaluate to a numeral
(b) if bool is returned, it is guaranteed to evaluate to a Boolean.

This correctness criterion is not very onerous. Here is a very simple algorithm (A)
which satisfies it:

(1) Input a program P.
(2) If P is a numeral return the answer int.
(3) If P is one of the Boolean values tt or ff return the answer bool.
(4) Otherwise return the token wrong.

This algorithm is obviously correct; every program to which it assigns a type evaluates
to a value of that type. But it assigns types to very few programs and so is not very
useful.

One can imagine more useful algorithms, which manage to assign types to more
programs by analysing their structure but remain correct. We will not pursue directly
the development of such algorithms; instead we look at the question of how compre-
hensive we could expect them to be. For what class of programs should they be able to
assign types?

4.3.1 Typechecking
This refers to the problem of deciding exactly what types should be assigned to what
programs. In other words typechecking can be used to evaluate the usefulness of type
inference algorithms.

Typechecking can be carried out structurally; the program (P1×P2) should have the
type int, provided both P1 and P2 can also have the type int. But the structural analysis
of programs of the form let x = P1 in E leads to complications. The type, if any,
which should be assigned to this program depends on that assigned to the sub-program

Draft: January 9, 2013 78

Semantics Trinity term 2013

Types : τ ::= int | bool Type environments: ε | Γ, x :τ

Environment look-up:

(-1)

Γ, x :τ ` x :τ

(-2)

Γ ` x2 :τ1

Γ, x1 :τ1 ` x2 :τ2
x1 , x2

Figure 4.7: Types and environments

P1; but it also depends on the structure of E which in general is not a program. For
example if E is the expression (2 + x) then whether or not it should be assigned a type
depends on what type can be assigned to P1; if P1 can be assigned the type int then E
also should also be assigned int whereas if P1 is assigned bool then E should not be
assigned any type.

This dependence of the type of E on that of P1 can be conveniently expressed in
terms of assumptions about the free variable x occurring in E. For example the previous
discussion can be rephrased as saying

• assuming x stands for an arithmetic value, E should be assigned the type int
• assuming x stands for a Boolean value, E should not be assigned any type.

As the structural analysis of an expression proceeds these assumptions about free vari-
ables build up. For example to decide what type should be assigned to

let x = P in let y = E1 in E2

we need to analyse the structure of E2, and this analysis will depend on assumptions
about the variables x and y. Consequently our inference rules for typechecking expres-
sions in ExpB will take the form

Γ ` E : τ (4.5)

where Γ is a type environment, and τ is an allowed type. For the simple language
ExpB the only possible types are int, for arithmetics, and bool for Booleans, while Γ is
essentially a list of type associations between variables and types, x :τ.

These are defined formally in Figure 4.7; there ε represents the empty list. A
method is also given for checking which type, if any, is currently associated with a
variable in Γ, written Γ ` x :τ; essentially the rules scan Γ from right to left looking for
an occurrence of x.

The inference rules for typechecking expressions, with judgements of the form
(4.5) above, are given in Figure 4.8. Intuitively Γ ` E : τ means that if all the free vari-
ables occurring in E are replaced with values of the type dictated by the environment
Γ then the resulting program should execute completely to a value. Moreover if τ is int
then the result will be a numeral, whereas if it is bool then it will be a Boolean value.

Draft: January 9, 2013 79

Semantics Trinity term 2013

(-)

Γ ` tt : bool

(-)

Γ ` ff : bool

(-)

Γ ` n : int

(-)

Γ ` E1 : τ Γ ` E2 : τ

Γ ` E1 = E2 : bool

(-.)

Γ ` E1 : int Γ ` E2 : int

Γ ` E1 iop E2 : int

(-.)

Γ ` E1 : bool Γ ` E1 : bool

Γ ` E1 bop E2 : bool

(-)

Γ ` E : bool
Γ ` E1 : τ Γ ` E2 : τ

Γ ` if E then E1 else E2 : τ

(-)

Γ ` E1 : τ1 Γ, x :τ1 `: E2 : τ

Γ ` let x = E1 in E2 : τ

Figure 4.8: Typing inference rules for ExpB

Most of the rules are straightforward. The rules (-) and (-) assign the appro-
priate types to values, while (-.) assigns int to an expression of the form E1 + E2 or
E1 × E2, provided the same type can be applied to E1 and E2; in the rule iop is a meta-
variable for an arithmetic operator. The rule (-.) for Boolean operators is similar;
the rule of expressions of the form ¬ E is omitted but is a unary version of (-.). The
rule (-) requires both E1 and E2 to have the same type in the expression (E1 = E2).
Similarly to assign a type to if E then E1 else E2, according to (-) both of E1 and
E2 must have the same type, and of course we must be able to assign to E the type
bool. The only non-trivial rule is for let-expressions let x = E1 in E2; according to
(-) this can be assigned the type τ provided E2 can be assigned that type under an
augmented list of assumptions. Γ is increased by the assumption x :τ1, where τ1 is any
type which can be inferred for E1.

For example consider the expression

let x = 1 + z in (if x = 0 then z else x + 1) (4.6)

This has one free variable, z, and therefore it can only be typechecked relative to an
environment which has some type association with z. Let Γz be a type environment
such that the judgement

Γz ` z : int

can be inferred using the two rules (-1) and (-2) from Figure 4.7; we will usually
use (-) to refer to this procedure, of scanning an environment right to left for an entry.

