ABSTRACT NON-INTERFERENCE

Parameterizing Non-Interference by Abstract Interpretation

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica
Università di Verona
Italy

POPL'04 - Venice, January 15th, 2004
The problem: Protect data confidentiality from erroneous/malicious attacks while data are processed

- Attack = disclosing properties of confidential data
- Access control by declaring data privileges!
The problem: Protect data confidentiality from erroneous/malicious attacks while data are processed

⇒ Access control methods do not put constraints on how the information is propagated!
The Problem

The problem: Protect data confidentiality from erroneous/malicious attacks while data are processed

Description of the problem:

- Typing of data (and variables) in *private* (H) and *public* (L);
- **Non-Interference**: to prevent the results of the computation from leaking even partial information about private inputs!
 - **Explicit flow**: caused by directly passing private data to a public variable: $l := 2 \times h$;
 - **Implicit flow**: arise from control structure of the program:
    ```
    while $h$ do $l := l + 1; h := h - 1.$
    ```
- We consider only *terminating* computations!
The Goal

IT IS ESSENTIAL TO KNOW HOW MUCH AN ATTACKER MAY LEARN FROM A PROGRAM!

Goal: Automatically generate certificates about secure information flows
- Design of accurate security polices
- Static program analysis & verification techniques (types, CFA, DFA, ...)

Abstract Non-interference - Parameterizing Non-Interference by Abstract Interpretation – p.3/15
IT IS ESSENTIAL TO KNOW HOW MUCH AN ATTACKER MAY LEARN FROM A PROGRAM!

Goal: Automatically generate certificates about secure information flows

State of the art: Standard non-interference is far too restrictive

- No sensitive information can be disclosed
- Any change upon confidential data has not to be revealed by public ones
- Rigid security policy: L can flow into H but H cannot flow into L
 [Denning and Denning ’77]
The Goal

IT IS ESSENTIAL TO KNOW HOW MUCH AN ATTACKER MAY LEARN FROM A PROGRAM!

- **Goal:** Automatically generate certificates about secure information flows
- **State of the art:** Standard non-interference is far too restrictive

Question: Is there a way to characterize what kind of information flows?
- Characterize the secrecy degree of a program
- H can flow into L unless a given property of H is disclosed
- Weakening standard non-interference (a challenge in language-based security [Sabelfeld & Myers ’03])
while h do (l := l + 2; h := h - 1)
IDEA: Attackers as Abstract Interpretations

\[\text{while } h \text{ do } \begin{cases} l := l + 2; & h := h - 1 \end{cases} \]

6. There is an (implicit/absolute) flow from \(h \) into \(l \)
6. The parity of \(l \) is not affected by any change of \(h \)
6. ... no information flow for \(parity \)!
IDEA: Attackers as Abstract Interpretations

while \(h \) do (\(l := l + 2; \ h := h - 1 \))

The idea: Abstract non-interference

- Attackers as program analyzers
 - Attackers can analyze I/O behaviour of public data
 - Attackers perform “static” program analyses

\[\rightarrow\] Abstract interpretation is a general method for specifying approximate semantics of programs [Cousot & Cousot ’77]

Attacker are abstract interpretations of program semantics
IDEA: Attackers as Abstract Interpretations

The idea: Abstract non-interference

Main results:
- Generalizing non-interference relatively to the attacker’s power
- Making non-interference parametric on the attacker’s point of view
- Checking abstract non-interference by abstract interpretation
- Systematic method for deriving attackers for programs by modifying abstractions
- Abstract Robust Declassification
Related works

Refining security policies by constraining attackers
Characterizing released information
Related works

Refining security policies by constraining attackers

Complexity:
- Security levels corresponding to how complex is attacking the program
 [Lowe ’02]
Refining security policies by constraining attackers

Complexity:
- Security levels corresponding to how complex is attacking the program
 [Lowe ’02]

Quantitative measure:
- An absolute (approximate) quantitative evaluation of information leakage (number of statistical tests to disclose properties)
 [Di Pierro et al. ’02]
Related works

Characterizing released information

Quantitative measure:
- Quantification of the information flowed by information theory
 [D. Clark et al. ’03]
Related works

Characterizing released information

Quantitative measure:
- Quantification of the information flowed by information theory
 [D. Clark et al. ’03]

