Reaction-Driven Membrane Systems

Luca Bianco, Federico Fontana, and Vincenzo Manca

University of Verona, Department of Computer Science,
15 strada Le Grazie - 37134 Verona, Italy
{bianco, fontana}@sci.univr.it
vincenzo.manca@univr.it

Abstract. Membrane systems are gaining a prominent role in the mod-
eling of biochemical processes and cellular dynamics. We associate spe-
cific reactivity values to the production rules in a way to be able to tune
their rewriting activity, according to the kinetic and state-dependent pa-
rameters of the physical system. We come up with an algorithm that
exhibits a good degree of versatility, meanwhile it gives an answer to the
problem of representing oscillatory biological and biochemical phenom-
ena, so far mostly treated with differential mathematical tools, by means
of symbolic rewriting. Results from simulations of the Lotka-Volterra’s
predator-prey population dynamics envision application of this algorithm
in biochemical dynamics of interest.

1 Introduction

Besides their connections with formal language theory, membrane systems often
use to be applied to the analysis of biological processes [1I2I3/4]. In particular,
P systems have come useful provided their capability to represent several struc-
tural aspects of the cell along with many intra- and extra-cellular communication
mechanisms: dynamic rewriting by means of P systems has already led to alter-
native representations of different biological phenomena and to new models of
important pathological processes [3/4].

By our side we have developed a P system-based algorithm in which rules are
specified along with reactivities, respectively denoting the “power” of a produc-
tion rule to process elements such as chemical reactants, bio-molecules and so on
[5]. The performances shown in the simulation of the Lotka-Volterra population
dynamics foster potential practical application of this algorithm in critical open
problems dealt with by computational systems biology.

2 The Algorithm

For the sake of brevity, in this paper the algorithm is formalized for the case of
just one membrane [2]. So, let us consider a P system I working on the alphabet
A={X)Y,...,Z}, provided with rules r,s,...,w € R.

The algorithm requires, firstly, to recognize the state of the system. This
state, along with constant factors (depending, for instance, on chemical kinetic

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3611, pp. 1150-[[153} 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reaction-Driven Membrane Systems 1151

parameters), is used to compute specific functions called reaction maps. Once we
have the values assumed by such maps at hand we normalize them consistently
with the available resources (i.e., objects in the P system), meanwhile limit-
ing these values to avoid to over-consume objects. Finally, a simple stochastic
method is employed to decide how to treat individual objects in the system,
for which the procedure so far described cannot take a definite decision. This
situation occurs when reaction maps ask for partitioning one or more objects
into fractional parts of them.

About the definition of state, we postulate that at every discrete time ¢t we
can read the type and number of objects within the membrane system. More
formally the state at time ¢ is identified by a function ¢; : A — N: for instance,
q:(X) gives the amount of objects X available in the system at time ¢. The set
of all states assumed along time by the system is given by @ = {q |t € N}: this
set contains the complete information on the system evolution.

About the definition of reaction maps (one for each rule), let a reaction map
give the reactivity that the corresponding rule has when the system is in a given
state. In formal terms, for each rule r we define a reaction map F, : Q — R
that maps states into non-negative real numbers. Since the state is defined at
any temporal step, the application of a reaction map F,. ultimately results in a
non-negative real number that we will take as the reactivity of r in g.

Such maps allow for a wide choice of possible definitions depending on the
biological phenomenon under analysis. As an example, consider a membrane
system having an alphabet made of five symbols, A = {A, B,C, D, E}, and two
rules: r: ABB — AC, and s: AE — BD.

Possible structures of the reaction maps might be, for instance, reactivities
driven by the law of mass action tuned by constant kinetic parameters, k,- and ks,
as well as reactivities depending on an external promoter, like an enzyme capable
of activating the reaction. The two possibilities are shown in (), respectively in
the left and right column:

F. =k, q:(A)q:(B) F. = q:(D) (1)
Fy = ks q:(A)g:(E) Fy ={q(D)}?

2.1 Reaction Weights, Limitation and Rounding, and State
Transition

Reaction maps are proportionally weighted among rules by means of reaction
weights. Every reaction weight gives, for each symbol, a population a rule applies
to in order to proportionally consume the corresponding objects. By denoting
with «(7) the ith symbol in a string «, with |a| the length of the same string,
and with |a|x the number of occurrences of X in «, then we define the reaction
weight W, (ar (z)) for r : a,, — (3, with respect to the symbol (7).
Normalization can be expressed in quantitative terms if we think that all rules
co-operate, each one with its own reactivity, to consume all available objects.
Thus, it must be:
Y O W,(X)=1 VXeA (2)

pER| X€Ea,

1152 L. Bianco, F. Fontana, and V. Manca

that is, for each symbol the sum of the reaction weights made over the rules
containing that symbol in their left part equals unity.
Holding this constraint, we can define the reaction weights for each r € R as

F

> B

PER | ar(i)Ea,

Wi (0 (i) = i=1,...,]a] (3)

Similarly to what happens in (2)), here we sum at the denominator over the rules
containing the symbol a,-(7) in their left part.