Draft: January 9, 2013 80

Semantics Trinity term 2013

Γz ` 1 : int
Γz ` z : int

(-.)
Γz ` 1 + z : int

Γzx ` x : int
Γzx ` 0 : int

(-)
Γzx ` x = 0 : bool

(-)
Γzx ` z : int

Γzx ` x : int
Γzx ` 1 : int

(-)
Γzx ` x + 1 : int

(-)
Γzx ` if x = 0 then z else x + 1 : int

(-)
Γz ` let x = 1 + z in (if x = 0 then z else x + 1) : int

Figure 4.9: Inferring a typing judgement

In Figure 4.9 we show that the expression in (4.6) can be assigned the type int relative
to such an Γz. In the derivation we have used Γzx as a shorthand for the augmented
environment Γz, x : int, and have omitted some instances of the use of the rule (-).

The fact that type environments are lists, scanned from right-to-left, is of signifi-
cance for the typing of let expressions, as the following example shows.

Example Consider the program let x = tt in (let x = 2 in x + x). This can be
assigned the type int, because of the derivation:

(-)
` tt : bool

(-)
x :bool ` 2 : int

(-1)
x :bool, x : int ` x : int

(-.)
x :bool, x : int ` x + x : int

(-)
x :bool ` let x = 2 in x + x : int

(-)
ε ` let x = tt in (let x = 2 in x + x) : int

This accords with our decision that inner declarations have precedence over outer ones;
the inner declaration x = 2 is the one which is ultimately used when the body, (x + x)
is evaluated. And note that in the type inference above the application of the look-up
rule (-1) returns the correct type association for x.

The reader should check that the program let x = tt in (let x = 2 in (x and x))
can not be assigned a type using the inference rules, which again accords with our
intuition. �

Despite the subtlety of this example, in general typing derivations are independent
of many minor variations in the environments used. The more interesting ones are
collected in the following proposition.

Proposition 25 (Sanity)

(1) (Strengthening) If x is not in fv(E) then Γ1, x :τx,Γ2 ` E : τ implies Γ1,Γ2 ` E : τ.
(2) (Weakening) Γ ` E : τ implies x :τx,Γ ` E : τ.
(3) (Fresh weakening) Γ ` E : τ implies Γ, x :τx ` E : τ, provided x does not occur in

E.
(4) (Permutation) Γ1, x :τx, y :τy,Γ2 ` E : τ implies Γ1, y :τy, x :τx,Γ2 ` E : τ, provided

x is different than y.

Draft: January 9, 2013 81

Semantics Trinity term 2013

(5) (Repetition) Γ1, x :τ1,Γ2, x :τ2,Γ3 ` E : τ implies Γ1,Γ2, x :τ2,Γ3 ` E : τ

Proof: Each result is proved by structural induction on E. Since there are eleven
different possibilities for the structure of E these proofs are rather long. But the only
case which does not follow trivially is when E is a variable. �

One interesting consequence of (Strengthening) and (Weakening) pertains to the typing
of programs, which have no free variables; their typing is independent of the environ-
ment used:

For every program P, ε ` P if and if if there is some environment Γ such
that Γ ` P.

Exercise 29 Prove this property for all programs P.

Exercise 30 Prove, using counter-examples, that in each of (1), (3) and (4) of Propo-
sition 25 the side-condition is necessary. �

The ability to assign a type to an expression, means that we expect the expression,
when transformed into a program by replacing its free variables with values, to evaluate
fully to a value of that type. Since informally we expect this value to be unique, one
would also expect the type which can be assigned to the expression to be unique.

Proposition 26 (Type uniqueness) If Γ ` E : τ1 and Γ ` E : τ2 then τ1 = τ2.

Proof: A straightforward argument by structural induction on E; essentially there is
only one possible inference rule from Figure 4.8 which can be applied to any given
expression E.

But the most important property of the type inference rules is that, in some sense,
typing is preserved by substitution:

Theorem 27 (Substitution lemma) Suppose Γ, x : τx ` E : τ, where E is any term in
the language ExpB. Then ε ` P : τx implies Γ ` E{|P/x|} : τ.

Proof: By structural induction on E, which means that there are eleven cases to con-
sider in all.

Let us first look at the most difficult case; suppose E has the form let y = E1 in E2.
Since Γ, x :τx ` E : τ we know

(i) Γ, x :τx ` E1 : τ1 for some type τ1
(ii) Γ, x :τx, y :τ1 ` E2 : τ

Structural induction applied to (i) gives

(i’) Γ ` E1{|
P/x|} : τ1

We now do a case analysis. First suppose that x and y are different variables. So
here E{|P/x|} is actually let y = (E1{|

P/x|}) in (E2{|
P/x|}). Moreover (Permutation), from

Proposition 25, applied to (ii) gives Γ, y :τ1x :τx, ` E2 : τ, to which structural induction
can be applied to obtain

Draft: January 9, 2013 82

Semantics Trinity term 2013

(ii’) Γ, y :τ1 ` E2{|
P/x|} : τ

An application of (-) to (i’) and (ii’) now gives the required Γ ` E{|P/x|} : τ.
Now suppose that x and y are the same; here E{|P/x|} works out to be let y =

(E1{|
P/x|}) in E2. In this case (Repetition) can be applied to (ii) to obtain

(ii’) Γ, x :τ1 ` E2 : τ

and once more the rule (-) applied to (i’) and (ii’) gives Γ ` E{|P/x|} : τ.
We have now finished one of eleven cases of the possible structure of E. Luckily

all others are straightforward; we look briefly at two.
Suppose E is a variable. If this variable is x then τ must coincide with τx the

required result, Γ ` P : τ, follows by (Weakening) from ε ` P : τx. If it is different,
say y, then the argument is equally trivial since E{|P/x|} is y and Γ ` y : τ follows from
(Strengthening).

