
Worksheet 4: Structural induction – Sample Answers

1. We must prove that, for any expression E, if E ⇓ n and E ⇓ n
′ then n = n′. We are asked to do this

by induction on the structure of the expression E.

Base Case: The base case is the case where E is a numeral. The only rule of the big-step semantics
that lets us infer that

numeral ⇓ something

is the axiom, so if E ⇓ n then E is n, and if also E ⇓ n
′ then it must be that n and n

′ are the same
numeral, that is, n = n′.

Inductive Step: The inductive step is the case where E is (E1 + E2). Again, by inspection of the
rules, E ⇓ n and E ⇓ n′ can only have been derived by using the rule for +, so we have derivations
of the form

E1 ⇓ n1 E2 ⇓ n2

(E1 + E2) ⇓ n

and
E1 ⇓ n

′

1
E2 ⇓ n

′

2

(E1 + E2) ⇓ n
′

where n = n1 + n2 and n′ = n′

1 + n′

2. Since we have both E1 ⇓ n1 and E1 ⇓ n
′

1
, and since E1 is

a subexpression of E, we can apply the inductive hypothesis to conclude that n1 = n′

1. Applying
the inductive hypothesis to E2 yields that n2 = n′

2, so it follows that n = n′, as required.

2. The function plusses is easy to define:

plusses(n) = 0

plusses((E1 + E2)) = plusses(E1) + plusses(E2) + 1.

As usual, in the case for the compound expression (E1 +E2), we are allowed to make use of plusses(E1)
and plusses(E2), since E1 and E2 are subexpressions of the expression we’re interested in.

3. The function nums is only a minor variation:

nums(n) = 1

nums((E1 + E2)) = nums(E1) + nums(E2).

Let P (E) be the property plusses(E) < nums(E). We will show by structural induction on E that
P (E) is true for every expression E.

Base case: Here E is a numeral, say n, and we need only look up the definitions of the two functions:

plusses(n) = 0 < 1 = nums(n)

Inductive Step: Here E has the form E1 + E2 and we may assume that the statement P is true of
E1 and E2. So we may assume

plusses(E1) < nums(E1)

plusses(E2) < nums(E2)

We refer to these assumptions as IH.



Now we look up the definition of the functions applied to E and P (E) follows by simple calculation:

plusses(E) = plusses(E1) + plusses(E2) + 1

(definition)

< nums(E1) + nums(E2) (IH)

Question: Can you justify the last step ?

By structural induction we may now conclude the P (E) is true for every expression E.

4. Let P (n) be the property
E →n E′ implies E + F →n E′ + F

We show, by mathematical induction, that P (n) is true for every natural number n.

Base case: We have to show P (0) is true; this case is pretty trivial. Note that E →0 G is only true
when G is equal to E, since E→0 G means that E evaluates to G in zero steps, that is in no steps.

Suppose E →0 E′. This mean E′ is E. Which means of course that E + F is E′ + F , that is
E + F →n E′ + F .
So, rather vacuously, P (0) is true.

Inductive step: Here we can assume P (k) is true; we call this IH, the induction hypothesis. Using
this we have show P (k + 1) is true; that is E →( k + 1)E′ implies E + F →(k+1) E′ + F .

So suppose E →(k+1) E′. Looking up the definition of →(k+1) in Slide 34, this means that there
is some G such that

(a) E →k G

(b) G → E′

But now we can apply IH to (a) to get E + F →k G + F . We can also apply the rule (s-left) on
Slide 16, to (b), to obtain G + F → E′ + F .
Now we can once more apply the definition on Slide 34 to obtain G + F →(k+1) E′ + F .

Because we have proved both the base case and the inductiove step, we can now conclude that P (n)
is true for every natural number n. So E →n E′ implies E + F →n E′ + F .

5. The proof is very similar in structure to that of the last question. But we use P (n) defined by

E →n E′ implies m + E →n
m + E′

Also in the inductive case an application of the rule (s-left) is used, instead of (s-right).

6. Suppose

(a) E1 →
∗
n1

(b) E2 →
∗
n1

So from (a) we know that there is some k1 such that E1 →k1
n1. Applying the last result but one to

this, we have that
E1 + E2 →

k1
n1 + E2

Also (b) means that for some k2, E2 →
k2

n2. Applying the last result to this we get we get

n1 + E2 →
k2

n1 + n2

Putting these two evaluations together we obtain

E1 + E2 →
(k1+k2)

n1 + n2



A final application of the rule (s-add) gives

E1 + E2 →
(k1+k2)+1

n

because n1 + n2 = n.

