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Abstract. The double stranded structure of DNA molecules is investigated in an abstract setting.
Only the general structure of bilinear strings is taken into account regardless of specific physical and
biochemical aspects of DNA molecules. In this context, the principles which DNA processes are
based on are formulated in an abstract form. Surprisingly enough, some intrinsic features of DNA
molecules turn out to be implied by these general principles.
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1. Introduction

DNA molecules are informational bio-polymers floating in fluid environments and having a double
stranded structure that is the basis of fundamental bio-molecular processes [3].

An abstract mathematical analysis of the DNA structure can provide a deep understanding of its in-
ternal logic. Bilinearity seems to be a golden rule implying an enormous amount of geometrical and
computational richness. A mathematical analysis of bio-polymers was already investigated by many au-
thors, according to different perspectives [8, 9]. In [9] Marcus reports Pawlak’s triangle representation of
protein language and indicates some directions of investigation in which the discrete viewpoint of For-
mal Language Theory plays a central role in revealing key aspects of biological informational processes.
In the pioneering paper [4] DNA molecules were considered as strings, and DNA recombination was
formulated in terms of operations over strings.

In this paper we continue the investigation line of [5, 2] where DNA bilinear structure was analyzed
in the algorithmic perspective of DNA duplication, essentially related to the Polymerase extension mech-
anism. In other papers, more oriented to DNA Computing and related to experimental topics [6, 7, 1] a
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formal analysis of DNA Polymerase reactions provided the basis for developing a new DNA extraction
algorithm. In this paper, the intrinsic algebraic structure of bilinearity will be considered in conjunction
with some very natural geometrical principles that are inherent to double linear discrete configurations.
Also, the typical helix conformation of DNA will be revealed as a mathematical necessity postulated by
simple requirements that can be formulated in terms ofmonomeric triangles. The possibility of figuring
out mathematical DNA properties, by using general principles and abstract forms, seems to disclose new
perspectives in the understanding of this marvelous biological reality.

2. Monomers, Strands, and Double Stranded Strings

If we abstract from any specific aspect concerning DNA molecules and we focus on the structure needed
for their informational functionality, we get the mathematical notion ofdouble stranded stringwhich is
based on the following four basic principles.

We assume an unbounded number ofmonomers, we may index them using natural numbers, that
have aheadand atail. These monomers float in a fluid environment and can beconcatenatedin strands
that are sequences which obey toThe Uniformity of Concatenation Verse Principlebecause the tail of
each element is linked with the head of the next one. The first element of any strand has the head with no
link, and the last one has the tail with no link. The verse head→tail of a monomerm is indicated by an
arrow:m→. The same monomer in the opposite verse is indicated by←m. Strands can be considered
as elements of the free monoid generated by monomers. According to the uniformity of concatenation
verse, we put an arrow in a strand only once (at the end in the case of→, at the beginning in the case of
←).

Monomers have types which are denoted by the symbols of a quaternary alphabet{A, T,C,G}. If
a monomerm has typeX we writem : X. The free monoid over alphabet{A, T,C,G} generates the
types of the strands. Typing commutes with respect to the concatenation, in the sense that:

α→ : ϕ andβ→ : ψ implies αβ→ : ϕψ

←α : ϕ and←β : ψ implies ←αβ : ϕψ

Two monomers canpair only when their types obey to theComplementary Pairing Principle
expressed by Chargaf’s rule:A pairs withT andvice versa,C pairs withG andvice versa. The comple-
mentary of a typeX is indicated byX̄. Moreover, theMirror Pairing Principle requires an orientation
in the pairing direction with a verse going from one head to the head of the paired monomer, in such
a way that any monomer can be paired at most with one other monomer, and two monomers that are
concatenated can pair only with other two monomers that are concatenated. This implies that monomers
of a single strand have the same orientation in the pairing direction.

Complementation commutes with respect to concatenation. Two strandsα→, β→ arecomplemen-
tary if α→ : ϕ andβ→ : ϕ̄. They areanticomplementaryif α→ : ϕ andβ→ : rev(ϕ̄), whererev is the
usual reverse operation on strings (rev(λ) = λ, rev(αβ) = rev(β)rev(α), λ being the empty string).
We writeα||β whenα→, β→ are anticomplementary strands. Two strands that are complementary can
pair by producing adouble stranded stringin a parallel bilinear arrangement, whereas two strands that
are anticomplementary can pair in the antiparallel bilinear arrangement.