As an example of an inductive case suppose E is E1 + E2, in which case we know
that τ must be the type int. Then by the hypothesis we have

(i) Γ, x :τx ` E1 : int
(ii) Γ, x :τx ` E1 : int

since the judgement Γ, x :τx ` E : int can only be established using the rule (-). We
can apply induction to both of these to obtain

(i’) Γ ` E1{|
P/x|} : int

(ii’) Γ ` E1{|
P/x|} : int

Now an application of (-) gives the required Γ ` E{|P/x|} : int.
All remaining inductive cases are equally mechanical. �

Exercise 31 Design a type inference algorithm, which inputs an arbitrary program
from ExpB and returns

• the type int if ε ` P : int can be inferred from the type inference rules
• the type bool if ε ` P : bool can be inferred from the type inference rules
• the token wrong otherwise. �

In the remainder of this chapter we abbrviate the judgement ε ` P : τ to simply
` P : τ, leaving the empty type environment understood.

4.3.2 Typed programs don’t go wrong
The purpose of assigning types to programs is to ensure that run-time errors will never
occur; well-typed programs can be safely executed. For the language ExpB a run-time
error occurs when the evaluation of a program to a value becomes stuck; we have seen
the example P = if (3 + 4) then 6 else 1 on page 77; after one computation step
the evaluation of P can not continue. In this section we explain why the type inference
system from Figure 4.8 ensures that all programs in ExpB which are assigned a type by
the type inference system can be safety executed to completion, to obtain a value.

This idea of safety is usually encapsulated in the slogan

Draft: January 9, 2013 83

Semantics Trinity term 2013

Safety = Progress + Preservation

We have already come across the idea of Progress, stated in Proposition 21 for the
language Exploc. Intuitively it means that if a program has not terminated then it can
continue evaluating.

Theorem 28 (Progress) Let P be a program in ExpB such that ` P : τ. Then either P
is a value or there is some program Q such that P→ Q.

Proof: Straightforward structural induction on P. �

The second property, Preservation, means that whenever a program can be assigned
a type, if it takes a computation step then the residual program can also be assigned the
same type.

Theorem 29 (Preservation) Let P be a program in ExpB such that ` P : τ. Then
P→ Q implies ` Q : τ.

Proof: Here again the proof is by structural induction, this time on P. Let us start with
the difficult case, when P has the form let x = P1 in E. Since P has type τ we know

(i) ` P1 : τx for some type τx, such that
(ii) x :τx ` E

According to the small-step semantics for ExpB in Figure 4.6 there are two possibilities
for Q:

(a) Q is let x = P′1 in E, where P1 → P′1. Here the inductive hypothesis applied to
(i) ensures that ` P′1 : τx and an application of the typing rule (-) to this and (ii)
gives the required ` Q : τ.

(b) P1 is a value, v and Q is E{|v/x|}. Here the result ` Q : τ follows from (i) and (ii) by
the Substitution lemma, Theorem 27.

There are many other possibilities for the structure of P. The base cases, when P is
a value, are all trivial since values can not make an evaluation step. Moreover all of the
inductive cases are purely mechanical. Suppose for example that P has the structure
if P then P1 else P2. Here we know

(i) ` P : bool
(ii) ` P1 : τ

(iii) ` P2 : τ

Moreover examining the small-step semantics in Figure 4.6 we know that there are
three possibilities for Q:

(a) Q is if P′ then P2 else P2, where P → P′. Applying Structural induction to
(i) we obtain ` P′ : bool, and this together with (ii) and (iii) can be used with an
application of the typing rule (-) to give the required ` Q : τ.

(b) P is the value tt and Q is P1. The required result is given in (ii).
(c) Finally, Q can be P2, if P is the ff, where the result is given in (iii). �

Draft: January 9, 2013 84

Semantics Trinity term 2013

These two generic results, Progress and Preservation, when applied to the language
ExpB ensure that every well typed program evaluates completely to value:

Corollary 30 Let P be a well-typed program in ExpB, that is ` P : τ for some type τ.
Then there exists some value v such that P→∗ v. Moreover if τ is the type int then v is
a numeral, whereas if it is bool it is a Boolean.

