
Evolution and Oscillation in P Systems:
Applications to Biological Phenomena

Vincenzo Manca, Luca Bianco, and Federico Fontana

University of Verona,
Department of Computer Science,

strada Le Grazie, 15
37134 Verona, Italy

vincenzo.manca@univr.it
http://www.sci.univr/∼manca

Abstract. Some computational aspects and behavioral patterns of P
systems are considered, emphasizing dynamical properties that turn use-
ful in characterizing the behavior of biological and biochemical systems.
A framework called state transition dynamics is outlined in which gen-
eral dynamical concepts are formulated in completely discrete terms. A
metabolic algorithm is defined which computes the evolution of P sys-
tems modeling important phenomena of biological interest once provided
with the information on the initial state and reactivity parameters, or
growing factors. Relationships existing between P systems and discrete
linear systems are investigated. Finally, exploratory considerations are
addressed about the possible use of P systems in characterizing the oscil-
latory behavior of biological regulatory networks described by metabolic
graphs.

1 Introduction

In 1998 P systems were presented as a new model of computation [14]. Before
their advent, some classes of rewriting systems had already shown the ability
of expressing specific biological phenomena [22, 9, 10]. P systems move a step
further: they have clear structural analogies with the cell, in particular they
model several features of the biological membranes (for this reason they are
often referred to as membrane systems). Moreover, the transitions happening in
these systems recall certain evolution processes that take place in a living cell.

From a formal viewpoint, P systems satisfy a result of universality even in
their basic definition [14]. In this sense they have all the computational power
needed to capture a biomolecular process—provided that we are able to arrange
it into an algorithmic procedure. In addition to this, the similarities existing
between P systems and (at least some aspects of) biological cells might suggest
that P systems are also able to represent the same process in a meaningful
way, that is, not only to compute it as any universal machine would do, but
also to provide potential insight on the biological mechanisms determining and
controlling the process via the observation of the transitions of the system.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 63–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:vincenzo.manca@univr.it

64 V. Manca, L. Bianco, and F. Fontana

However, this is true only to some extent. Modeling specific biological activi-
ties inside a P system is not an easy task. A lot of alternative constructs derived
from the basic definition of P system have been proposed, sometimes capturing
crucial aspects of the biology of cells such as thickness, polarity, catalysts, in-
hibitors, promoters, carriers, porters (symport-antiport), priority, division, repli-
cation, creation, dissolution, resources, and energy [15, 17, 16, 12, 5, 1]. In other
cases, powerful paradigms were imported from other formal systems having bi-
ological implications too, such as splicing and object-structuring (in form of
strings) [15]. All these alternative constructs exhibit properties of universality,
hence by all means they represent a first, necessary attempt to get P systems
closer to the world of bio-molecules meanwhile preserving their computational
power.

Nevertheless there are some aspects, that are crucial in almost any study of
biomolecular processes, that the traditional formulations of P systems do not
develop in a sufficient way from a biological point of view.

The halting of a P system tells that a computation has terminated success-
fully, but the terminal state is not a primary object of investigation in many
biomolecular realities. Rather, we would shift the focus on the computation dur-
ing its “life”, in an aim to observe the living organism while surviving in the
environment and, possibly, to influence his life cycle when some bio-chemical
indicators tell that his physiological activity is altered (possibly harmfully). In
other words, biological systems do not compute states, but rather stable be-
havioral pattern that satisfy some “enjoyable” conditions, and life cycles are
combined and organized in very complex forms. This means that considering all
the forms of periodicity in the framework of P systems is of key importance if
we want to apply P systems to modeling biological processes [1]. Moreover, life,
in its adaptation and evolution strategies, explores behavior spaces in a range
between simple cycles and chaotic behavioral magmas where space in lost in
time and vice versa. Therefore, chaos is very important as limit border that life
try to approximate to (with the risk of falling in its destructive abyss) because
“at edge of chaos” is available the dynamical richness necessary for adaptation
and evolution [10].

Biomolecular mechanisms are the result of many individual local reactions,
each one of those being formed by processes whose extension is limited in time
and space. These processes interact with each other by means of specific commu-
nication strategies, in a way that they finally exhibit a (sometimes surprising)
overall co-ordination. In this sense, and despite this co-ordination, biomolecular
processes are by all means asynchronous.

P systems, in their classical formulation, are intended to “consume” the avail-
able resources in a maximally parallel way during the rewriting of symbols.
Holding this property, then all the symbols that are present in the system at a
given configuration become potential resources: they are consumed as many as
possible, and new symbols are produced in consequence of that action. In other
words, maximal parallelism constrains the system to consume all the available
resources during a transition. Moreover, their evolution is synchronous, i.e., a

Evolution and Oscillation in P Systems 65

global clock triggers the production of new symbols inside all membranes. This
limits their versatility in modeling biological asynchronous phenomena.