A Free Bilinear Location Principle holds: under the three other principles, any monomer may
occur on either strand of a bilinear arrangement.
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Bilinear strings can bedenaturedresulting in the two single strands that were paired in the bilinear
structure. This means thatforcesthat couples two single strands in a bilinear string areweakwith respect
to the forces that produce strand concatenation.

Weak forces postulated in the pairing are related with the complementary pairing principle. In fact, if
monomers that pair would have the same type, when monomers are molecules, chemical bonds between
them should becovalent, that is, very difficult to break in denaturation. In general terms, the difference
of types and the 1 to 1 correspondence between paired strands can be obtained by requiring that for any
X ∈ {A, T,C,G} there exists one and only one different typeY ∈ {A, T,C,G} such thatX̄ = Y .

If x is the concatenation direction andy is the pairing direction, then we can represent bilinear
arrangements of a double stranded strings with the following geometric structure. For example (types
are not specified, but Chargaf’s rule is assumed for elements that are opposite w.r.t.y):
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In order to satisfy the uniformity of the concatenation verse and the mirror pairing principle, there is
another possibility ofantiparallelarrangement, depicted in the following picture.
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We will show that, under suitable hypotheses, only antiparallel arrangements are possible. In more
abstract terms, they can be represented in the following way, where it is also shown that, in general, the
pairing may involve complementarity only between proper parts of the paired strands.
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Bilinearity and complementarity are strictly related to the bilinear duplication mechanism [5, 2], but
why antiparallelism? Now we want to consider more carefully this aspect.

In a bilinear structure monomers have:

1. A concatenation direction, sayx, along each strand. In this direction let us choose the head-tail
verse corresponding to nucleotide 5’-3’ verse.

2. A pairing direction, sayy, along which a monomer is paired with its corresponding one on the
other strand. In this direction let us choose, for each monomer, the verse going from its head to
the head of the monomer which is paired to it.
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3. A third directionz that is normal to thexy plane, that we can identify with the direction where a
reader is placed. In fact, our polymers convey information, therefore they need to be read.

In the following we shortly say that an object isasymmetric with respect to a directionif there is no
plane orthogonal to that direction with respect to which the object is symmetric.

According to the uniformity of concatenation verse, and to mirror pairing, monomers are asymmetric
with respect to bothx andy directions. The following proposition shows that they are asymmetric also
with respect toz direction.

Proposition 2.1. Monomers must be asymmetric with respect toz direction.

Proof. If a monomer were symmetric with respect to thez direction, then it would not change its shape
after a rotation ofπ around they axis. But after this rotation it lays in the opposite verse with respect to
thex direction, therefore it should be symmetric also with respect tox, and this is against the asymmetry
required by the concatenation verse. An analogous argument holds also if we apply a rotation around the
x axis, which would contradict the asymmetry with respect to they direction. 2

The asymmetry with respect to thez direction suggests us that it is natural to postulate a preferential
reading verse. Therefore, we can put an orientation in thez direction going from the planexy to the side
where, preferentially, a reader is put when it (for example Polymerase enzyme) is reading the monomer.

TheReading Verse Uniformity Principle establishes that a reader can read all the monomers of a
strand staying always on the same side with respect toxy plane, that is, all the monomers of a strand
must have the samez verse.

We saychirality of a monomer the cartesian frame associated to itsx, y, z directions with the fol-
lowing verses: head→tail for x verse, head→paired-head fory verse, and the verse with respect to which
x moves clockwise toy for z direction.

The word “chiral” comes from a Greek word for hand. An object is chiral if it is asymmetric with
respect to the three space directions. In this case a chirality can be assigned to it, by establishing a rule
for associating a cartesian frame F to it. The rule given above defines chiralities of monomers. There
are two possible chiralities:left-handedandright-handed. Moreover, it is easy to prove the following
lemma. Two chiral objects, with chiralities F1 and F2 respectively, arehomo-chiralif there is a rigid
movement of one of them such that after it F1 and F2 coincide (in directions and verses). Otherwise they
arehetero-chiral.

Lemma 2.1. Two chiral objects, of chiralities F1 and F2 respectively, arehetero-chiralif, after a rigid
movement, F1 coincides with F2 apart the verse of only one axis. If F1 and F2 differ in the verses of two
directions, then the two objects arehomo-chiral.

According to the given definitions, we obtain the following proposition.

Proposition 2.2. Reading Verse Uniformity implies that all the monomers of a single strand must have
the same chirality.

Proof. For the uniformity of concatenation verse, these monomers have the samex verse, moreover, for
the principle of mirror pairing they have also the samey verse, therefore if they were hetero-chiral, then
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they should differ on thez verse, but this contradicts the uniformity of reading verse. 2

However, a stronger result holds:

Proposition 2.3. Reading Verse Uniformity implies that all the monomers in a double strand must have
the same chirality.