Robust declassification:
- The observational capability of the attacker is characterized by equivalence relations, then the information released is identified and declassified.
 [Zdancewic and Myers ’01]
The concrete domain $< C, \leq, \wedge, \vee, \bot, T >$

Lattice of abstract domains $\equiv \text{Abs}(C)$

$< \text{Abs}(C), \subseteq, \cap, \cup, T, C >$

$A_1 \subseteq A_2 \iff A_2 \subseteq A_1$ (A_1 more precise than A_2)
“One group of users [...] is noninterfering with another group of users if what the first group does [...] has no effect on what the second group of users can see” [Goguen & Meseguer '82]

Standard non-interference

\[\forall l : L, \forall h_1, h_2 : H. \llbracket P \rrbracket (h_1, l)^L = \llbracket P \rrbracket (h_2, l)^L \]
Standard non-interference

\[\forall l : L, \forall h_1, h_2 : H. \llbracket P \rrbracket (h_1, l)^L = \llbracket P \rrbracket (h_2, l)^L \]

Example:

\[
\textbf{while } h \textbf{ do } (l := l + 2; \ h := h - 1).\]
Standard non-interference

∀l : L, ∀h₁, h₂ : H. \[[P](h₁, l)^L = [P](h₂, l)^L \]

Example:

while h **do** (l := l + 2; h := h - 1).

- \(h = 0, \ l = 1 \) \(\rightarrow\) \(l = 1 \)
- \(h = 1, \ l = 1 \) \(\rightarrow\) \(l = 3 \)
- \(h = n, \ l = 1 \) \(\rightarrow\) \(l = 1 + 2n \)
Standard non-interference

\[\forall l : L, \forall h_1, h_2 : H. \llbracket P \rrbracket (h_1, l)^L = \llbracket P \rrbracket (h_2, l)^L \]

Example:

```
while h do (l := l + 2; h := h - 1).
```

- \(h = 0, \ l = 1 \) \(\leadsto \) \(l = 1 \)
- \(h = 1, \ l = 1 \) \(\leadsto \) \(l = 3 \)
- \(h = n, \ l = 1 \) \(\leadsto \) \(l = 1 + 2n \)

If \(l \) is unchanged then \(h \) is 0!

\(\leadsto \) There is an information flow from \(h \) into \(l \).
Standard non-interference

∀ l : L, ∀ h₁, h₂ : H. \(\llbracket P \rrbracket (h₁, l)^L = \llbracket P \rrbracket (h₂, l)^L \)

Example:

```plaintext
while h do (l := l + 2; h := h - 1).
```

<table>
<thead>
<tr>
<th>h</th>
<th>l</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>l = 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>l = 3</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>l = 1 + 2n</td>
</tr>
</tbody>
</table>

If l is unchanged then h is 0!
⇒ There is an information flow from h into l.

⇒ Note that if the input l is even/odd then the output l is even/odd!
Abstracting non-interference

Standard non-interference
\[\forall l \in L, \forall h_1, h_2 \in H. \ [P](h_1, l)^L = [P](h_2, l)^L \]

Consider \(\alpha, \eta \in Abs(\varphi(\forall^L)) \):
Abstracting non-interference I

Standard non-interference
$$\forall l : L, \forall h_1, h_2 : H. \, \mathcal{P}(h_1, l)^L = \mathcal{P}(h_2, l)^L$$

Consider $$\alpha, \eta \in \text{Abs}(\wp(\mathbb{V}^L))$$:

Narrow (abstract) non-interference $$[\eta] \mathcal{P}(\alpha)$$:
$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\mathcal{P}(h_1, l_1)^L) = \alpha(\mathcal{P}(h_2, l_2)^L)$$

- No change of $$H$$ values and $$\eta$$-equivalent $$L$$ values may affect the $$\alpha$$ abstraction of $$L$$ outputs.
- Possible deceptive interference due to $$\eta$$-undistinguished $$L$$ values!
- The more $$\eta$$ is precise the less deceptive interference appears.
Abstracting non-interference

Standard non-interference
\[\forall l : L, \forall h_1, h_2 : H. \; \sem{P}(h_1, l)^L = \sem{P}(h_2, l)^L \]

Consider \(\alpha, \eta \in \text{Abs}(\wp(\mathbb{N}^L)) \):