In this paper we focus on some theoretical and practical issues especially
oriented to biomolecular computing. First, we consider a perspective (still in
progress for many aspects) according to which P systems are cast in a discrete
dynamical framework. In this perspective, we will characterize classical dynam-
ical concepts in terms of state transition dynamics [11].

Next, we propose to observe rewriting rules in membranes from a different
viewpoint. Membranes are intended to host “symbolic reactions”, and rules ap-
ply according to some reaction parameters and substance concentration, as it
normally happens in biochemical phenomena. We define a metabolic algorithm
for computing the evolution of (deterministic) P systems when some initial state
and some reaction parameters are given, such as reactivities or growing factors.
This algorithm is applied to known bio-chemical oscillatory phenomena, and put
in relation with differential equations.

The similarities arising between the symbolic and quantitative approach pur-
sued by P systems and differential equation systems, respectively, stimulate the
discovery of relationships existing between P systems and some widely used,
simple but powerful systems of equations expressing differential problems in the
discrete time, called discrete linear systems. Such relationships are addressed
before the conclusion, where some extra considerations are made on the pos-
sibility to reproduce the behavior of biological networks expressed in terms of
metabolic graphs: in the description of these graphs (networks) the emphasis is
on the oscillatory rather than temporal behavior, so that specific mathematical
tools based on a model description in the frequency domain are proposed.

2 State Transition Dynamics

One classic approach to discrete system modelling consists in first analyzing a
continuous phenomenon, then producing a discrete model of it according to a
given discretization method, and finally running a simulation, provided that the
discrete model respects certain stability conditions.

There are cases in which a discrete model of a continuous phenomenon gener-
ates errors, but such errors can be arbitrarily reduced or, equivalently, the preci-
sion is proportional to the granularity with which the continuous phenomenon is
reproduced by the discrete model. Sometimes the information needed to describe
a physical phenomenon is inherently discrete in a way that the resulting discrete
model reproduces the reality almost directly (think, for instance, to DNA repli-
cation). In this last case having a method that could compute the dynamics of
the system directly from its discrete representation would be a great advantage
with respect to many aspects.

The state transition dynamics formalism considers a system defined in a
discrete domain, assuming discrete values. It studies properties such as orbits
and trajectories, periodicity, eventual periodicity and divergence, fixed points,
attractors and recurrence [4, 6, 3], aimed at defining analogous concepts in the

66 V. Manca, L. Bianco, and F. Fontana

context of systems discrete in space and in time, with no metric or topological
structure. It is surprising that, even assuming a very weak mathematical struc-
ture, many concepts can be defined formally in such a way that interesting facts
can be deduced on the structure of attractors, on deterministic chaos, and on
its relationship with nondeterminism [11].

To give an idea of the characterization given by state transition dynamics,
here we report the most important definitions. For more details, discussions and
mathematical developments we refer to [11] where we started a general approach
to discrete systems dynamics that is under development.

Definition 1. A state transition dynamics is a pair (S, q) where S is a set of
states and q is a function from S into its power set,

q : S → P(S).

By calling quasi state any subset X of S, and extending the application of q over
quasi states, i.e.,

q(X) =
⋃

x∈X

q(x),

then we map quasi states into quasi states by means of q to form orbits, and
characterize specific trajectories along these orbits by means of the following
definitions.

Definition 2. An X-orbit is a sequence {Xi}i∈N of quasi states such that

X0 = X,
Xi ⊆ q(Xi−1) , i > 0.

(1)

A X-orbit is complete when the previous inclusion is replaced by an equality.
When x is a state, we write simply x-orbit instead of {x}-orbit.

An s-trajectory is a function ξ : N → S such that

ξ(0) = s,
ξ(i) ∈ q

(
ξ(i − 1)

)
, i > 0.

(2)

By denoting with qi the composition of q repeated i times and q∗(s) =
⋃

i∈N qi(s),
we refer as flights and blackholes to the following special trajectories:

Definition 3. An s-trajectory is an s-flight if it is an injective function on N.
An s-flight is an s-blackhole if q∗(s) ⊆ ξ(N) (where ξ is extended to sets).

When S is made of symbolic values then the relation y ∈ q(x) induced by q
between two states, x and y, is conveniently expressed using the notation typical
to rewriting systems: x → y. Note that we can easily introduce non terminating
computations as long as q is total.

It is clear that the notion of dynamical system defined above is nondetermin-
istic, because any state can transform into a set of possible states—though, an
equivalently expressive deterministic system where states are the quasi states of
the original system can be figured out. The nondeterministic aspect is essential
for the modeling of many phenomena.