Proof: We use the same strategy as in Corollary 22 in Section 4.1. We know that if
P→ P′ then |P′| < |P|, where |P| counts the number of symbols in P. Thus there must
be some k such that P→k Pk but P→(k+1) Q for no Q. Preservation, applied repeated
means that ` Pk : τ. Since Pk9, Progress gives that Pk is a value; moreover we know
this value if of the same type as P. �

Exercise 32 Give an example of a program P such that P→∗ v for some value v, but
which can not be typed, that is ` P : τ for no type τ. �

4.4 User-defined functions
The language defined so far, ExpB is of very limited use. There are only two operations
on integers allowed, and two on Booleans. Here we extend the language so that the
user can define their own functions. We thus allow expressions of the form

if max(3, 4) then fac(6) else rem(10, 3) (4.7)

where max, fac, rem are user-declared function names. Of course when we come to
evaluate such expressions we will have to know how to handle calls to these functions.
So with every function name we will assume a declaration such as

max(x, y) ⇐ if less(x, y) then y else x

Then when evaluating the Boolean condition in (4.7) we end up evaluating the body in
the declaration of max, with the formal parameters, x and y instantiated by the actual
parameters 3 and 4. That is we end up evaluating the expression if less(3, 4) then 4 else 3.
This in turn will require the evaluation of the expression less(3, 4), which in turn will
depend on some declaration of the function less.

The extended syntax is given in Figure 4.10. The language Fpl is obtained from
ExpB by adding one extra clause to the BNF definition. We now allow expressions
of the form f (E1, . . . , Ek) where f comes from some predefined set of function names
Fnames. In addition we assume some collection of function definitions, one for each
function name used; we call such a collection a declaration set. A typical declaration

Draft: January 9, 2013 85

Semantics Trinity term 2013

E ∈ Fpl ::= v

| (E + E) | (E × E) | let x = E in E

| E and E | ¬ E | E = E | if E then E else E

f (F1, . . . , Fk), k > 0, f ∈ Fnames
v ∈ Val ::= x ∈ Vars | n ∈ Nums | tt | ff

Figure 4.10: The language Fpl

f1(x1, . . . , xk1)⇐ E1

. . .⇐ . . .

fi(x1, . . . , xki)⇐ Ei

. . .⇐ . . .

fn(x1, . . . , xkn)⇐ En

Sanity conditions:

(1) Ei can only use fellow function names f1, . . . , fn
(2) Ei can only use variables x1, . . . , xik , all of which are distinct
(3) number of arguments in f (x1, . . . , xk) determined by name f

Figure 4.11: Declaration set D

set would look like:

even(x)⇐ if x = 0 then 0 else minus(odd(minus(x, 1)), 1)
odd(x)⇐ if x = 0 then 1 else even(minus(x, 1)) + 1

minus(x, y)⇐ if x = y then 0 else

let z = minus(x, y + 1) in (1 + z)
less(x, y)⇐ if x = 0 then tt else if y = 0 then ff else (4.8)

less(minus(x, 1),minus(y, 1))
rem(x, y)⇐ if (less(x, y) and ¬ x = y) then x else

rem(minus(x, y), y)

Notice that mutual dependencies are allowed. For example less uses a call to the
function minus in its body, even calls odd, which in turn uses a call to even. In the
sequel we use Dex to refer to this specific set of declarations.

The format for declaration sets is given in Figure 4.11. The first sanity condition (1)
says that the declaration set must be self-contained; any function named used must have

Draft: January 9, 2013 86

Semantics Trinity term 2013

(-)

v ⇓αD v

(-)

P1 ⇓
α
D n1 P2 ⇓

α n2

(P1 + P2) ⇓αD n3
n3 = add(n1, n2)

(-)

P ⇓αD m
E{|m/x|} ⇓αD n

let x = P in E ⇓αD n

(-)

P1 ⇓
α n1 P2 ⇓

α n2

(P1 × P2) ⇓αD n3
n3 = mult(n1, n2)

(-)

P1 ⇓
α
D bv1, P2 ⇓

α
D bv2

P1 and P2 ⇓
α
D bv

bv = conj(bv1, bv2)

(-)

P ⇓α bv

¬ P ⇓αD bv
′

bv′ = neg bv

(-.)

P1 ⇓
α
D v1, P2 ⇓

α
D v2

P1 = P2 ⇓
α
D tt

v1 = v2

(-.)

P1 ⇓
α
D v1, P2 ⇓

α
D v2

P1 = P2 ⇓
α
D ff

v1 , v2

(-.)

P ⇓αD tt, P2 ⇓
α
D v

if P then P1 else P2 ⇓
α
D v

(-.)

P ⇓αD ff, P2 ⇓
α
D v

if P then P1 else P2 ⇓
α
D v

(-)

P1 ⇓
e
D v1, . . . , Pk ⇓

e
D vk

F{|v1/x1|} . . . {|vk/xk|} ⇓
e
D v

f (P1, . . . , Pk) ⇓e
D v

D(f (x1, . . . , xk)) = F

(-)

F{|P1/x1|} . . . {|Pk/xk|} ⇓
l
D v

f (P1, . . . , Pk) ⇓l
D v

D(f (x1, . . . , xk)) = F

Figure 4.12: Big-step semantics of Fpl

an associated declaration. The second (2) merely says that whenever formal parameters
are replaced in the body of any declaration, the resulting expression is closed, that is
contains no free variables. The third says that each function symbol f has an explicit
number associated with it, telling how many arguments it expects. This is often refered
to as the arity of f .

Draft: January 9, 2013 87

Semantics Trinity term 2013

4.4.1 Big-step semantics
Fpl is an extension of the language ExpB, and thus we have the same problems with the
management of free and bound variables as before. But the techniques developed in
Section 4.1 are easily extended to the larger language. For example to calculate the set
of free-variables of an expression E from Fpl we just add to the clauses in the definition
of fv(E) given in Section 4.1 the extra clause

(iv) fv(f (E1, . . . , . . . , En)) = fv(E1) ∪ . . . ∪ fv(En)

while for substitution we add

(vi) f (E1, . . . , En){|P/x|} = f (E1{|
P/x|}, . . . , En{|

P/x|})

As this suggests we will continue to use P to denote an arbitrary program from Fpl,
that is an expression with no free variables.