Narrow (abstract) non-interference \([\eta]P(\alpha)\):
\[\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\sem{P}(h_1, l_1)^L) = \alpha(\sem{P}(h_2, l_2)^L) \]

EXAMPLE: \([\text{id}]P(\text{Par})\)

\[
P = \text{while } h \text{ do } (l := l + 2; \ h := h - 1).
\]

\[
\begin{align*}
h &= 0, \ l = 1 & \Rightarrow & \ Par(l) = \text{odd} \\
h &= 1, \ l = 1 & \Rightarrow & \ Par(l) = \text{odd} \\
h &= n, \ l = 1 & \Rightarrow & \ Par(l) = \text{odd}
\end{align*}
\]
Abstracting non-interference I

Standard non-interference
\[\forall l : L, \forall h_1, h_2 : H. \ [P](h_1, l)^L = [P](h_2, l)^L \]

Consider \(\alpha, \eta \in \text{Abs}(\varphi(\forall l^L)) \):

Narrow (abstract) non-interference \([\eta]P(\alpha)\):
\[\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L) \]

EXAMPLE: \([id]P(Par)\)

```plaintext
P= while h do (l := l + 2; h := h - 1).

h = 0, l = 1 \Rightarrow Par(l) = \text{odd}

h = 1, l = 1 \Rightarrow Par(l) = \text{odd}

h = n, l = 1 \Rightarrow Par(l) = \text{odd}
```

If \(l \) is odd/even then, independently from \(h \), after the execution \(l \) is odd/even!
\[\sim \Rightarrow \text{There is not an information flow from } h \text{ into the parity of } l. \]
Abstracting non-interference I

Standard non-interference
\[\forall l : L, \forall h_1, h_2 : H. \ [P](h_1, l)^L = [P](h_2, l)^L \]

Consider \(\alpha, \eta \in Abs(\varphi(\forall^L)) \):

Narrow (abstract) non-interference \([\eta]P(\alpha) \):
\[\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L) \]

Example II: \([Par]P(\text{Sign})\)

\[P = l := 2 * l * h^2. \]
\[h = -3, l = -2 \ (Par(-2) = \text{even}) \Rightarrow Sign(l) = - \]
\[h = 1, l = -4 \ (Par(-4) = \text{even}) \Rightarrow Sign(l) = - \]
Abstracting non-interference I

Standard non-interference
\[\forall l : L, \forall h_1, h_2 : H. \, [P](h_1, l)^L = [P](h_2, l)^L \]

Consider \(\alpha, \eta \in \text{Abs}(\varphi(\mathbb{V}^L)) \):

Narrow (abstract) non-interference \([\eta]P(\alpha)\):
\[\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L) \]

Example II: \([Par]P(\text{Sign})\)

\[P = l := 2 \times l \times h^2. \]

<table>
<thead>
<tr>
<th>(h)</th>
<th>(l)</th>
<th>(Par(\text{even}))</th>
<th>(Sign(\text{calculated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>(Par(4) = \text{even})</td>
<td>(Sign(4) = +)</td>
</tr>
<tr>
<td>1</td>
<td>-4</td>
<td>(Par(-4) = \text{even})</td>
<td>(Sign(-4) = -)</td>
</tr>
</tbody>
</table>

The sign of the output \(l \) depends on the sign of the input \(l \!
\sim\sim \text{There is a DECEPTIVE FLOW!} \]
Abstracting non-interference I

Standard non-interference

\[\forall l : \mathbb{L}, \forall h_1, h_2 : \mathbb{H}. \quad \llbracket P \rrbracket (h_1, l)^L = \llbracket P \rrbracket (h_2, l)^L \]

Consider \(\alpha, \eta \in \text{Abs}(\varphi(\mathbb{V}^L)) \):

Narrow (abstract) non-interference \([\eta] P(\alpha)\):

\[\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\llbracket P \rrbracket (h_1, l_1)^L) = \alpha(\llbracket P \rrbracket (h_2, l_2)^L) \]

Example II: \([Par] P(\text{Sign})\)

\[P = l := 2 \times l \times h^2. \]

\[h = 1, \quad l = 4 \quad \text{(Par}(4) = \text{even}) \quad \sim \quad \text{Sign}(l) = + \]

\[h = 1, \quad l = -4 \quad \text{(Par}(-4) = \text{even}) \quad \sim \quad \text{Sign}(l) = - \]

