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The Problem: Non-Interference
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SECURITY PROPERTY: States which classes have not to interfere with other
classes of objects.
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Background: Non-Interference

SECURITY PROPERTY: States which classes have not to interfere with other
classes of objects.

⇓
Confinement problem[Lampson’73]: Preventing the results of computations

leaking even partial information about the confidential inputs.

⇓
Non-interference policies require that any change upon confidential data has

not to be revealed through the observation of public data.

Many real systems are intended to leak some kind of information

Even if a system satisfies non-interference, some kind of tests could
reject it as insecure
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Background: Non-Interference

SECURITY PROPERTY: States which classes have not to interfere with other
classes of objects.

⇓
Confinement problem[Lampson’73]: Preventing the results of computations

leaking even partial information about the confidential inputs.

⇓
Non-interference policies require that any change upon confidential data has

not to be revealed through the observation of public data.

Characterizing released information: [Cohen’77], [Zdancewic &
Myers’01], [Clark et al.’04], [Lowe’02];

Constraining attackers: [Di Pierro et al.’02], [Laud’01].
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Our idea: Abstracting Non-Interference
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Our idea: Abstracting Non-Interference
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Abstract domain completeness

Let < A, α, γ, C > a Galois insertion. [Cousot & Cousot ’77,’79]
f : C −→ C, fa = α ◦ f ◦ γ : A −→ A (b.c.a. of f) and ρ=γ ◦ α

α(x)x

f

αf(x) =faα(x)

⊥ ⊥
a

> >
a

ρ correct for f

fa

αf(x)

αf(x)
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Let < A, α, γ, C > a Galois insertion. [Cousot & Cousot ’77,’79]
f : C −→ C, fa = α ◦ f ◦ γ : A −→ A (b.c.a. of f) and ρ=γ ◦ α

α(x)x

f

αf(x) = faα(x)

⊥ ⊥
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> >
a

ρ complete for f

fa

α

ρfρ = ρf

f(x)
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Standard non-interference

Private InputPublic Input

Public Output

JPK

∀l : L , ∀h1, h2 : H . JPK(h1, l)L = JPK(h2, l)L
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Abstracting non-interference I: Narrow ANI

[POPL’04] Private InputPublic Input
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η
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ρ, η ∈ Abs(℘(VL )): [η]P(ρ): η(l1) = η(l2) ⇒ ρ(JPK(h1, l1)L ) = ρ(JPK(h2, l2)L )
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Abstracting non-interference II
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Examples

EXAMPLE I:
while h do (l := l + 2; h := h − 1).

Standard Non-Interference ≡ [id]P(id)

h = 0, l = 1 ; l = 1

h = 1, l = 1 ; l = 3

h = n, l = 1 ; l = 1 + 2n
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Examples

EXAMPLE I:
while h do (l := l + 2; h := h − 1).

Standard Non-Interference ≡ [id]P(id)

h = 0, l = 1 ; l = 1

h = 1, l = 1 ; l = 3

h = n, l = 1 ; l = 1 + 2n

⇓
[id]P(Par)

h = 0, l = 1 ; Par(l) = odd
h = 1, l = 1 ; Par(l) = odd
h = n, l = 1 ; Par(l) = odd
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Examples

EXAMPLE II:
P = l := 2 ∗ l ∗ h2.

[Par ]P(Sign)

h = 1, l = 4 (Par(4) = even) ; Sign(l) = +

h = 1, l = −4 (Par(−4) = even) ; Sign(l) = −
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Examples

EXAMPLE II:
P = l := 2 ∗ l ∗ h2.

[Par ]P(Sign)

h = 1, l = 4 (Par(4) = even) ; Sign(l) = +

h = 1, l = −4 (Par(−4) = even) ; Sign(l) = −

⇓
(Par)P(Sign)

h = −3, Par(l) = even ; Sign(l) = I don’t know
h = 1, Par(l) = even ; Sign(l) = I don’t know
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Examples

EXAMPLE III:
P = l := l ∗ h2.

(id)P(Par)

h = 2, l = 1 ; Par(l) = even
h = 3, l = 1 ; Par(l) = odd

h = n, l = 1 ; Par(l) = Par(n)
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Examples

EXAMPLE III:
P = l := l ∗ h2.

(id)P(Par)

h = 2, l = 1 ; Par(l) = even
h = 3, l = 1 ; Par(l) = odd

h = n, l = 1 ; Par(l) = Par(n)

⇓
(id)P(Sign []Par)

Sign(h) = +, l = 1 ; Par(l) = I don’t know
Sign(h) = −, l = 1 ; Par(l) = I don’t know
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Deriving output attackers

Abstract interpretation provides advanced methods for designing abstractions
(refinement, simplification, compression ...)

Designing abstractions = designing attackers
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Deriving output attackers

Abstract interpretation provides advanced methods for designing abstractions
(refinement, simplification, compression ...)

Designing abstractions = designing attackers

⇓

Characterize the most concrete ρ such that (η)P(φ []ρ)

[The most powerful public observer]
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Deriving canonical attackers

Abstract interpretation provides advanced methods for designing abstractions
(refinement, simplification, compression ...)

Transforming abstractions = transforming attackers
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Deriving canonical attackers

Abstract interpretation provides advanced methods for designing abstractions
(refinement, simplification, compression ...)

Transforming abstractions = transforming attackers

⇓

Characterize the most concrete δ such that (δ)P(φ []δ)

[The most powerful canonical public observer]

⇒ This would provide a certificate for security.
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Abstract declassification

Consider a program P and its finite computations.

A passive attacker may be able to learn some information by observing the
system but, by assumption, that information leakage is allowed by the security

policy.
[Zdancewic and Myers 2001]
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Abstract declassification

Consider a program P and its finite computations.

A passive attacker may be able to learn some information by observing the
system but, by assumption, that information leakage is allowed by the security

policy.
[Zdancewic and Myers 2001]

We want to characterize the most abstract private observable property
such that (η)P(φ ⇒ ρ)

[The maximal amount of information disclosed]

⇒ This would provide a certificate for disclosed secrets.
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Observer vs Observable

Consider |= (η)P(φ []ρ): In order to keep non-interference...
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ANI: A completeness problem

Recall that [Joshi & Leino’00]

P is secure iff H H ; P; H H
.
= P ; H H
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Recall that [Joshi & Leino’00]

P is secure iff H H ; P; H H
.
= P ; H H

Let X = 〈XH , XL 〉 ⇒ H(X)
def
= 〈>H , XL 〉 ∈ uco(℘(V))

H H ; P; H H
.
= P ; H H

⇓
H◦JPK◦H = H◦JPK
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Recall that [Joshi & Leino’00]

P is secure iff H H ; P; H H
.
= P ; H H

Let X = 〈XH , XL 〉 ⇒ H(X)
def
= 〈>H , XL 〉 ∈ uco(℘(V))

H H ; P; H H
.
= P ; H H

⇓
H◦JPK◦H = H◦JPK

⇒ A COMPLETENESS PROBLEM
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ANI: A completeness problem

Let X = 〈XH , XL 〉 ⇒ H(X)
def
= 〈>H , XL 〉 ∈ uco(℘(V))

H◦JPK◦H = H◦JPK

COMPLETENESS = NON-INTERFERENCE

⇓
Transform H vs Core;

Transform H vs Shell. [Giacobazzi et al.’00]
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Completeness shells and cores

[Giacobazzi et al.’00]

A

P holds: Shell of A
P doesn’t hold

Rf
def
= λρ.M(

[

y∈ρ

max(f−1
(↓y)))
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Completeness shells and cores

[Giacobazzi et al.’00]

A

P holds: Shell of A
P doesn’t hold

Rf
def
= λρ.M(

[

y∈ρ

max(f−1
(↓y)))

Absolute shell of ρ: Rf(ρ) = gfp
v
ρ λϕ.ρ u RB

f (ϕ);

Relative shell of η relative to ρ: Rρ
f
(η) = η u Rf(ρ).
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Completeness shells and cores

[Giacobazzi et al.’00]

A

P holds: Core of A
P doesn’t hold

A

P holds: Shell of A
P doesn’t hold

Cf
def
= λρ.

{
y ∈ C

˛

˛

˛ max(f−1(↓y)) ⊆ ρ

}
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Completeness shells and cores

[Giacobazzi et al.’00]

A

P holds: Core of A
P doesn’t hold

A

P holds: Shell of A
P doesn’t hold

Cf
def
= λρ.

{
y ∈ C

˛

˛

˛ max(f−1(↓y)) ⊆ ρ

}

Absolute core of ρ: Cf(ρ) = lfp
v
ρ λϕ.ρ t CB

f (ϕ);

Relative core of ρ relative to η: Cη
f
(ρ) = ρ t Cf(η).
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ANI as completeness

Let ρ ∈ uco(℘(VL )) ⇒ Hρ(X)
def
= 〈>H , ρ(XL )〉 ∈ uco(℘(V))

Narrow abstract non-interference: Hρ◦JPK◦Hη = Hρ◦JPK;

Abstract non-interference: Hρ◦JPKη,φ
◦Hη = Hρ◦JPKη,φ
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Let ρ ∈ uco(℘(VL )) ⇒ Hρ(X)
def
= 〈>H , ρ(XL )〉 ∈ uco(℘(V))

Narrow abstract non-interference: Hρ◦JPK◦Hη = Hρ◦JPK;

Abstract non-interference: Hρ◦JPKη,φ
◦Hη = Hρ◦JPKη,φ

⇓
PUBLIC OBSERVER AS COMPLETENESS CORE: CHη

JPKη,φ(H) = (η)JPK(φ []id)
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ANI as completeness

Let ρ ∈ uco(℘(VL )) ⇒ Hρ(X)
def
= 〈>H , ρ(XL )〉 ∈ uco(℘(V))

Narrow abstract non-interference: Hρ◦JPK◦Hη = Hρ◦JPK;

Abstract non-interference: Hρ◦JPKη,φ
◦Hη = Hρ◦JPKη,φ

⇓
PUBLIC OBSERVER AS COMPLETENESS CORE: CHη

JPKη,φ(H) = (η)JPK(φ []id)

PRIVATE OBSERVABLE AS COMPLETENESS SHELL: (η)P(R
Hρ

JPKη,id(Hη) ⇒ ρ)
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ANI as completeness

PUBLIC OBSERVER AS COMPLETENESS CORE: CHη

JPKη,φ(H) = (η)JPK(φ []id)

PRIVATE OBSERVABLE AS COMPLETENESS SHELL: (η)P(R
Hρ

JPKη,id(Hη) ⇒ ρ)

ADJOINING ATTACKERS AND DECLASSIFICATION

id < (η)JPK(id []id) ⇔ P(uL∈ηM(ΠP (η, id)|L)) < >

The most concrete observer

The most abstract observable

Declassification

Secure

id

id>
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A discussion

Certification of secrecy degree of programs
Abstract Non−Interference

Most concrete
public observer

Most abstract
private

observable
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A discussion

Timed

Timed Abstract Non−Interference

Core
Completeness

semantics

Adjunction

Completeness
Proof system

Design of a

Trace

Certification of secrecy degree of programs
Abstract Non−Interference

Most concrete
public observer

Shell

Most abstract
private
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denotational
semantics
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Trace
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A discussion: Future works

Core
Completeness

Adjunction

Completeness
Proof system

Design of a

Certification of secrecy degree of programs
Abstract Non−Interference

public observer

Shell

Most abstract
private

observable

Generalized Abstract Non−Interference

Most concrete

Probabilistic

Non−Interference
Abstract

Abstract
slicing

attackers
ActiveNon−interference

in
Bio−systems
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A discussion: Future works

Core
Completeness

Adjunction

Completeness
Proof system

Design of a

Certification of secrecy degree of programs
Abstract Non−Interference

Most concrete
public observer

Shell

Most abstract
private

observable

Generalized Abstract Non−Interference

− Code obfuscation
− Trasform protocols

Trasform semantics
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A discussion: Future works

Core
Completeness

Adjunction

Completeness
Proof system

Design of a

Certification of secrecy degree of programs
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