Worksheet 4: Structural induction – Sample Answers

- 1. We must prove that, for any expression E, if $E \Downarrow \mathbf{n}$ and $E \Downarrow \mathbf{n}'$ then n = n'. We are asked to do this by induction on the structure of the expression E.
 - **Base Case:** The base case is the case where E is a numeral. The only rule of the big-step semantics that lets us infer that

numeral \Downarrow something

is the axiom, so if $E \Downarrow n$ then E is n, and if also $E \Downarrow n'$ then it must be that n and n' are the same numeral, that is, n = n'.

Inductive Step: The inductive step is the case where E is $(E_1 + E_2)$. Again, by inspection of the rules, $E \Downarrow \mathbf{n}$ and $E \Downarrow \mathbf{n}'$ can only have been derived by using the rule for +, so we have derivations of the form $\frac{E_1 \Downarrow \mathbf{n}_1 \quad E_2 \Downarrow \mathbf{n}_2}{(E_1 + E_2) \Downarrow \mathbf{n}}$

and

$$\frac{E_1 \Downarrow \mathbf{n}_1' \quad E_2 \Downarrow \mathbf{n}_2'}{(E_1 + E_2) \Downarrow \mathbf{n}'}$$

where $n = n_1 + n_2$ and $n' = n'_1 + n'_2$. Since we have both $E_1 \Downarrow n_1$ and $E_1 \Downarrow n'_1$, and since E_1 is a subexpression of E, we can apply the inductive hypothesis to conclude that $n_1 = n'_1$. Applying the inductive hypothesis to E_2 yields that $n_2 = n'_2$, so it follows that n = n', as required.

2. The function plusses is easy to define:

$$\begin{array}{lll} \mathsf{plusses}(\mathsf{n}) &=& 0 \\ \mathsf{plusses}((E_1+E_2)) &=& \mathsf{plusses}(E_1) + \mathsf{plusses}(E_2) + 1. \end{array}$$

As usual, in the case for the compound expression $(E_1 + E_2)$, we are allowed to make use of $\mathsf{plusses}(E_1)$ and $\mathsf{plusses}(E_2)$, since E_1 and E_2 are subexpressions of the expression we're interested in.

3. The function **nums** is only a minor variation:

Let P(E) be the property $\mathsf{plusses}(E) < \mathsf{nums}(E)$. We will show by structural induction on E that P(E) is true for every expression E.

Base case: Here E is a numeral, say n, and we need only look up the definitions of the two functions:

$$plusses(n) = 0 < 1 = nums(n)$$

Inductive Step: Here *E* has the form $E_1 + E_2$ and we may assume that the statement *P* is true of E_1 and E_2 . So we may assume

$$plusses(E_1) < nums(E_1)$$

 $plusses(E_2) < nums(E_2)$

We refer to these assumptions as IH.

Now we look up the definition of the functions applied to E and P(E) follows by simple calculation:

Question: Can you justify the last step ?

By structural induction we may now conclude the P(E) is true for every expression E.

4. Let P(n) be the property

$$E \to^n E'$$
 implies $E + F \to^n E' + F$

We show, by mathematical induction, that P(n) is true for every natural number n.

Base case: We have to show P(0) is true; this case is pretty trivial. Note that $E \to^0 G$ is only true when G is equal to E, since $E \to^0 G$ means that E evaluates to G in zero steps, that is in no steps. Suppose $E \to^0 E'$. This mean E' is E. Which means of course that E + F is E' + F, that is $E + F \to^n E' + F$.

So, rather vacuously, P(0) is true.

- **Inductive step:** Here we can assume P(k) is true; we call this IH, the induction hypothesis. Using this we have show P(k+1) is true; that is $E \rightarrow (k+1)E'$ implies $E + F \rightarrow (k+1)E' + F$. So suppose $E \rightarrow (k+1)E'$. Looking up the definition of $\rightarrow^{(k+1)}$ in Slide 34, this means that there
 - (a) $E \to^k G$

is some G such that

(b) $G \to E'$

But now we can apply IH to (a) to get $E + F \rightarrow^k G + F$. We can also apply the rule (s-LEFT) on Slide 16, to (b), to obtain $G + F \rightarrow E' + F$.