The sign of the output \(l \) depends on the sign of the input \(l \)!

\[\sim \Rightarrow \text{There is a DECEPTIVE FLOW!} \]

\[\Rightarrow \text{We compute the semantics on the concrete value of the input } l! \]
Consider $\alpha, \eta \in \text{Abs}(\wp(\mathbb{N}^L))$:

Narrow (abstract) non-interference $[\eta]P(\alpha)$:

$\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\llbracket P \rrbracket(h_1, l_1)^L) = \alpha(\llbracket P \rrbracket(h_2, l_2)^L)$
Consider $\alpha, \eta \in \text{Abs}(\varphi(\forall^L))$:

Narrow (abstract) non-interference $[\eta]P(\alpha)$:

$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L)$

Abstracting non-interference $(\eta)P(\alpha)$:

$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)$

- No change of H values may affect the α abstraction of L outputs.
- No deceptive interference due to L data
Abstracting non-interference II

Consider $\alpha, \eta \in \text{Abs}(\varphi(\mathbb{V}^L))$:

Narrow (abstract) non-interference $[\eta]P(\alpha)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L)$$

Abstracting non-interference $(\eta)P(\alpha)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)$$

Example: $(\text{Par})P(\text{Sign})$

$$P = l := 2 * l * h^2.$$

- $h = -3, \text{Par}(l) = \text{even} \leadsto \text{Sign}(l) = \text{I don’t know}$
- $h = 1, \text{Par}(l) = \text{even} \leadsto \text{Sign}(l) = \text{I don’t know}$
Abstracting non-interference II

Consider \(\alpha, \eta \in \text{Abs}(\wp(\mathcal{W}^L)) \):

Narrow (abstract) non-interference \([\eta]P(\alpha)\):
\[
\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L)
\]

Abstracting non-interference \((\eta)P(\alpha)\):
\[
\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)
\]

Example: \((Par)P(\text{Sign})\)

\[
P = l := 2 \times l \times h^2.
\]

\(h = -3, \ Par(l) = \text{even} \leadsto \ Sign(l) = I \ don't \ know \)

\(h = 1, \ Par(l) = \text{even} \leadsto \ Sign(l) = I \ don't \ know \)

\(\leadsto \) There is not an information flow from \(h \) into the sign of \(l \).
Consider $\alpha, \eta \in \text{Abs}(\varphi(\mathbb{V}^L))$:

Narrow (abstract) non-interference $[\eta]P(\alpha)$:
$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L) = \alpha([P](h_2, l_2)^L)$

Abstracting non-interference $(\eta)P(\alpha)$:
$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)$

Example II: $(\text{id})P(\text{Par})$

$$P = l := l \ast h^2.$$

- $h = 2, \ l = 1 \leadsto \text{Par}(l) = \text{even}$
- $h = 3, \ l = 1 \leadsto \text{Par}(l) = \text{odd}$
- $h = n, \ l = 1 \leadsto \text{Par}(l) = \text{Par}(n)$
Abstracting non-interference II

Consider $\alpha, \eta \in \text{Abs}(\varphi(\mathcal{V}^L))$:

Narrow (abstract) non-interference $[\eta]\mathcal{P}(\alpha)$:

$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([\mathcal{P}](h_1, l_1)^L) = \alpha([\mathcal{P}](h_2, l_2)^L)$

Abstracting non-interference $(\eta)\mathcal{P}(\alpha)$:

$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([\mathcal{P}](h_1, \eta(l_1))^L) = \alpha([\mathcal{P}](h_2, \eta(l_2))^L)$

Example II: $(\text{id})\mathcal{P}(\text{Par})$

$$
\mathcal{P} = \text{l := l} * \text{h}^2.
$$

- $h = 2$, $l = 1 \leadsto \text{Par}(l) = \text{even}$
- $h = 3$, $l = 1 \leadsto \text{Par}(l) = \text{odd}$
- $h = n$, $l = 1 \leadsto \text{Par}(l) = \text{Par}(n)$

\leadsto The parity of h is flowing into l!
Consider $\alpha, \eta \in \text{Abs}(\wp(\mathcal{V}^L))$:

Narrow (abstract) non-interference $[\eta]P(\alpha)$:
$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, l_1)^L)) = \alpha([P](h_2, l_2)^L)$

Abstracting non-interference $(\eta)P(\alpha)$:
$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L)) = \alpha([P](h_2, \eta(l_2))^L)$

Example II: $(\text{id})P(\text{Par})$

\[
P = \ l := l \ast h^2.
\]

$h = 2, \ l = 1 \leadsto \ Par(l) = \text{even}$

$h = 3, \ l = 1 \leadsto \ Par(l) = \text{odd}$

$h = n, \ l = 1 \leadsto \ Par(l) = Par(n)$

\leadsto The parity of h is flowing into l!

\Rightarrow We are looking for flows from any possible property of h into l!
Consider $\alpha, \eta \in \text{Abs} (\wp (\mathbb{V}_L))$ and $\phi \in \text{Abs} (\wp (\mathbb{V}_H))$:

Abstracting non-interference $(\eta) \text{P}(\alpha)$:

$\eta (l_1) = \eta (l_2) \Rightarrow \alpha (\llbracket \text{P} \rrbracket (h_1, \eta (l_1))^L) = \alpha (\llbracket \text{P} \rrbracket (h_2, \eta (l_2))^L)$
Abstracting non-interference III

Consider $\alpha, \eta \in \text{Abs}(\phi(\mathbb{V}^L))$ and $\phi \in \text{Abs}(\phi(\mathbb{V}^H))$:

Abstracting non-interference $(\eta)\mathcal{P}(\alpha)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\llbracket \mathcal{P} \rrbracket(h_1, \eta(l_1))^L) = \alpha(\llbracket \mathcal{P} \rrbracket(h_2, \eta(l_2))^L)$$

Abstract non-interference $(\eta)\mathcal{P}(\phi \sim \llbracket \alpha \rrbracket)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha(\llbracket \mathcal{P} \rrbracket(\phi(h_1), \eta(l_1))^L) = \alpha(\llbracket \mathcal{P} \rrbracket(\phi(h_2), \eta(l_2))^L)$$

No change of ϕ-equivalent H values may affect the α abstraction of L outputs.

No deceptive interference due to L data;

ϕ does not flow into what α can see on the output
Abstracting non-interference III

Consider $\alpha, \eta \in \text{Abs}(\wp(\mathbb{V}_L))$ and $\phi \in \text{Abs}(\wp(\mathbb{V}_H))$:

Abstracting non-interference $(\eta)P(\alpha)$:
$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)$$

Abstract non-interference $(\eta)P(\phi \sim [\alpha])$:
$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](\phi(h_1), \eta(l_1))^L) = \alpha([P](\phi(h_2), \eta(l_2))^L)$$

Example: $(\text{id})P(\text{Sign} \sim [\text{Par}])$

$$P = l := l \times h^2.$$

$\text{Sign}(h) = +, \ l = 1 \sim \text{Par}(l) = l \text{ don’t know}$

$\text{Sign}(h) = -, \ l = 1 \sim \text{Par}(l) = l \text{ don’t know}$
Consider $\alpha, \eta \in \text{Abs}(\wp(\mathbb{V}^L))$ and $\phi \in \text{Abs}(\wp(\mathbb{V}^H))$:

Abstracting non-interference $(\eta)P(\alpha)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](h_1, \eta(l_1))^L) = \alpha([P](h_2, \eta(l_2))^L)$$

Abstract non-interference $(\eta)P(\phi \leadsto \alpha)$:

$$\eta(l_1) = \eta(l_2) \Rightarrow \alpha([P](\phi(h_1), \eta(l_1))^L) = \alpha([P](\phi(h_2), \eta(l_2))^L)$$

Example: $(\text{id})P(\text{Sign} \leadsto \text{Par})$

$$P = \begin{array}{c}
l := l * h^2.
\end{array}$$

$$\text{Sign}(h) = +, \ l = 1 \leadsto \text{Par}(l) = I \text{ don’t know}$$

$$\text{Sign}(h) = -, \ l = 1 \leadsto \text{Par}(l) = I \text{ don’t know}$$

\leadsto There is not an information flow from the sign of h into the parity of l.