Proof. If monomers with different chiralities exist, when they occur in the same strand, then they
must differ on thez verse, therefore they will have different reading verses, and this contradicts the
previous proposition. Then monomers with different chiralities should necessarily occur in different
strands, contradicting the free bilinear location principle. 2

Proposition 2.4. In a double stranded string, the reading verses of the two strands coincide if and only
if the bilinear arrangement of the two strands is antiparallel.

Proof. If) In the case of antiparallel arrangement, the frames of any two monomers in different strands
differ in two verses: the pairing verse and the concatenation verse. But, for the previous proposition the
monomers of the two strands are homo-chiral, therefore, being the two verses opposite, according to the
lemma, thez verses must coincide. In conclusion, they have the same reading verse.

Only if) If the arrangement is parallel, then monomers of two strands differ only in they verse, but
for proposition 2.2 we know that monomers are homo-chiral, therefore, according to the previous lemma,
they must differ in the verse of another direction, and this direction, under the assumption of parallelism,
has to be thez direction, therefore they have different reading verses. 2

The last proposition shows a big advantage of antiparallel arrangement with respect to the parallel
one. In the next section we will prove, by using only geometrical arguments, that for floating double
stranded strings the antiparallel arrangement is the only possible one.

3. Monomeric Triangles

In this section we develop, in a more systematic way, the intuition outlined in the previous section.
Strands are elements of the free monoid generated by a set of monomers, and types are elements of the
free monoid generated by a set of base types (therefore concatenation is defined on strands and types).
Bilinear structures obey to four main principles: i) Uniform Concatenation Verse, ii) Mirror Pairing, iii)
Complementary Pairing, and iv) Free Bilinear Location.

Three points are essential in determining the monomer functionality: i) the head pointH, which is
the first point of the monomer along the concatenation verse, ii) the tail pointT , which is the head of
the next monomer along the concatenation verse, and iii) the pointH ′, which is the head of the paired
monomer. These three points specify the triangleHTH ′ that we callmonomeric triangle. Given two
consecutive monomersmm′ → such thatm is paired withm̄, then the head of the second monomerm′

coincides with the tail ofm. In terms of nucleotides, pointH of m corresponds to the Phosphorus group
in 5′ of m, T corresponds to the Phosphorus group in3′.

If HTH ′ is the monomeric triangle of a monomerm andHH ′T ′ is the monomeric triangle of a
monomerm̄ which is paired withm, then we refer to pointsTHH ′T ′ as themonomeric butterfly
of these two paired monomers, having trianglesHTH ′ andHH ′T as wings. TheHH ′ line is the
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Figure 1. A Monomeric triangle and a Butterfly (segmentsTP andTP ′ are not indicated).

pairing axis of the butterfly,HT andH ′T ′ are the concatenation axes of the butterfly. Of course, there
are four types of these triangles and two types of these butterflies, corresponding to different types of
bases. In the biological reality, the information that a triangle carries (the typesA, T,C,G) depends on
two parameters: i) the position (left or right) where pairing bonds are located in the segmentHH ′ with
respect to the middle pointP of segmentHH ′, and ii) the strength of the pairing bonds. In the following,
for the sake of simplification, we assume that all monomeric triangles are equal.

In conclusion, monomeric triangles completely specify the role of monomers in the bilinear arrange-
ments, that is, from an abstract point of view, a monomer is a triangle having a type in the base alphabet.

We assume that monomeric triangles are acute (i.e., all three angles are acute). This corresponds to
reality and implies a more economic spatial allocation.

Proposition 3.1. If the angleT
4
HH ′ of monomeric triangles is acute then bilinear parallel arrangement

is not possible.

Proof. It is easy to verify that, in this case, if two monomeric triangles are paired along their pairing
axis in such a way that tails are put on the same side with respect to this axis (see figure below, where
pairing segment is drawn with a gap). Then, if they are coplanar the two concatenation verses follow two
crossing straight lines.
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If they lay on different planes, they follow two straight lines where the distance between monomer heads
increases along the concatenation verse of the two strands, but this situation is against bilinearity.2

An antiparallel bilinear arrangement with acute monomeric triangles can be obtained in the following
way:
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Nevertheless, in the previous bilinear structure monomers are in the same plane, but this is almost
impossible in a fluid environment, especially in the case of very long polymeric structures. In this case,
a rotation angle of the butterfly wings along the pairing axis is possible if, contemporarily, the head-tail
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axis of any monomeric triangle rotates with respect to the head-tail axis of triangles to which is linked.
In fact, the angle of rotation around the pairing axis is so compensated by aconcatenation anglein order
to keep uniform the distance between the heads of paired monomers.