We now give a characterization of the evolution in these systems.

Evolution and Oscillation in P Systems 67

Definition 4. An X-orbit is periodic if qn(X) = X for some n > 0. An orbit
is eventually periodic if qn+k(X) = qk(X) for some k, n > 0. In this case k is
called the transient and n the period.

Definition 5. An X-orbit is Ω
(
f(n)

)
-divergent with respect to a function µ :

S → N, called Ljapounov function, if µ
(
qn(X)

)
has order Ω

(
f(n)

)
. A similar

definition holds for the order of divergence O
(
f(n)

)
.

Definition 6. A state s is a fixed point if the transition relation transforms it
into itself, that is, q(s) = {s}.
Periodicity and eventual periodicity are properties with a strong computational
significance. It can be shown that, in a suitable computational framework where
every machine finds a counterpart in a corresponding state transition dynamics,
the periodicity decision problem turns out to be computationally equivalent to
the termination problem [11]:

Proposition 1 Given a computationally universal class of machines, then the
(eventual) periodicity of the related dynamical systems is not decidable.

Affine to periodicity (but weaker) is recurrence:

Definition 7. A state x is recurrent if x ∈ qn(x) for some n > 0. A state x is
eternally recurrent if ∀n > 0 : y ∈ qn(x) ⇒ ∃m > 0 : x ∈ qm(y).

A system dynamics is ultimately characterized by its attractors, that in very
first approximation can be seen as quasi states in which the system must fall in
the end. First of all, we say that an orbit is included in another orbit if the former
sequence is contained in the latter sequence, and we say eventually included if
it is included in the other orbit except for a finite number of quasi states.

We call basin a set B ⊆ S such that q(x) is included in B for every state
x ∈ B. Inside a basin we possibly find an attracting set A, i.e., a subset which
eventually includes the complete x-orbit of every state x ∈ B. If A is minimal
under set inclusion, i.e., no subsets (even made of a single state) can be removed
from A otherwise causing the lost of the attracting property, then our attracting
set is an attractor.

A complete characterization of attractors requires more definitions than those
reported in this paper [11]. In particular, here we have only outlined the so-called
unavoidable attracting sets that can have three different types:

1. periodic attractors, that is, periodic orbits (fixed point attractors are a special
case);

2. eternally recurrent blackholes;
3. complex attractors, that is, a combination of the two previous cases.

Many concepts in formal language theory can be revisited in the framework of
state transition dynamics. For example, languages generated by grammars or
recognized by automata are special cases of attractors. But next issues, that

68 V. Manca, L. Bianco, and F. Fontana

are crucial in the development of state transition dynamics, are: i) the exten-
sion of its focus on more complex dynamical phenomena such as the forms and
degrees of chaos, intermittency, dissipation, resonance; ii) the search for dynam-
ical parameters useful in the qualitative analysis of dynamical patterns. In fact,
both cellular automata and Kauffman networks enlighten that the relationship
between the transition function and the state structure strongly determines dy-
namically relevant qualities [20, 21]. We put forward that several parameters
that are identified in those contexts, such as connectivity, channeling, majority,
input entropy, and Derrida plot, could inspire some analogues in P systems. The
approach we present in the next section will give some hints in this direction. In
fact, the metabolic viewpoint will cast P systems in the framework of dynamical
networks to which both cellular automata and Kauffman networks belong.

3 Metabolic Algorithm and Oscillatory Phenomena

Our proposed algorithm is inspired by a chemical reading of the rewriting rules.
Due to the biological implications of this type of reading, we called the algorithm
metabolic.

The re-interpretation of the rewriting rules in the light of chemical reactions is
not new: several researchers have applied rewriting systems to contexts different
from the purely abstract one, giving alternative meanings to the rules [18, 19]. In
P systems every rule can be seen as a binary relation between strings, mapping
the leftward argument into the rightward one. For instance, a rule r : AB → CD
containing symbols defined over an alphabet V states that every occurrence of
the object A ∈ V in the system, once paired with B ∈ V , can be substituted by
the pair of objects CD ∈ V ∗.

If we look at r as a chemical reaction, now the leftward objects A and B
have the role of reactants whereas those on the right are products. Following this
chemical interpretation, we propose to look at rules as descriptors of the changes
in concentration of the reactants into products. In other words, r says that a
number of objects of type A and B transforms into objects of type B and C. In
this way we deal with populations rather than single objects.

This interpretation needs the introduction of some definitions. Consider a P
system on an alphabet V = {A, B, C, . . .}, provided with a nonempty set R of
rewriting rules. Every rule r : α → β, with α, β ∈ V ∗, is associated to a reactivity
coefficient kr whose role will be made clear in the following.