Every rule cannot consume more than the amount of the (reactant) object,
taken with its own multiplicity in the reaction, whose availability in the system
is lowest. Thus, we have to limit the application of every rule by minimizing
among all reactant symbols participating to it:

A, = min {Wr(ar(i))w}. (4)

i=1,...,| | |ar|ar(i)

Still, A, is a real number. As opposite to this, a genuine object-based rewrit-
ing system must restrict the rule application domain to integer values. We choose
the following policy: for every rule, compute A, by comparing the fractional part
of A, to a random variable v, defined between 0 and 1; choose the floor of A,
if this fraction is smaller, the ceiling otherwise. In the simulation of the Lotka-
Volterra dynamics v, can be chosen to have a uniform distribution.

The proposed rounding policy does not prevent from potentially exceeding
the available resources in the system. To avoid this we check that Y, . p Ar|on|x
< q(X)VX € A, otherwise the set of minima must be computed again.

In conclusion, for every symbol X € A the change A, (X) in the number of
objects due to r is equal to the stoichiometric factor of r, equal to |GB,|x — |ar|x,
times the value A,: A,.(X) = A, (|8-]x — |ar|x). It descends that for every
symbol X € A the state evolves according to the following formula:

Qt+1(X):(It(X)+ZAr(X)~ (5)

reR

3 Simulation: Lotka-Volterra Dynamics

The classic Lotka-Volterra population dynamics [5] can be described by a simple
set of rewriting rules in which X are preys and Y predators: r : X — XX
accounts for prey reproduction, s : XY — Y'Y for predator reproduction, and
finally ¢ : Y — X accounts for predator death.

We tune the activity of every rule by selecting proper reactivity kinetic con-
stants k., ks, and k;, proportional to the rate of reproduction and death of both
predators and preys. Moreover we postulate F to be proportional to the maxi-
mum number between preys and predators: F,. = k.., Fs = ks max{q:(X), ¢ (Y)},
F; = k;. Finally we add transparent rules [5] accounting for preys that are not

Reaction-Driven Membrane Systems 1153

1100

8000 T T
7000} predators

6000 -

preys
predators

1000 -

900

5000 -
800

4000

populations
populations

700
3000

600
2000

500 1000

0 1000 2000 3000 4000 5000 6000 7000 8000 136 1. . 139 14 141 142 143 144
step step x10°

Fig. 1. Predator-prey initial dynamics (left) and after 136000 observation slots (right)

reproducing or being consumed and for predators that are not eating or dieing,
respectively: u: X — X andv: Y — Y, with F,, =k, and F, = k,.

Plots of the dynamic behavior of the predator-prey model are depicted in
Figure [[l These plots come out when we set k, = ks = 3-1072, k, = 4-1075,
and k,, = k, = 5 along with initial conditions ¢;(X) = ¢:(Y") = 900.

The oscillation can evolve to the death of both species, as in this case, or to
the death of the predators solely. The long-term evolution in fact depends on
single events taking place when few individuals, either preys or predators, are
present in the system. Such a long-term behavior emphasizes the importance
of a careful description of not only the reactivities, but also the relationships
existing between individuals: the nature of these relationships can completely
change the overall system evolution.

References

1. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, Germany (1997)

2. Paun, G.: Membrane Computing. An Introduction. Springer, Berlin, Germany
(2002)

3. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics.
In Ciobanu, G., Pdun, G., Pérez-Jiménez, M.J., eds.: Applications of Membrane
Computing. Springer, Berlin, Germany (2005) To appear.

4. Mauri, G., Paun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A., eds.: Mem-
brane Computing, 5th International Workshop, WMC 2004, Milan, Italy, June 14-
16, 2004, Revised Selected and Invited Papers. In Mauri, G., Paun, G., Pérez-
Jiménez, M.J., Rozenberg, G., Salomaa, A., eds.: Workshop on Membrane Comput-
ing. Volume 3365 of Lecture Notes in Computer Science., Springer (2005)

5. Bianco, L., Fontana, F., Manca, V.: Metabolic algorithm with time-varying reaction
maps. In: Proc. of the Third Brainstorming Week on Membrane Computing (BWMC
2005), Sevilla, Spain (2005) 43-62

	Introduction
	The Algorithm
	Reaction Weights, Limitation and Rounding, and State Transition

	Simulation: Lotka-Volterra Dynamics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