The result of evaluating a program P in Fpl depends on the declaration set associ-
ated with the function names. For if this contains the declaration

arb(x, y) ⇐ if x = y then tt else x

then the result of evaluating the expression arb(tt, ff) should be tt, while if it contains
the declaration

arb(x, y) ⇐ if x = y then ff else y

then the result should be ff.
Consequently the judgements for the big-step semantics for Fpl take the form

P ⇓D v

where P is a program, D is a declaration set and v is a value. The inference rules for
all of the program constructs except function calls are inherited from ExpB; indeed the
only interest is in how to evaluate calls to user-declared functions.

Consider for example the evaluation of the expression minus(5, 4) relative to the
declaration set Dex given above. The obvious evaluation rule should dictate:

(1) Look up the declaration of the function minus.
(2) Substitute the actual parameters 5 and 4, in for the formal parameters x and y,

respectively, in the body of the definition to obtain a program.
(3) evaluate this resulting program.

So we end up evaluating the program

if 5 ≤ 4 then 0 else less(minus(5, 1),minus(4, 1))

However suppose we have to evaluate the more complicated expression minus(rem(24, 7), even(8)).
Here the arguments to the funcrion minus(−,−) are not values but other programs,
rem(24, 7) and even(8) respectively. There are (at least) two reasonable strategies to
follow:

Draft: January 9, 2013 88

Semantics Trinity term 2013

Eager: Here the parameters are evaluated before the function is called:

(1) First evaluate the actual parameters rem(24, 7) and even(8) to values; in
this case we will get 3 and 0 respectively.

(2) Substitute the resulting values, in this case 3 and 0, in for the formal param-
eters x and y, respectively, in the body of the definition to obtain a program.

(3) evaluate this resulting program.

In the end we have to evaluate the program

if 3 = 0 then tt else if 0 = 0 then ff else

let z = minus(3, 1 + 1) in (1 + z)

Lazy: Here the actual parameters are not evaluated prior to the call to the function:

(1) Look up the declaration of the function minus.
(2) Substitute the programs rem(24, 7) and even(8) in the body of the defini-

tion for the formal parameters x and y respectively.
(3) Evaluate the resulting program.

Here we end up evaluating

if rem(24, 7) = 0 then tt else

if even(8) = 0 then ff else

let z = minus(rem(24, 7), even(8) + 1) in (1 + z)

Thus for Fpl we have two different big-step semantics, one for each of these evalu-
ation strategies. The judgements are of the form

(i) P ⇓e
D v: eager evaluation

(ii) P ⇓l
D v: lazy evaluation

The inference rules are given in Figure 4.12, where all of the rules inherited from ExpB
are common to both strategies; in these we use the annotation α to indicate either the
eager or the lazy judgement. The only difference is in the evaluation of function appli-
cation, with the rules (-) and (); in these rules the notation D(f (x1, . . . , xk)) = F
means that the declaration set D contains a declaration of the form f (x1, . . . , xk) ⇐ F
for some term F.

An example inference of the judgement

minus(4, 3) ⇓e
D 1

is given in Figure 4.13; to save space we have omitted some applications of the trivial
rule (-) and we have used B(n1, n2) as an abbreviation of the program

if n1 = n2 then 0 else let z = minus(n1, n2 + 1) in (1 + z),

Draft: January 9, 2013 89

Semantics Trinity term 2013

. . .
(-)

(4 = 3) ⇓e
D ff

(-)
(3 + 1) ⇓e

D 4

(-)
(4 = 4) ⇓e

D tt
(-)

0 ⇓e
D 0

(-.)
B(4, 4) ⇓e

D 0
(-)

ms(4, 3 + 1) ⇓e
D 0

. . .
(-)

(1 + 0) ⇓e
D 1

(-)
let z = ms(4, 3 + 1) in 1 + z ⇓e

D 1
(-.)

B(4, 3) ⇓e
D 1

(-)
ms(4, 3) ⇓e

D 1

Figure 4.13: Example big-step derivation for Fpl

that is the body of the declaration of minus in which the actual values n1 and n2 re-
place the formal parameters x and y respectively. We also abbreviate minus(−,−) with
ms(−,−).

With the introduction of user-defined functions into the language we lose the prop-
erty of strong normalisation; that is we now longer have the property that for every
program P there exists a value v such that P ⇓e

D v (or indeed or P ⇓l
D v). As a simple

example consider the declaration

loop(x) ⇐ if x = 0 then tt else loop(x + 1)

Then it is easy to derive the judgement loop(0) ⇓e
D tt. But to derive loop(1) ⇓e

D tt

it would be necessary to first derive loop(2) ⇓e
D tt; this in turn would require a prior

derivation of loop(3) ⇓e
D tt, and so on. In other words if n > 0 then there is no value

v such that the judgement loop(n) ⇓e
D v can be derived using the inference rules of

Figure 4.12.

Exercise 33 Give a formal proof of this property of the function loop, for both the
eager and lazy semantics. Consult the argument given on page 45 in Chapter 3.1. �

Let us end this section with a brief comparison between the eager and lazy seman-
tics. Refering back to the derivation in Figure 4.13, it is easy to adapt it so as to derive
minus(4, 3) ⇓l

D 1, and indeed the actual derivation would not be very different. How-
ever in general the derivations in the lazy semantics are much larger than in the eager
semantics, because of the duplication of unevaluated programs. For example in the
derivation of the judgement

minus(rem(13, 5), 2) ⇓l
D 1

the program rem(13, 5) is evaluated at least twice, once in the equality test, and again
in the subsequent call to minus. Indeed in this subsequent call to minus it will again
be evaluated in the equality test, and again in the following call to minus. We thus get
a cascading number of re-evaluations of the original parameter rem(13, 5).

Draft: January 9, 2013 90

Semantics Trinity term 2013

However it is important to realise that our inference rules merely give a reference
formal semantics, and do not represent an implementation proposal. And in fact there
are many standard implementation techniques for the lazy semantics which avoid this
duplication of evaluations.

The lazy semantics also has certain advantages. First it can be used to simulate the
eager semantics, using the let x = . . . in . . . construct. For example to evaluate a
program P eagerly it is sufficient to replace each function call f (Q1, . . . ,Qn) in P with
the program

let x1 = Q1 in . . . let xn = Qn in f (x1, . . . , xn)

There are also certain cases in which the eager semantics provides no answer while
lazy semantics returns a value. As a simple example suppose we have the declaration

proj2(x, y)⇐ y

Then it is easy to check that

proj2(loop(2), 0) ⇓l
D 0

whereas there is no value v such that proj2(loop(2), 0) ⇓e
D v. The general problem is

that in the eager semantics arguments to functions are always evaluated, whether or not
they are actually needed.

Finally we can prove that the lazy semantics is guaranteed to provide any answers
which the eager semantics can provide. First a preliminary result.

Lemma 31 Suppose P ⇓l
D w. Then for every expression E containing at most one free

variable x, E{|w/x|} ⇓l v implies E{|P/x|} ⇓l v.

Proof: Here we need to use rule induction. For the purposes of the proof let us fix a
program P and a value w such that P ⇓l

D w. Then let P(E, v) be the predicate which
says: E{|P/x|} ⇓l v. We prove E{|w/x|} ⇓l

D v implies P(E, v) by induction on the size of the
derivation of the judgement E{|w/x|} ⇓l

D v using the rules in Figure 4.12.
The proof now proceeds by an analysis of this derivation, and in particular the last

rule used. In all there are eleven possibilities. One possibility is that the last rule used
is (-), so that the expression E is x and so the values v and w coincide. In this case
P(E, v) is trivial.

The most interesting case is when the rule (-) is used. Here suppose for conve-
nience that E has the form f (G), a function which takes only one argument. Then we
know f has a declaration in D, say D(f (x1)) = F, and the judgement F{|(G{|w/x|})/x1|} ⇓

l
D v

can be derived; moreover the size of its derivation is strictly smaller than that of
f (G{|w/x|}) ⇓l

D v. Also because x1 is the only variable allowed in the declaration F, the
expression F{|(G{|w/x|})/x1|} can be written as (F{|G/x1|}){|w/x|}.

So we can apply induction to obtain (F{|G/x1|}){|P/x|}⇓l
D v. Once more this can rewritten

as F{|(G{|P/x|})/x1|}, because x can not appear in F, and so an application of the rule (-)

gives the required f (G{|P/x|}) ⇓l
D v.

There are still nine other cases to consider, but all are completely straightforward.
�

Draft: January 9, 2013 91

Semantics Trinity term 2013

(-.)

Pi→
e
D P′i , 1 ≤ i ≤ k

f (P1, . . . , Pi, . . . , Pk)→e
D f (P1, . . . , P′i , . . . , Pk)

(-.)

f (v1, . . . , vk)→e
D F{|v1/x1|} . . . {|vk/xk|}

D(f (x1, . . . , xk)) = F

(-)

f (P1, . . . , Pk)→l
D F{|P1/x1|} . . . {|Pk/xk|}

D(f (x1, . . . , xk)) = F

Figure 4.14: Small-step semantics of Fpl: function application

Exercise 34 Show that the result in this lemma is also true for the eager semantics. �

Theorem 32 For every program in Fpl, P ⇓e
D v implies P ⇓l

D v.

Proof: Here again we use rule induction. Let P(P, v) denote the predicate P ⇓l
D v. We

prove P⇓e
D v implies P(P, v) by induction on the size of the derivation of the judgement

P ⇓e
D v.
The proof proceeds by an analysis of this derivation, and in particular the last rule

used. In all there are eleven possibilities, corresponding to each of the rules in Fig-
ure 4.12. Here we examine only one, the most interesting case (-): P has the form
f (Q), the function f has a declaration in D, that is D(f (x)) = F for some F, and we
know both Q⇓e

D w can be derived for some value w, and F{|v/x|} ⇓e
D v can also be derived;

for the sake of simplicity we are assuming that the function f only takes one argument.
At this point we can use induction, since the derivations of Q ⇓e

D w and F{|w/x|} ⇓e
D v

are strictly smaller than that of f (Q) ⇓e
D v. This gives us

(a) Q ⇓l
D w

(b) F{|w/x|} ⇓l
D v

But now we can apply the previous lemma to (b) to obtain F{|Q/x|}⇓l
Dv, and an application

of (-) gives the required f (Q) ⇓l
D v.