For each membrane M we give a maximum number of objects |M | that cannot
be overcome. From here we agree to define a conventional molarity unit :

µ = ν |M |,
where ν is a molarity factor (ν = 0.01 in our experiments). We denote with |X|
the number of elements of type X in M , and define the quantity

||X|| =
|X|
µ

(3)

Evolution and Oscillation in P Systems 69

as the number of moles of X inside M . This molar formulation for the quantities
involved in a reaction leads to the α-molar concentration, defined as the product
of the moles of every object in a string α = α1 . . . α|α|:

||α|| =
|α|∏
i=1

||αi||. (4)

It is now possible to describe an algorithm that translates the rewriting rules
into a set of equations defining the molar variation, ∆||X||, of every element X
in consequence of the application of the rules.

A rule r : α → β ∈ R acts on the leftward (i.e., reactant) and rightward
(i.e., product) objects: the leftward part of r diminishes the concentration of
the reactants, whereas the rightward part increases the concentration of the
products. Hence, the changes in the amount for an element X in M due to r are
equal to the stoichiometric coefficient:

|β|X − |α|X ,

where |γ|S indicates the number of occurrences of S contained in γ.
In chemical terms, r affects the concentration of every element appearing in it

by a similar contribution, depending on the concentration of all the reactants at
the instant of application. The term ||α|| takes this aspect into account, according
to equation (4). Thus, we can compute the effect ∆r||X|| of a rule r : α → β on
the concentration of X, as

∆r||X|| = kr ||α|| (|β|X − |α|X), (5)

where kr is the reactivity coefficient of the rule.
In general an object is involved in more than one rule. In order to compute

the overall molar variation of an object X we have to take the contributions of all
rules into account. This is made by summing up their effects on the concentration
of X:

∆||X|| =
∑
r∈R

∆r||X||, (6)

where R is the set of rules in our P system.
Hence, after the application of a set of rules our algorithm updates the number

of moles of an object X according to the following assignment:

||X|| := ||X|| + ∆||X||. (7)

The multiplicity of X is updated accordingly:

|X| := |X| + µ∆||X||. (8)

Let us now see a concrete example of this translation from rewriting rules to
metabolic equations. Consider the following set of rules:

r1 : AC → AB,
r2 : BC → A,
r3 : BBB → BC,

(9)

70 V. Manca, L. Bianco, and F. Fontana

each of them associated to a coefficient, respectively kr1, kr2, and kr3. We want
to calculate the variation in the multiplicity of every object in the system caused
by the rules.

If we apply equation (6) to each object, then we obtain the following system
of metabolic equations:

∆||A|| = 0 · kr1||AC|| +1 · kr2||BC|| +0 · kr3||BBB||,
∆||B|| = +1 · kr1||AC|| −1 · kr2||BC|| −2 · kr3||BBB||,
∆||C|| = −1 · kr1||AC|| −1 · kr2||BC|| +1 · kr3||BBB||,

(10)

where kr1, kr2, and kr3 can be read as “rates” of application of r1, r2 and r3,
respectively. As we can see from (10), where all contributions (including null
ones) are represented, it is always possible to figure out an equation for every
object of the P system from the correspondent set of rewriting rules. Each of
these equations gives the molar variation of the related element as time elapses.

By applying equation (3) we can figure out the finite differentials associated
to the system (10):

∆a = +µ · kr2
µ2 · bc,

∆b = +µ · kr1
µ2 · ac −µ · kr2

µ2 · bc −2µ · kr3
µ3 · b3,

∆c = −µ · kr1
µ2 · ac −µ · kr2

µ2 · bc +µ · kr3
µ3 · b3,

(11)

in which we have denoted numbers of elements with a, b, c instead of |A|, |B|, |C|,
respectively. Note that the correspondence between rewriting rules and differen-
tial equations is not bi-directional: in general there is no unique way to translate
a system of differentials into a set of rewriting rules, whereas the other way round
holds.

We want to emphasize an important fact about the coefficients kr. In the
molar formulation of rewriting rules they are called reactivities, and their role
is to weight each rule’s action. The reactivity of a rule takes many aspects into
account: i) chemical and physical aspects of the reaction environment (pressure,
temperature, PH level, catalyst activity, . . .), ii) reaction speed (increasing or
decreasing speed corresponds to a finer or coarser observation granularity), iii)
proper features of single reactions that should account for the following aspects:

– rule activation percentage;
– synchronization and parallelism degree;
– reactants and energy partition.

If we consider all the interconnections existing between the points introduced
in the previous list, then it is easy to understand that the tuning of reactivity
factors is very important. We think that this aspect needs further investigation,
and our future work will proceed along this line.

As previously seen, the multiplicity of X is updated according to (7) after
each system transition. