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DNA for Non-BiologicalDNA for Non-Biological
PurposesPurposes

 Density:Density:
 DNA: 1 bit per nmDNA: 1 bit per nm33, 10, 102020 molecules,  molecules, exabytesexabytes
 Video: 1 bit per 10Video: 1 bit per 101212 nm nm33

 Efficiency (Adleman)Efficiency (Adleman)
 DNA: 10DNA: 101919 ops / J ops / J
 Supercomputer: 10Supercomputer: 1099 ops / J ops / J

 Speed (Adleman):Speed (Adleman):
 DNA: 10DNA: 101414 ops per s ops per s
 Supercomputer: 10Supercomputer: 101212 ops per s ops per s
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What makes this possible?What makes this possible?
 Great advances in molecular biologyGreat advances in molecular biology

 PCR (Polymerase Chain Reaction)PCR (Polymerase Chain Reaction)
 DNA DNA MicroarraysMicroarrays
 New enzymes and proteinsNew enzymes and proteins
 Better understanding of biological moleculesBetter understanding of biological molecules

 Ability to produce massive numbers of DNAAbility to produce massive numbers of DNA
molecules with specified sequence and sizemolecules with specified sequence and size

 DNA molecules interact through templateDNA molecules interact through template
matching reactionsmatching reactions
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PPHYSICALHYSICAL S STRUCTURE OF TRUCTURE OF DNADNA
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Template MatchingTemplate Matching
Hybridization ReactionHybridization Reaction

` A-C-A-A-C-G  

T-G-T-T-G-C’

` A-C-A-A-C-G  

T-G-T-T-G-C’
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Hybridization Allows:Hybridization Allows:

 Massively Parallel Search based onMassively Parallel Search based on
Watson-Crick ComplementsWatson-Crick Complements

 Directed Self-Assembly ofDirected Self-Assembly of
NanostructuresNanostructures

 Search Stored Information for SimilarSearch Stored Information for Similar
Sequence ContentSequence Content
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MismatchesMismatches
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What is an example?What is an example?

 ““Molecular Computation of Solutions toMolecular Computation of Solutions to
Combinatorial ProblemsCombinatorial Problems””

 AdlemanAdleman, , ScienceScience, v. 266, p. 1021., v. 266, p. 1021.
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AlgorithmAlgorithm

 Generate Random Paths through the graph.Generate Random Paths through the graph.
 Keep only those paths that begin withKeep only those paths that begin with v vinin  and endand end

withwith v voutout..
 If graph has n vertices, then keep only those pathsIf graph has n vertices, then keep only those paths

that enter exactly n vertices.that enter exactly n vertices.
 Keep only those paths that enter all the vertices atKeep only those paths that enter all the vertices at

least once.least once.
 In any paths remain, say In any paths remain, say ““YesYes””; otherwise, say; otherwise, say

““NoNo””
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Representing a Graph withRepresenting a Graph with
SequencesSequences

0

1

2

‘GCATGGCC

‘AGCTTAGG

‘ATGGCATG

CCGGTCGA’

CCGGTACC’

‘GCATGGCCAGCTTAGG
            CCGGTCGA’

‘GCATGGCCATGGCATG
            CCGGTACC’

00 21
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Massively Parallel SearchMassively Parallel Search
V1

E0->1

V0 V2 V3 V4 V5 V6

E1->2 E2->3 E3->4 E4->5 E5->6

V6

E0->6

V0

V3

E0->3

V0 V2 V3 V4 V5 V6

E3->2 E2->3 E3->4 E4->5 E5->6

V5

E4->5

V4 V1 V2

E5->1 E1->2
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MismatchesMismatches
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DNA Word Design ConstraintsDNA Word Design Constraints

 Sequence design should implement theSequence design should implement the
architecture.architecture.
 Planned HybridizationsPlanned Hybridizations
 Problem SizeProblem Size
 Subsequent Processing ReactionsSubsequent Processing Reactions

 Designed sequences should minimizeDesigned sequences should minimize
unplanned unplanned ““cross-hybridizations.cross-hybridizations.””

 Consequences of Bad Designs: Errors andConsequences of Bad Designs: Errors and
Poor EfficiencyPoor Efficiency
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DNA Word DesignDNA Word Design

 Design problem is hard (NP-Complete).Design problem is hard (NP-Complete).

 As number of sequences required to representAs number of sequences required to represent
the problem increases, this constraintsthe problem increases, this constraints
increasingly conflicts with the requirement ofincreasingly conflicts with the requirement of
non-non-crosshybridizationcrosshybridization..