Abstract Non-interference - Parameterizing Non-Interference by Abstract Interpretation – p.10/15
Basic properties

6 \[[\eta] P(\top) \]

6 \[[\eta] P(\alpha) \Rightarrow \forall \beta \subseteq \eta. [\beta] P(\alpha) \]

6 \[[\eta] P(\alpha) \Rightarrow \forall \beta \supseteq \alpha. [\eta] P(\beta) \]

6 \[\forall i. [\eta] P(\alpha_i) \Rightarrow [\eta] P(\bigcap_{i \in I} \alpha_i) \]
Basic properties

\[[\eta] P(\top) \]

\[[\eta] P(\alpha) \Rightarrow \forall \beta \subseteq \eta. [\beta] P(\alpha) \]

\[[\eta] P(\alpha) \Rightarrow \forall \beta \supseteq \alpha. [\eta] P(\beta) \]

\[\forall i. [\eta] P(\alpha_i) \Rightarrow [\eta] P(\bigcap_{i \in I} \alpha_i) \]

\[(\eta) P(\phi \rightsquigarrow \top) \]

\[(\eta) P(\phi \rightsquigarrow \alpha) \Rightarrow \forall \beta \supseteq \alpha. (\eta) P(\phi \rightsquigarrow \beta) \]

\[\forall i. (\eta) P(\phi \rightsquigarrow \alpha_i) \Rightarrow (\eta) P(\phi \rightsquigarrow \bigcap_{i \in I} \alpha_i) \]
Basic properties

\[\eta \] P(⊤)

\[\eta \] P(\alpha) \Rightarrow \forall \beta \subseteq \eta. [\beta] P(\alpha)

\[\eta \] P(\alpha) \Rightarrow \forall \beta \supseteq \alpha. [\eta] P(\beta)

\forall i. [\eta] P(\alpha_i) \Rightarrow [\eta] P(\bigcap_{i \in I} \alpha_i)

(\eta) P(\phi \sim id)

(\eta) P(\phi \sim \alpha) \Rightarrow \forall \beta \supseteq \alpha. (\eta) P(\phi \sim \beta)

\forall i. (\eta) P(\phi \sim \alpha_i) \Rightarrow (\eta) P(\phi \sim \bigcap_{i \in I} \alpha_i)

Standard non-interference: [id] P(id) = (id) P(id \sim id)
Basic properties

\[\eta \mapsto \top \]

\[\eta \mapsto \alpha \Rightarrow \forall \beta \subseteq \eta \cdot [\beta] \mapsto \alpha \]

\[\eta \mapsto \alpha \Rightarrow \forall \beta \supseteq \alpha \cdot [\eta] \mapsto \beta \]

\[\forall i \cdot [\eta] \mapsto \alpha_i \Rightarrow [\eta] \mapsto \bigcap_{i \in I} \alpha_i \]

\[(\eta) \mapsto \phi \sim [\top] \]

\[(\eta) \mapsto \phi \sim [\alpha] \Rightarrow \forall \beta \supseteq \alpha \cdot (\eta) \mapsto \phi \sim [\beta] \]

\[\forall i \cdot (\eta) \mapsto \phi \sim [\alpha_i] \Rightarrow (\eta) \mapsto \phi \sim [\bigcap_{i \in I} \alpha_i] \]

\[[\text{id}] \mapsto \text{id} \Rightarrow (\eta) \mapsto \text{id} \sim [\alpha] \Rightarrow (\eta) \mapsto \phi \sim [\alpha] \]
Basic properties

\[[\eta] P(\top) \]

\[[\eta] P(\alpha) \Rightarrow \forall \beta \subseteq \eta. [\beta] P(\alpha) \]

\[[\eta] P(\alpha) \Rightarrow \forall \beta \supseteq \alpha. [\eta] P(\beta) \]

\[\forall i. [\eta] P(\alpha_i) \Rightarrow [\eta] P(\bigsqcup_{i \in I} \alpha_i) \]

\[(\eta) P(\phi \sim[\top]) \]

\[(\eta) P(\phi \sim[\alpha]) \Rightarrow \forall \beta \supseteq \alpha. (\eta) P(\phi \sim[\beta]) \]

\[\forall i. (\eta) P(\phi \sim[\alpha_i]) \Rightarrow (\eta) P(\phi \sim[\bigsqcup_{i \in I} \alpha_i]) \]

\[[\eta] P(\alpha) \Rightarrow (\eta) P(\text{id} \sim[\alpha]) \Rightarrow (\eta) P(\phi \sim[\alpha]) \]
Basic properties

1. \([\eta]P(\top) \)
2. \([\eta]P(\alpha) \Rightarrow \forall \beta \sqsubseteq \eta \cdot [\beta]P(\alpha) \)
3. \([\eta]P(\alpha) \Rightarrow \forall \beta \sqsupseteq \alpha \cdot [\eta]P(\beta) \)
4. \(\forall i \cdot [\eta]P(\alpha_i) \Rightarrow [\eta]P(\bigcap_{i \in I} \alpha_i) \)
5. \((\eta)P(\phi \sim \top) \)
6. \((\eta)P(\phi \sim \alpha) \Rightarrow \forall \beta \sqsupseteq \alpha \cdot (\eta)P(\phi \sim \beta) \)
7. \(\forall i \cdot (\eta)P(\phi \sim \alpha_i) \Rightarrow (\eta)P(\phi \sim \bigcap_{i \in I} \alpha_i) \)

\[[\text{id}]P(\text{id}) \nRightarrow [\eta]P(\alpha) \text{ due to deceptive flows} \]
Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...)

[Giacobazzi & Ranzato ’97]

Designing abstractions = designing attackers
Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) [Giacobazzi & Ranzato '97]

Designing abstractions = designing attackers

Characterize the most concrete α such that $(\eta)P(\phi \leadsto \|\alpha)$

[The most powerful output attacker]
Deriving output attackers

The following theorems hold:

Consider \(\eta \in \text{Abs}(\mathcal{G}(\forall^L)) \):

We characterize the function \(\lambda \eta. [\eta][P](\text{id}) \) whose result is

\[
\cap \{ \beta \mid [\eta]P(\beta) \}.
\]
The following theorems hold:

6. Consider $\eta \in \text{Abs}(\varphi(\mathbb{V}^L))$:
 We characterize the function $\lambda \eta. [\eta][P](\text{id})$ whose result is
 \[\Pi \{ \beta \mid \eta P(\beta) \} \].

6. Consider $\eta \in \text{Abs}(\varphi(\mathbb{V}^L))$ and $\phi \in \text{Abs}(\varphi(\mathbb{V}^H))$:
 We characterize the function $\lambda \eta. (\eta)[P](\phi \sim \text{id})$ whose result is
 \[\Pi \{ \beta \mid (\eta)P(\phi \sim \beta) \} \].
Deriving output attackers

The following theorems hold:

1. Consider \(\eta \in Abs(\varphi(\mathbb{V}^L)) \):
 We characterize the function \(\lambda \eta. [\eta][P](id) \) whose result is
 \[
 \bigcap \{ \beta \mid [\eta]P(\beta) \}.
 \]

2. Consider \(\eta \in Abs(\varphi(\mathbb{V}^L)) \) and \(\phi \in Abs(\varphi(\mathbb{V}^H)) \):
 We characterize the function \(\lambda \eta. (\eta)[P](\phi \sim id) \) whose result is
 \[
 \bigcap \{ \beta \mid (\eta)P(\phi \sim \beta) \}.
 \]

\(\Rightarrow \) This would provide a certificate for security with a fixed input observation.
Deriving canonical attackers

Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) [Giacobazzi & Ranzato ’97]

Transforming abstractions = transforming attackers
Deriving canonical attackers

Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) \([\text{Giacobazzi & Ranzato '97}]\)

Transforming abstractions = transforming attackers

\[\begin{align*}
\text{Characterize the most concrete } \delta \text{ such that } (\delta) \mathcal{P}(\phi \sim \| \delta) \\
\text{[The most powerful } \textit{canonical} \text{ attacker]}
\end{align*} \]

\[\Rightarrow \text{ This would provide a certificate for security.} \]
Deriving canonical attackers

\[\lambda X. [X][P](\text{id}) \text{ is monotone on } Abs(\varphi(\{V\})). \]

\[[\alpha]P(\alpha) \iff \alpha = [\alpha][P](\text{id}). \]

\[lfp(\lambda X. [X][P](\text{id})) \text{ is the most concrete secure attacker for } P \text{ for narrow abstract non-interference.} \]
Deriving canonical attackers

\[\lambda X. \ [X][P](\text{id}) \text{ is monotone on } \text{Abs}(\wp(\mathcal{V}^L)). \]

\[[\alpha]P(\alpha) \iff \alpha = [\alpha][P](\text{id}). \]

\[\text{lfp}(\lambda X. \ [X][P](\text{id})) \text{ is the most concrete secure attacker for } P \text{ for narrow abstract non-interference.} \]

\[(\alpha)P(\phi \leadsto [\alpha]) \iff \alpha = (\alpha)[P](\phi \leadsto [\text{id}]) \]

\[\lambda X. \ (X)[P](\phi \leadsto [\text{id}] \sqcup X) \text{ is extensive on } \text{Abs}(\wp(\mathcal{V}^L)). \]

\[\text{fix}(\lambda X. \ (X)[P](\phi \leadsto [\text{id}] \sqcup X) \text{ is a secure attacker for } P \text{ for abstract non-interference.} \]
Deriving canonical attackers

Example:

\[P = \text{while } h \text{ do } (l := l \times 2; \ h := h - 1) \]

.... we derive a secure attacker \(\pi = \gamma (\{ n2^N \mid n \in 2^N + 1 \} \cup \{0\}) \):

\[(\pi)[P](id \sim \pi) \]

\(h = 0, \ \pi(l) = 32^N \sim \pi(l) = 32^N \)

\(h = 2, \ \pi(l) = 32^N \sim \pi(l) = 32^N \)

\(\sim \) In the program \(l \) is always multiplied by 2!
Abstract robust declassification

Consider a program P and its finite computations.

A passive attacker may be able to learn some information by observing the system but, by assumption, that information leakage is allowed by the security policy.

[Zdancewic and Myers 2001]
Abstract robust declassification

Consider a program \(P \) and its finite computations.

A passive attacker may be able to learn some information by observing the system but, by assumption, that information leakage is allowed by the security policy.

[Zdancewic and Myers 2001]

We want to characterize the most concrete *flow-irredundant* property such that

\[
(\eta)P(\phi \leadsto \alpha)
\]

[The maximal amount of information disclosed]

\(\Rightarrow \) This would provide a certificate for disclosed secrets.
Abstract robust declassification

Consider the program

\[P = l := l + (h \mod 3) \]

The transition system is such that \(< h, l > \rightarrow < h, l + (h \mod 3) > \).

Consider \(\eta(\varnothing(\mathbb{Z})) = \{\mathbb{Z}, [2, 4], [5, 8], \{5\}, \emptyset\} \) and \(\alpha = \text{id} \).
Abstract robust declassification

Consider the program

\[P = l := l + (h \mod 3) \]

The transition system is such that \(< h, l > \mapsto < h, l + (h \mod 3) > \).

Consider \(\eta(\varphi(\mathbb{Z})) = \{\mathbb{Z}, [2, 4], [5, 8], \{5\}, \emptyset\} \) and \(\alpha = \text{id} \).

The flow is revealed when \(h_1 \) and \(h_2 \) differs in the values \(h_1 \mod 3 \) and \(h_2 \mod 3 \)

\[\Rightarrow \phi = \gamma(\{3\mathbb{Z}, 3\mathbb{Z} + 1, 3\mathbb{Z} + 2\}) \]

is the maximal amount of information disclosed!
Discussion

We map security of programs into the lattice of abstract interpretations:
- systematic methods for designing attackers and certificates
- security degrees compared in the lattice
- checking abstract non-interference by static program analysis
We map security of programs into the lattice of abstract interpretations:

- systematic methods for designing attackers and certificates
- security degrees compared in the lattice
- checking abstract non-interference by static program analysis

Abstract non-interference is a semantics property

- the method is language independent (as any abstract interpretation)
- refined semantics may refine security:
 covert channels (termination, non-determinism, synchronization, probabilistic, etc...) is a matter of semantics!
Discussion

We map security of programs into the lattice of abstract interpretations:
- systematic methods for designing attackers and certificates
- security degrees compared in the lattice
- checking abstract non-interference by static program analysis

Abstract non-interference is a semantics property
- the method is language independent (as any abstract interpretation)
- refined semantics may refine security:
 covert channels (termination, non-determinism, synchronization, probabilistic, etc...) is a matter of semantics!

How far is any practical application?
- program slicing may help in checking program secrecy!
- the common abstraction which is not disclosed for all program slices will not be disclosed by the whole program...