Now we can once more apply the definition on Slide 34 to obtain $G + F \rightarrow^{(k+1)} E' + F$.

Because we have proved both the base case and the inductive step, we can now conclude that P(n) is true for every natural number n. So $E \to {}^{n}E'$ implies $E + F \to {}^{n}E' + F$.

5. The proof is very similar in structure to that of the last question. But we use P(n) defined by

 $E \rightarrow^{n} E'$ implies $\mathbf{m} + E \rightarrow^{n} \mathbf{m} + E'$

Also in the inductive case an application of the rule (S-LEFT) is used, instead of (S-RIGHT).

- 6. Suppose
 - (a) $E_1 \rightarrow^* \mathbf{n}_1$
 - (b) $E_2 \rightarrow^* \mathbf{n_1}$

So from (a) we know that there is some k_1 such that $E_1 \rightarrow^{k_1} n_1$. Applying the last result but one to this, we have that

$$E_1 + E_2 \rightarrow^{k_1} \mathbf{n_1} + E_2$$

Also (b) means that for some $k_2, E_2 \rightarrow^{k_2} n_2$. Applying the last result to this we get we get

$$\mathbf{n}_1 + E_2 \rightarrow^{k_2} \mathbf{n}_1 + \mathbf{n}_2$$

Putting these two evaluations together we obtain

$$E_1 + E_2 \rightarrow^{(k_1 + k_2)} \mathbf{n_1} + \mathbf{n_2}$$

A final application of the rule (s-add) gives

$$E_1 + E_2 \to (k_1 + k_2) + 1$$
 n

because $n_1 + n_2 = n$.

7. Omitted

- 8. We are asked to prove that whenever a reduction $E \to E'$ is derivable, $\mathsf{plusses}(E) = \mathsf{plusses}(E') + 1$. Let us call this statement P(E); We shall prove P(E) to be true by structural induction induction on E.
 - **Base Case:** The base case is that E is a numeral, say n. Here P(E) is vacuously true since $n \to E'$ for no E'; in other words $\mathsf{plusses}(n) = \mathsf{plusses}(E') + 1$ for every E' such that $n \to E'$.
 - **Inductive Step:** Here we can assume that E is $E_1 + E_2$ and that $P(E_1)$ and $P(E_2)$ are both true; and from this we have to prove $P(E_1 + E_2)$ to be true. So let

$$E_1 + E_2 \to E' \tag{1}$$

We must show, using $P(E_1)$ and $P(E_2)$, that $\mathsf{plusses}(E_1 + E_2) = \mathsf{plusses}(E') + 1$. From the definition of this function we know

$$plusses(E_1 + E_2) = 1 + plusses(E_1) + plusses(E_2)$$

and so we have to prove

$$\mathsf{plusses}(E_1) + \mathsf{plusses}(E_2) = \mathsf{plusses}(E') \tag{2}$$

Let us look at how E' is generated from (1) above. There are three possible ways in which this move could have been generated.

(a) E' actually is $E'_1 + E_2$ and $E_1 \to E'_1$. Here

$$\begin{aligned} \mathsf{plusses}(E_1) + \mathsf{plusses}(E_2) &= \mathsf{plusses}(E_1') + 1 + \mathsf{plusses}(E_2) & \text{using } P(E_1) \\ &= \mathsf{plusses}(E_1' + E_2) & \text{by the definition of } \mathsf{plusses} \\ &= \mathsf{plusses}(E') \end{aligned}$$

This is what we are required to prove in (2) above.