 How much of DNA sequence space isHow much of DNA sequence space is
available for computation?available for computation?
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Bioinformatics ToolsBioinformatics Tools

 Sequence Comparison ImportantSequence Comparison Important

 Smith-Waterman Dynamic ProgrammingSmith-Waterman Dynamic Programming
algorithm to computer minimum free energy ofalgorithm to computer minimum free energy of
hybridizationhybridization

 Nearest-neighbor model of DNA duplexNearest-neighbor model of DNA duplex
thermal stabilitythermal stability
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Experimental ValidationExperimental Validation
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Experimental ResultsExperimental Results
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Protocol IteratedProtocol Iterated
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AlgorithmAlgorithm

 Generate Random Paths through the graph.Generate Random Paths through the graph.
 Keep only those paths that begin with vKeep only those paths that begin with vinin and end and end

with vwith voutout..
 If graph has n vertices, then keep only those pathsIf graph has n vertices, then keep only those paths

that enter exactly n vertices.that enter exactly n vertices.
 Keep only those paths that enter all the vertices atKeep only those paths that enter all the vertices at

least once.least once.
 In any paths remain, say In any paths remain, say ““YesYes””; otherwise, say; otherwise, say

““NoNo””
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DNA Polymerase
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POLYMERASEPOLYMERASE
CHAINCHAIN

REACTIONREACTION
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Start = V0, Stop = V6Start = V0, Stop = V6
V1

E0->1

V0 V2 V3 V4 V5 V6

E1->2 E2->3 E3->4 E4->5 E5->6

V6

E0->6

V0

V3

E0->3

V0 V2 V3 V4 V5 V6

E3->2 E2->3 E3->4 E4->5 E5->6

V5

E4->5

V4 V1 V2

E5->1 E1->2
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AlgorithmAlgorithm

 Generate Random Paths through the graph.Generate Random Paths through the graph.
 Keep only those paths that begin with vKeep only those paths that begin with vinin and end and end

with vwith voutout..
 If graph has n vertices, then keep only those pathsIf graph has n vertices, then keep only those paths

that enter exactly n vertices.that enter exactly n vertices.
 Keep only those paths that enter all the vertices atKeep only those paths that enter all the vertices at

least once.least once.
 In any paths remain, say In any paths remain, say ““YesYes””; otherwise, say; otherwise, say

““NoNo””
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GGELEL E ELECTROPHORESIS - SIZE SORTINGLECTROPHORESIS - SIZE SORTING

Buffer
Gel
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Electrode
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Right LengthRight Length
V1

E0->1

V0 V2 V3 V4 V5 V6

E1->2 E2->3 E3->4 E4->5 E5->6

V6

E0->6

V0

V3

E0->3

V0 V2 V3 V4 V5 V6

E3->2 E2->3 E3->4 E4->5 E5->6
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AlgorithmAlgorithm

 Generate Random Paths through the graph.Generate Random Paths through the graph.
 Keep only those paths that begin with vKeep only those paths that begin with vinin and end and end

with vwith voutout..
 If graph has n vertices, then keep only those pathsIf graph has n vertices, then keep only those paths

that enter exactly n vertices.that enter exactly n vertices.
 Keep only those paths that enter all the vertices atKeep only those paths that enter all the vertices at

least once.least once.
 In any paths remain, say In any paths remain, say ““YesYes””; otherwise, say; otherwise, say

““NoNo””
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AANTIBODYNTIBODY A AFFINITYFFINITY

CACCATGTGAC

GTGGTACACTG B

PMP

+

Anneal

CACCATGTGAC

GTGGTACACTG B+

CACCATGTGAC

GTGGTACACTG B PMP

Bind

Add oligo with
Biotin label

Heat and cool

Add 
Paramagnetic-Streptavidin

Particles

Isolate with Magnet
N

S
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Every VertexEvery Vertex
V1

E0->1

V0 V2 V3 V4 V5 V6

E1->2 E2->3 E3->4 E4->5 E5->6

V3

E0->3

V0 V2 V3 V4 V5 V6

E3->2 E2->3 E3->4 E4->5 E5->6
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AlgorithmAlgorithm

 Generate Random Paths through the graph.Generate Random Paths through the graph.
 Keep only those paths that begin with vKeep only those paths that begin with vinin and end and end

with vwith voutout..
 If graph has n vertices, then keep only those pathsIf graph has n vertices, then keep only those paths

that enter exactly n vertices.that enter exactly n vertices.
 Keep only those paths that enter all the vertices atKeep only those paths that enter all the vertices at

least once.least once.
 In any paths remain, say In any paths remain, say ““YesYes””; otherwise, say; otherwise, say

““NoNo””
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Hamiltonian PathHamiltonian Path
V1

E0->1

V0 V2 V3 V4 V5 V6

E1->2 E2->3 E3->4 E4->5 E5->6