4.4.2 Small-step semantics
Here we also have two evaluation rules, for the eager and lazy strategies, and both are
relative to a declaration set for function names. The semantics uses the judgements of
the form

P→e
D Q P→l

D Q

Draft: January 9, 2013 92

Semantics Trinity term 2013

respectively, and both inherit all the inference rules from Figure 4.6. We just need to
add rules for evaluating function applications; these are given in Figure 4.14.

First let us consider eager evaluation. Intuitively to execute the program f (P1, . . . , Pn):

(i) Start evaluating any of the actual parameters P1, . . . , Pn.

(ii) If all parameters Pi are already evaluated, say to the values vi, look up the defini-
tion of f in the declaration set, say F.

(iii) Substitute the actual value parameters vi in for the corresponding formal param-
eter in the body of the declaration of f , namely F.

(iv) Start executing the resulting program.

The rule (-.) in Figure 4.14 corresponds to (i) above, whereas (ii) - (iv) are for-
malised in the rule (-.).

Eager evaluation is easier. To execute f (P1, . . . , Pn):

(i) Look up the definition of f in the declaration set, to obtain the declaration F.
(ii) Substitute the actual parameters Pi in for the corresponding formal parameter in

the body of the declaration of f , namely F.
(iii) Start executing the resulting program.

This is formalised in one rule, (-).

Exercise 35 Show that this small-step semantics for Fpl is consistent with the big-step
semantics. That is prove, for α = e or l,

• P ⇓αD v implies P→α ∗
D v

• Conversely, P→α ∗
D v implies P ⇓αD v. �

Exercise 36 The small-step eager semantics in Figure 4.14 does not really specify
left-to-right evaluation, as the actual parameters to a function can be evaluated in any
order. Modify the rules so that evaluation is from left to right. �

4.4.3 Typing functions
The functional language Fpl is an extension of ExpB, and so inherits all of the problems
of run-time errors discussed in Section 4.2; moreover the introduction of functions in-
troduces even more. For example the execution of the program minus(less(1, 2), even(3))
will lead to a run-time error because the function minus expects both its arguments to
be numerals, and less(1, 2) returns a Boolean. Luckily the approach of Section 4.3 to
eliminating this errors via types is easily extended to the current language Fpl.

In ExpB there are already function symbols, such as + and and, and the type infer-
ence rules in Figure 4.8 dictate the manner in which these operations may be applied in
expressions. For example the rule (-.) says that the function + may only be applied
to arguments which are or evaluate to numerals, while (-.) says that and may only
be applied to Booleans. But (-.) also dictates that expressions formed with +, that is

Draft: January 9, 2013 93

Semantics Trinity term 2013

Types: τ ::= base | τf

base ::= int | bool
τf ∈ function ::= (base1, . . . , basek)→ base, k ≥ 1

Type environments: Γ ::= | Γ, x : base | Γ, f : τf

Environment look-up:

(-1)

Γ, u :τ ` u :τ

(-2)

Γ ` u2 :τ2

Γ, u1 :τ ` u2 :τ2
u1 , u2

Figure 4.15: Types and environments for Fpl

of the form (E1 + E2) can only be used where arithmetic expressions are expected. So
for example (E1 + E2) × 3 is allowed, whereas ¬ (E1 + E2) is incorrect.

We need similar rules for each of the function symbols used in Fpl. For each f we
need to know:

(i) the type of arguments to which it can be applied, the input types, and their number
(ii) the type of value an application of f returns, its output type.

For example we would expect that less should only be applied to two arguments, each
of type int, and that it will return a value of type bool. So we associate with less the
type (int, int)→ bool. More generally we need to associate with each function symbol
a type of the form

(base1, . . . , basek)→ base

where basei are the input types and base is the output type; incidently here k is the
arity of the function symbol, dictating how many arguments it expects. Since we only
have two kinds of values in the language, all of these types can only be either int for
numerals, or bool for Booleans. This revision of types, and type environments required
for Fpl is reported in Figure 4.15; the environment look-up rules are inherited directly
from Figure4.7.

In principle one might try to calculate the appropriate types for the function sym-
bols from the corresponding definitions in a declaration set D. But here we avoid this
algorithmic issue and confine our attention to typechecking; that is given a proposed
set of types for the function symbols how do we check that there are in fact appropriate.
So we extend the type inference systems from Section 4.3.1 to Fpl. As before we will
have judgements of the form

Γ ` E

Draft: January 9, 2013 94

Semantics Trinity term 2013

(-)

Γ ` P1 : τ1
. . .
Γ ` Pk : τk

Γ ` f : (τ1, . . . τk)→ τ

Γ ` f (P1, . . . , Pk) : τ

(-)

x1 : τ1, . . . , xk : τk ` F : τ
Γ ` f : (τ1, . . . τk)→ τ

Γ ` f (x1, . . . , xk)⇐ F

Figure 4.16: Typing functions

. . .
(-)

Γex ` less : (int, int)→ bool

(-)
Γex ` ms : (int, int)→ int
Γex ` 3 : int
Γex ` 2 : int

(-)
Γex ` ms(3, 2) : int

(-)
Γex ` rem : (int, int) →
int
Γex ` 7 : int
Γex ` 4 : int

(-)
Γex ` rem(7, 4) : int

(-)
Γex ` less(ms(3, 2), rem(7, 4)) : bool

Figure 4.17: An example type inference for Fpl

where E is an expression in Fpl and Γ is an environment which contains type associ-
ations for function names, in addition to those for variables, as in Section 4.3.1. The
rules for forming type environments, and how to look-up type associations, are given in
Figure 4.15; these are a very minor extension of the the corresponding rules for ExpB,
in Figure 4.7. Note that in Figure 4.15 u is a meta-variable which now ranges over both
variables x and function symbols f .