(b) Here E_1 is a numeral, say \mathbf{n}_1 , E' is $\mathbf{n}_1 + E'_2$, where $E_2 \to E'_2$. Now we do some calculations, using $P(E_2)$:

$$\begin{aligned} \mathsf{plusses}(E_1) + \mathsf{plusses}(E_2) &= 0 + \mathsf{plusses}(E_2) \\ &= 0 + \mathsf{plusses}(E'_2) & \text{ using } P(E_2) \\ &= \mathsf{plusses}(E') & \text{ by the definition of plusses} \end{aligned}$$

- (c) The third possibility is that both E₁ and E₂ are numerals, say n₁ and n₂ respectively. Here E' must also be a numeral, say n₃, where n₃ = n₁ + n₂. Here the calculations are straightforward: plusses(E₁) + plusses(E₂) is the same as plusses(E') since the number of plusses in all of E₁, E₂, E₃ is zero.
- 9. We must prove, by induction on the structure of expressions, that for any expression E,

if E is not a numeral, then $E \to E'$ for some E'.

Let us denote this property by P(E).

Base Case: This is the case of a numeral. There is nothing to prove, since the property only talks about expressions which are not numerals.

Inductive Step: The case of an expression $(E_1 + E_2)$. Here we may assume that both $P(E_1)$ and $P(E_2)$ are true. These we will refer to as the *inductive hypotheses*, $IH(E_1)$ and $IH(E_2)$. Let us first apply the inductive hypothesis to $IH(E_1)$. This means that, if E_1 is not a numeral, then $E_1 \rightarrow E'_1$ for some E'_1 . But then by applying a rule, we can deduce that $(E_1 + E_2) \rightarrow (E'_1 + E_2)$. So, if E_1 is not a numeral, we have done what was needed.

However E_1 may be a numeral, say \mathbf{n}_1 . In this case we cannot use this argument since the inductive hypothesis $IH(E_1)$ does not tell us anything. But we still have $IH(E_2)$ to apply. This means that if E_2 is not a numeral, then $E_2 \to E'_2$. Since E_1 is the numeral \mathbf{n}_1 , we can apply the other rule to deduce that $\mathbf{n}_1 + E_2 \to \mathbf{n}_1 + E'_2$, which is what we need.

We still have to consider the case when E_2 is also a numeral, call it \mathbf{n}_2 . Again here $IH(E_2)$ tells us nothing. But in this case, the axiom tells us that $\mathbf{n}_1 + \mathbf{n}_2 \rightarrow \mathbf{n}_3$ where $n_3 = n_1 + n_2$, which is what we needed.

So, in all cases, the expression $(E_1 + E_2) \rightarrow$ something, as required. That is we have proved $P(E_1 + E_2)$, under the assumptions $P(E_1)$ and $P(E_2)$.

By structural induction we may now conclude the P(E) is true for every expression E, that for every $E, E \rightarrow$ something.

10. We are asked to combine the above two observations to argue that for any expression E, there is a numeral **n** such that $E \to^* \mathbf{n}$.

By question (9), every expression which is not a numeral can be reduced. So, the only way it is possible for an expression E to fail to reach a numeral after many steps of reduction is if it can be reduced forever, that is, if there is an infinite sequence

$$E \to E_1 \to E_2 \to E_3 \to \cdots$$

By question (8), this is impossible: since $\mathsf{plusses}(E)$ is a finite number and it reduces by one every time we perform a step of evaluation using \rightarrow , every evaluation sequence starting at E must be finite. It follows that every such sequence eventually reaches a numeral, as required.

This argument is quite interesting: we have used the function **plusses** to measure how far an expression is from reaching a final answer. In real programming languages, it is not possible to do this, especially when infinite loops are possible!

- 11. To give a similar argument for the larger language incorporating \times as well as +, the best plan is
 - Define a function operations which counts the number of operations in an expression. That is, it counts both the + symbols and the × symbols together.
 - Show that every reduction $E \to E'$ deals with exactly one operation.
 - Show that every non-numeral can be reduced.
 - Use the same argument to show that there are no infinite reduction sequences and hence that every expression eventually reaches a numeral.