GENERALIZED ABSTRACT NON-INTERFERENCE ABSTRACT SECURE INFORMATION-FLOW ANALYSIS FOR AUTOMATA

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica Università di Verona, Italy

MMM-ACNS, September 25, 2005

The Problem: Non-Interference

The Problem: Non-Interference

The Problem: Non-Interference

Security property: States which classes have not to interfere with other classes of objects.

Security Property: States which classes have not to interfere with other classes of objects.

J

Confinement problem [Lampson'73]: Preventing the results of computations leaking even partial information about the confidential inputs.

Security property: States which classes have not to interfere with other classes of objects.

Confinement problem [Lampson'73]: Preventing the results of computations leaking even partial information about the confidential inputs.

Non-interference policies require that any change upon confidential data has not to be revealed through the observation of public data.

- 6 Many real systems are intended to leak some kind of information
- 6 Even if a system satisfies non-interference, some kind of tests could reject it as insecure

Security property: States which classes have not to interfere with other classes of objects.

Confinement problem [Lampson'73]: Preventing the results of computations leaking even partial information about the confidential inputs.

Non-interference policies require that any change upon confidential data has not to be revealed through the observation of public data.

- 6 Characterizing released information: [Cohen'77], [Zdancewic & Myers'01], [Clark et al.'04], [Lowe'02];
- 6 Constraining attackers: [Di Pierro et al.'02], [Laud'01].

Abstracting Non-Interference

[Giacobazzi & Mastroeni, POPL'04]

Abstracting Non-Interference

[Giacobazzi & Mastroeni, POPL'04]

Abstracting Non-Interference

[Giacobazzi & Mastroeni, POPL'04]

AI: Lattice of Abstractions

The concrete domain $< C, \le, \land, \lor, \bot, \top >$

[Cousot & Cousot '79]

Lattice of abstract domains $\equiv Abs(C)$ $< Abs(C), \sqsubseteq, \sqcap, \sqcup, \top, C >$

 $A_1 \sqsubseteq A_2 \Leftrightarrow A_2 \subseteq A_1$ (A_1 more precise than A_2)

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^L = [P](h_2, l)^L$

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^{L} = [P](h_2, l)^{L}$

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^{L} = [P](h_2, l)^{L}$

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^{L} = [P](h_2, l)^{L}$

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^L = [P](h_2, l)^L$

 $\forall l : L, \forall h_1, h_2 : H. [P](h_1, l)^L = [P](h_2, l)^L$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] \mathsf{P}(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_1, \mathsf{l}_1)^{\mathtt{L}}) = \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_2, \mathsf{l}_2)^{\mathtt{L}})$$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] \mathsf{P}(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_1, \mathsf{l}_1)^{\mathtt{L}}) = \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_2, \mathsf{l}_2)^{\mathtt{L}})$$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] \mathsf{P}(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_1, \mathsf{l}_1)^{\mathtt{L}}) = \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_2, \mathsf{l}_2)^{\mathtt{L}})$$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] \mathsf{P}(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_1, \mathsf{l}_1)^{\mathtt{L}}) = \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_2, \mathsf{l}_2)^{\mathtt{L}})$$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] \mathsf{P}(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_1, \mathsf{l}_1)^{\mathtt{L}}) = \rho(\llbracket \mathsf{P} \rrbracket (\mathsf{h}_2, \mathsf{l}_2)^{\mathtt{L}})$$

$$\rho, \mathbf{\eta} \in \mathit{Abs}(\wp(\mathbb{V}^{\mathtt{L}})) \colon [\mathbf{\eta}] P(\rho) \colon \mathbf{\eta}(\mathfrak{l}_1) = \mathbf{\eta}(\mathfrak{l}_2) \Rightarrow \rho(\llbracket P \rrbracket (h_1, \mathfrak{l}_1)^{\mathtt{L}}) = \rho(\llbracket P \rrbracket (h_2, \mathfrak{l}_2)^{\mathtt{L}})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})): (\eta)P(\rho):$$

$$\eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(h_{1}, \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(h_{2}, \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})): (\eta)P(\rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(h_{1}, \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(h_{2}, \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})): (\eta)P(\rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(h_{1}, \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(h_{2}, \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})): (\eta)P(\rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(h_{1}, \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(h_{2}, \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})): (\eta)P(\rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(h_{1}, \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(h_{2}, \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})), \varphi \in Abs(\wp(\mathbb{V}^{H})): (\eta)P(\varphi \sim \!\!\!\! \mid \rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(\varphi(h_{1}), \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(\varphi(h_{2}), \eta(l_{2}))^{L})$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})), \varphi \in Abs(\wp(\mathbb{V}^{H})): (\eta)P(\varphi \leadsto \rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(\varphi(h_{1}), \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(\varphi(h_{2}), \eta(l_{2}))^{L})$$

$$\begin{split} &\rho, \eta \in \textit{Abs}(\wp(\mathbb{V}^{L})), \varphi \in \textit{Abs}(\wp(\mathbb{V}^{H})) \colon (\eta) P(\varphi \leadsto \!\!\! | \rho) \colon \\ &\eta(l_{1}) \! = \! \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket (\varphi(h_{1}), \eta(l_{1}))^{L}) \! = \! \rho(\llbracket P \rrbracket (\varphi(h_{2}), \eta(l_{2}))^{L}) \end{split}$$

$$\begin{split} &\rho, \eta \in \textit{Abs}(\wp(\mathbb{V}^{L})), \varphi \in \textit{Abs}(\wp(\mathbb{V}^{H})) \colon (\eta) P(\varphi \leadsto \!\!\!\!/ \rho) \colon \\ &\eta(l_{1}) \!=\! \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket (\varphi(h_{1}), \eta(l_{1}))^{L}) \!=\! \rho(\llbracket P \rrbracket (\varphi(h_{2}), \eta(l_{2}))^{L}) \end{split}$$

$$\begin{split} &\rho, \eta \in \textit{Abs}(\wp(\mathbb{V}^{L})), \varphi \in \textit{Abs}(\wp(\mathbb{V}^{H})) \colon (\eta) P(\varphi \leadsto \!\!\!\!/ \rho) \colon \\ &\eta(l_{1}) \!=\! \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket (\varphi(h_{1}), \eta(l_{1}))^{L}) \!=\! \rho(\llbracket P \rrbracket (\varphi(h_{2}), \eta(l_{2}))^{L}) \end{split}$$

$$\rho, \eta \in Abs(\wp(\mathbb{V}^{L})), \varphi \in Abs(\wp(\mathbb{V}^{H})): (\eta)P(\varphi \leadsto \rho): \\ \eta(l_{1}) = \eta(l_{2}) \Rightarrow \rho(\llbracket P \rrbracket(\varphi(h_{1}), \eta(l_{1}))^{L}) = \rho(\llbracket P \rrbracket(\varphi(h_{2}), \eta(l_{2}))^{L})$$

Deriving output attackers

Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) [Giacobazzi & Ranzato '97]

Designing abstractions = designing attackers

Deriving output attackers

Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) [Giacobazzi & Ranzato '97]

Designing abstractions = designing attackers

6 Characterize the most concrete ρ such that $(η)P(φ \sim | ρ)$ [The most powerful *public observer*]

Deriving output attackers

Abstract interpretation provides advanced methods for designing abstractions (refinement, simplification, compression ...) [Giacobazzi & Ranzato '97]

Designing abstractions = designing attackers

6 Characterize the most concrete ρ such that $(η)P(φ \sim | ρ)$ [The most powerful *public observer*]

⇒ This would provide a certificate for security with a fixed input observation.

NON-INTERFERENCE

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

Non-Interference

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

 α_{OBS} : Specifies the semantics of the computations relevant for interference (*observation abstraction*);

NON-INTERFERENCE

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

- α_{OBS} : Specifies the semantics of the computations relevant for interference (observation abstraction);
- α_{INT} : Specifies the maximum amount of information that an attacker may observe concerning a computation (interference abstraction);

Non-Interference

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

- α_{OBS} : Specifies the semantics of the computations relevant for interference (*observation abstraction*);
- α_{INT} : Specifies the maximum amount of information that an attacker may observe concerning a computation (*interference abstraction*);
- α_{ATT} : Characterizes what the model of the attacker can observe about the system behavior (*attacker abstraction*).

Non-Interference

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

- α_{OBS} : Specifies the semantics of the computations relevant for interference (observation abstraction);
- α_{INT} : Specifies the maximum amount of information that an attacker may observe concerning a computation (*interference abstraction*);
- α_{ATT} : Characterizes what the model of the attacker can observe about the system behavior (*attacker abstraction*).

$$\alpha_{ATT} \circ \alpha_{OBS}(\llbracket P \rrbracket) = \alpha_{ATT} \circ \alpha_{INT} \circ \alpha_{OBS}(\llbracket P \rrbracket).$$

Non-Interference

Corresponds to asking that the behavior of the chosen relevant aspects of the computation be invariant with respect to what an attacker may observe.

- α_{OBS} : Specifies the semantics of the computations relevant for interference (observation abstraction);
- α_{INT} : Specifies the maximum amount of information that an attacker may observe concerning a computation (*interference abstraction*);
- α_{ATT} : Characterizes what the model of the attacker can observe about the system behavior (*attacker abstraction*).

 \Rightarrow

We characterize the minimal abstraction of α_{ATT} that guarantees GANI.

The global picture

SNNI= P/H \approx P\H [Focardi & Gorrieri '95]

$$\mathsf{SNNI} = \alpha_{\mathtt{T}} \circ \alpha_{\mathit{low}} \circ \mathit{id}(\llbracket \mathtt{P} \rrbracket) = \alpha_{\mathtt{T}} \circ \alpha_{\mathit{low}} \circ \alpha_{\mathtt{L}} \circ \mathit{id}(\llbracket \mathtt{P} \rrbracket).$$

BNDC= $\forall \Pi$. P/H \approx_B (P|| Π)\H [Focardi & Gorrieri '95]

BNDC=
$$\forall \Pi$$
. P/H $\approx_{B} (P||\Pi) \backslash H$

 $\mathsf{BNDC} = \forall \Pi. \ \alpha_\mathtt{B} \circ \alpha_\mathtt{L} \circ \mathit{id}(\llbracket P || \Pi \rrbracket) = \alpha_\mathtt{B} \circ \alpha_\mathtt{L} \circ \alpha_\mathsf{Sec} \circ \mathit{id}(\llbracket P || \Pi \rrbracket).$

$$\text{n-Non-Int} = \alpha_{low} \circ \alpha_{n}(\llbracket P \rrbracket) = \alpha_{low} \circ \alpha_{L} \circ \alpha_{n}(\llbracket P \rrbracket).$$

We introduced a generalized notion of Abstract Non-Interference for dealing with computational systems modeled by computational trees;

- We introduced a generalized notion of Abstract Non-Interference for dealing with computational systems modeled by computational trees;
- We show that many of the known notions of Non-Interference can be modeled as instantiation of GANI;

- We introduced a generalized notion of Abstract Non-Interference for dealing with computational systems modeled by computational trees;
- We show that many of the known notions of Non-Interference can be modeled as instantiation of GANI;
- We believe that generalized abstract non-interference may provide advanced techniques for analysing in a *modular* way how sub-components *interact* (e.g. in biological systems).

- We introduced a generalized notion of Abstract Non-Interference for dealing with computational systems modeled by computational trees;
- We show that many of the known notions of Non-Interference can be modeled as instantiation of GANI;
- We believe that generalized abstract non-interference may provide advanced techniques for analysing in a *modular* way how sub-components *interact* (e.g. in biological systems).
- We are working for designing a tool support for checking generalized abstract non-interference properties.