7. Omitted

8. We are asked to prove that whenever a reduction E → E′ is derivable, plusses(E) = plusses(E′) + 1.
Let us call this statement P (E); We shall prove P (E) to be true by structural induction induction on
E.

Base Case: The base case is that E is a numeral, say n. Here P (E) is vacuously true since n→ E′

for no E′; in other words plusses(n) = plusses(E′) + 1 for every E′ such that n→ E′.

Inductive Step: Here we can assume that E is E1 + E2 and that P (E1) and P (E2) are both true;
and from this we have to prove P (E1 + E2) to be true.

So let
E1 + E2 → E′ (1)

We must show, using P (E1) and P (E2), that plusses(E1 + E2) = plusses(E′) + 1. From the
definition of this function we know

plusses(E1 + E2) = 1 + plusses(E1) + plusses(E2)

and so we have to prove
plusses(E1) + plusses(E2) = plusses(E′) (2)

Let us look at how E′ is generated from (1) above. There are three possible ways in which this
move could have been generated.

(a) E′ actually is E′

1 + E2 and E1 → E′

1.
Here

plusses(E1) + plusses(E2) = plusses(E′

1) + 1 + plusses(E2) using P (E1)

= plusses(E′

1 + E2) by the definition of plusses

= plusses(E′)

This is what we are required to prove in (2) above.

(b) Here E1 is a numeral, say n1, E′ is n1 + E′

2, where E2 → E′

2.
Now we do some calculations, using P (E2):

plusses(E1) + plusses(E2) = 0 + plusses(E2)

= 0 + plusses(E′

2) using P (E2)

= plusses(E′) by the definition of plusses

(c) The third possibility is that both E1 and E2 are numerals, say n1 and n2 respectively. Here
E′ must also be a numeral, say n3, where n3 = n1 + n2.
Here the calculations are straightforward: plusses(E1)+plusses(E2) is the same as plusses(E′)
since the number of plusses in all of E1, E2, E3 is zero.

9. We must prove, by induction on the structure of expressions, that for any expression E,

if E is not a numeral, then E → E′ for some E′.

Let us denote this property by P (E).



Base Case: This is the case of a numeral. There is nothing to prove, since the property only talks
about expressions which are not numerals.

Inductive Step: The case of an expression (E1 + E2). Here we may assume that both P (E1) and
P (E2) are true. These we will refer to as the inductive hypotheses, IH(E1) and IH(E2).

Let us first apply the inductive hypothesis to IH(E1). This means that, if E1 is not a numeral,
then E1→E′

1 for some E′

1. But then by applying a rule, we can deduce that (E1+E2)→(E′

1+E2).
So, if E1 is not a numeral, we have done what was needed.

However E1 may be a numeral, say n1. In this case we cannot use this argument since the inductive
hypothesis IH(E1) does not tell us anything. But we still have IH(E2) to apply. This means
that if E2 is not a numeral, then E2 → E′

2. Since E1 is the numeral n1, we can apply the other
rule to deduce that n1 + E2 → n1 + E′

2, which is what we need.

We still have to consider the case when E2 is also a numeral, call it n2. Again here IH(E2) tells
us nothing. But in this case, the axiom tells us that n1 + n2 → n3 where n3 = n1 + n2, which is
what we needed.

So, in all cases, the expression (E1 + E2) → something, as required. That is we have proved
P (E1 + E2), under the assumptions P (E1) and P (E2).

By structural induction we may now conclude the P (E) is true for every expression E, that for every
E, E → something.

10. We are asked to combine the above two observations to argue that for any expression E, there is a
numeral n such that E →∗

n.

By question (9), every expression which is not a numeral can be reduced. So, the only way it is possible
for an expression E to fail to reach a numeral after many steps of reduction is if it can be reduced
forever, that is, if there is an infinite sequence

E → E1 → E2 → E3 → · · ·

By question (8), this is impossible: since plusses(E) is a finite number and it reduces by one every time
we perform a step of evaluation using →, every evaluation sequence starting at E must be finite. It
follows that every such sequence eventually reaches a numeral, as required.

This argument is quite interesting: we have used the function plusses to measure how far an expression
is from reaching a final answer. In real programming languages, it is not possible to do this, especially
when infinite loops are possible!

11. To give a similar argument for the larger language incorporating × as well as +, the best plan is

• Define a function operations which counts the number of operations in an expression. That is, it
counts both the + symbols and the × symbols together.

• Show that every reduction E → E′ deals with exactly one operation.

• Show that every non-numeral can be reduced.

• Use the same argument to show that there are no infinite reduction sequences and hence that
every expression eventually reaches a numeral.