Figure 2 shows this possibility, where a helix structure appears that will be analyzed in the next
section.

Figure 2. Monomeric acute triangles arranged in a bilinear non-planar structure.

4. Abstract Bilinear Helix

Let us denote withδ the angleT
4
HP and call itmonomeric angle. This angle is related to therotation

angleρ of monomers around the surface of abilinear cylinderof radiusr (see Figures 3, 5). If we
call rotation numberof the bilinear cylinder the numbern of monomers in a complete rotation, then
ρ = 2π/n. This means that ifn = 10.5, as in typical B form of DNA helix, thenρ = 34.28 degrees. Let
us denote withf the length of head-tail distance, we sayconcatenation distanceof monomers, and with
b the pairing distance between two paired monomers.

The radiusr of the bilinear cylinder and the rotation angleρ (or equivalently, the rotation numbern)
are twobilinear helixparameters. Other two bilinear helix parameters are: i) thetorsionangleτ given
by the angle formed by the head-tail axis with the horizontal planes (those which are orthogonal to the
cylinder axis); and ii) thephaseangle, that is, the rotation angleφ of the cylinder radius between two
monomers that are paired. The angleτ determines the verticaltorsion factorof monomers, that is, the
numberθ = sin τ such thatθf is the distance of the monomer tailT from the horizontal plane where its
headH is placed on (see figure 3).

Figure 3 shows a butterfly included into the cylinder where bilinear helix develops. The pairing
segment is between the two heads indicated by black and white bullets, the two arrow ends are the tails
corresponding to the two heads. Rotation angleρ is horizontally covered by the cylinder radius between
any head and its tail, phase angleφ is horizontally covered by the cylinder radius between two paired
heads, torsion angleτ is formed by the head-tail segment and a horizontal plane. This picture also shows
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Figure 3. The butterfly into the bilinear cylinder: Rotation, Phase, and Torsion angles.

that when the pairing segment does not intersect the cylinder axis, then the pairing segment is tangent to
an internal cylinder having a radius which depends on the value of the phase angle.

Figure 4 is a look at a bilinear structure with three monomers for each line.

Figure 4. Three butterflies in the cylinder.

The following figure 5 was obtained with a graphical tool developed in OpenGL under Linux1

Pairing happens between points on different cylinder levels, that is, the helix cylinder can be divided
in slices between horizontal circles. The two heads of the monomers which are paired are one on the top

1This tool was developed by Luca Trombin in a project for my course “Unconventional Computation Models”, at the University
of Verona.
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Figure 5. Bilinear helix and the related cylinder.

circle and the other one on the down circle respectively of the same slice. The distanceθf between these
circles depends, as we will see later on, on cylinder radiusr, on rotation angleρ and on the torsion angle
τ .

The following figure 6 shows the two bilinear cylinder strands projected on a strip between two
parallel lines at a distance2r equal to the diameter of the of helix cylinder. The difference between
major groveand minor groveobserved in DNA helix can be explained in terms of bilinear cylinder
geometry as a consequence of the torsion angle and of the phase angle. It can be shown that the phase
angle is proportional to the ratio between minor and major grove defined as the greatest and the smallest
vertical distances between the two strands when they intersect the same vertical line on the cylinder
surface. For the sake of simplification, in the picture the phase angle isπ.

Figure 6. Bilinear helix in projection.
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Now we show that bilinear helix parametersr, ρ, τ, φ completely identify the monomeric triangle.

Proposition 4.1. The bilinear helix parameters given by the cylinder radiusr, the rotation angleρ, the
torsion angleτ , and the rotation phaseφ completely identify the monomeric triangle.

Proof. Let a be the length of the cord relative to the monomer rotation angleρ. We easily see that

a = 2r sin(ρ/2)

but, according to the definition of torsion factorθ = sin τ , the following equation also holds:

a =
√
f2 − (θf)2

therefore

f =
2r sin(ρ/2)√

1− sin2 τ
=

2r sin(ρ/2)
cos τ

This means that the lengthf of HT is determined byr, ρ, τ . Now let us consider the pairing distance
b and the lengthp of the projection ofb on the horizontal plane (orthogonal to the cylinder axis). Of
course, we have:

b =
√
p2 + (θf)2

andp = 2r sin(φ/2). Thereforeb depends on the four bilinear helix parametersr, ρ, τ, φ. But the length
of HP is b/2 therefore also this measure depends on these parameters.