The type inference system for Fpl uses all of the rules for ExpB in Figure 4.8;
we only need an extra rule for typing the use of function symbols. The rule (-) in
Figure 4.16 says that in order to assign a type to a function application

Γ ` f (P1, . . . , Pk) : τ

it is necessary to

(i) assign a type to the functions symbol, Γ ` f : (τ1, . . . τk)→ τ
(ii) and assign to each of the arguments to the function the appropriate type, Γ ` Pi :

τi.

Draft: January 9, 2013 95

Semantics Trinity term 2013

Example Suppose Γex contains the following type associations:

even : int→ int

odd : int→ int

minus : (int, int)→ int

less : (int, int)→ bool

rem : (int, int)→ int

Then we can use the inference rules to derive the judgement

Γex ` less(minus(3, 2), rem(10, 4)) : bool

The structure of the derivation is given in Figure 4.17, where again we abbreviate
minus(−,−) with ms(−,−): We also use (-) to refer to the repeated use of the look-
up rules (-1) and (-2) in order to scan the type environment from right to left
to search for an entry, as in Section 4.3.1. We have also omitted explicit references to
applications of the simple rule (-). �

However the single rule (-) is not sufficient. We also have to ensure that when
a call is actually made to a function the subsequent behaviour is in accord with its de-
clared type. For example when we call the function less on the arguments minus(3, 2)
and rem(7, 4) we have to ensure that the body of the function treats the arguments as
integers, and returns a Boolean value in the former case and a numeral in the latter. In
other words we have to also typecheck the function definitions.

The rule (-) in Figure 4.16 says that in order to typecheck a declaration

Γ ` f (x1, . . . , xk)⇐ F

it is necessary to:

(i) have a type association for the function symbol, Γ ` f : (τ1, . . . τk)→ τ
(ii) ensure that the type of body of the function F accords with this type. This means

that, assuming the formal parameters xi have the appropriate type τi, the body F
can be assigned the correct output type, namely τ.

For example consider the declaration of the function less in the declaration set Dex:

less(x, y)⇐ if x = 0 then tt else if y = 0 then ff else

less(minus(x, 1),minus(y, 1))

This declaration is well-typed relative to the environment Γex, as the outline derivation
of the judgement

Γex ` less(x, y)⇐ F

in Figure 4.18 demonstrates. F is used as an abbreviation for the body of less, which
in turn uses G as a further abbreviation for the inner if then else construct; we also
use the standard abbreviation ms(−,−) for minus(−,−).

It is appropriate, when working with expressions using function symbols which are
defined in a declaration set D, to build in to the typechecking inference a check that all
of the function declarations are well-typed. So let us introduce some notation for this.

Draft: January 9, 2013 96

Semantics Trinity term 2013

(-)
Γxy ` x = 0 : bool

(-)
Γxy ` tt : bool

(-)
Γxy ` y = 0 : bool

(-)
Γxy ` ff : bool

(-)
Γxy ` ms : (int, int)→ int
Γxy ` x : int
Γxy ` 1 : int

(-)
Γxy ` ms(x, 1) : int

(-)
Γex ` ms : (int, int)→ int
Γxy ` y : int
Γxy ` 1 : int

(-)
Γxy ` ms(y, 1) : int

Γxy ` less(ms(x, 1),ms(y, 1)) : bool

(-)
Γxy ` G : bool

(-)
Γxy ` F : bool

(-)
Γex ` less : (int, int)→ bool

(-)
Γex ` less(x, y)⇐ F

Abbreviations:

• F stands for if x = 0 then tt else G
• G stands for if y = 0 then ff else less(ms(x, 1),ms(y, 1))
• Γxy stands for the environment Γex, x : int, y : int

Figure 4.18: Typechecking a declaration

Definition We write Γ `D E whenever

(i) Γ ` E
(ii) Γ ` f (x1, . . . , xn)⇐ F, for every function declaration in the declaration set D. �

It is this form of typing judgement which should be used for programs in the language
Fpl. Moreover the results in Section 4.3.2 for the typing judgements for the language
ExpB can be extended to Fpl without too much difficulty.

Exercise 37 Prove a Progress result for this typechecking system for Fpl, correspond-
ing to Theorem 28. That is for every program P in Fpl which is not a value, prove that
`D P : τ implies there is some program Q such that P→α

D Q. The proof should apply
to both the eager and the lazy evaluation strategies. �

Exercise 38 Prove a Preservation result for Fpl, corresponding to Theorem 29. �

To prove these exercises it will be necessary to generalise Sanity, Proposition 25, and
the Substitution lemma, Theorem 27, in Section 4.3.2 to Fpl. �

Draft: January 9, 2013 97