In order to evaluate the angleδ betweenHT andHH ′, we evaluate the distanceTH ′ as g =
2 sin(φ−ρ

2 ) and apply Erone’s formula for the surface of triangleHTH ′ (in a triangle of dimensions
a, b, c, where2q = a+b+c, the surfaceS is given byS =

√
q(q − a)(q − b)(q − c)). From the surface

ofHTH ′ we derive the height with respect toHH ′ and so the sinus ofδ. Therefore, by simple algebraic
manipulations we get:

δ = arcsin

√
(f + g + b)(g + b− f)(f + b− g)(g + f − b)

2bf

2

In conclusion, the monomeric triangle depends completely onr, ρ, τ, φ and bilinear helix is an ele-
ment of subspace of 4 dimensions satisfying the following equations in the dimensions space of vectors
(r, f, b, g, ρ, τ, φ, δ):

f =
2r sin(ρ/2)

cos τ
(1)

b =
√

4r2 sin2(φ/2) + (f sin τ)2 (2)

g = 2 sin(
φ− ρ

2
) (3)

δ = arcsin

√
(f + g + b)(g + b− f)(f + b− g)(g + f − b)

2bf
(4)
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If we consider the values, relative to the B form of DNA helix:ρ = 4π/21 = 34.28o, r = 1 nm,
τ = π/6 = 30o, and an approximare value ofφ = 2π/3 = 120o, which was deduced from data given
in [3] for B DNA ((φ − ρ)/2 = 5π/21 = 42.86o), we get a monomeric triangle whereHT = 0.68 nm,

HH ′ = 1.76 nm,H ′T= 1.36, and anglesδ =
4
H = 44.39o,

4
H ′ = 37.99o, and

4
T = 97.61o.

In the bilinear helix we callbutterfly anglethe angleβ between butterfly wings. This angle. depends
on the radiusr and on angles of rotation, phase and torsion. In fact, by a rotation ofπ/2−τ one butterfly
wing becomes parallel to the cylinder axis, and by the same rotation also the paired wing becomes
parallel to the same axis. Therefore its value results to beβ = (π − 2τ).

An important aspect of DNA helix is that the pairing segment does not cross the axis of the helix
cylinder. In fact, it is a cord shorter than the diameter. This means that when we see the helix in horizontal
projection we can see a hole tangent to all pairing segments. In other words, an internal cylinder exists
of radiusr′ < r (p is the projection of the pairing segment on the horizontal plane):

r′ =
√
r2 − (p/2)2

such that pairing segments are always tangent to the surface of thisr′ cylinder. This phenomenon is
conform to our model where pairing is driven by a phase angle. The following picture was obtained
by our graphical simulation. Forφ equal to 120 degrees we obtainr′ = 0.50. It is remarkable that a
difference of 0.24 nm between the diameter and the pairing distance produces an internal cylinder with a
radius that is about one half of the external radius. We are tempted to say that this is room available for
thereaderof the bilinear helix.

Figure 7. Helix horizontal projection.

5. Conclusions

The approach introduced in this paper has revealed important facts of the bilinear helix that are direct
mathematical consequence of general principles. The notion of monomeric triangle, and its requirement
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of being an acute triangle, has implied rules of geometrical organization of this helix that showed the way
its structural parameters are related. As an important consequence, we deduced that the helix dimensions
depend on the cylinder radiusr of the helix, while all its structural parameters depend on three angles:
rotation, phase, and torsion.

We think that many aspects of bio-molecular processes can be analyzed in terms of purely algo-
rithmic and combinatorial arguments and may provide new perspectives in the understanding of basilar
phenomena. Our graphical simulation proved that the radius and structural parameters of B DNA are
determined by the general structure of bilinear helix. In fact, these values, and the other values defined
within the monomeric triangle model, were confirmed by computer simulations. It would be interesting
to improve the visualization aspects by means of more efficient computational tools, and to extend our
analysis to the other forms of DNA, the A and Z forms.

In [1] polymerase reactions were considered and some simple trees turned out to be useful in the
design of DNA extraction algorithms. In [6] Head’s splicing was represented in terms of restriction and
ligation enzymes. In both cases a special kind of bilinear concatenation was essential, that was realized
in vitro by extending the classical PCR protocol, but many crucial combinatorial problems must be
solved for an efficient implementation of these ideas. Therefore, a research line, where bio-technological
experiments, mathematical theories and computer simulation are integrated, seems to be a very promising
way to proceed in the future.
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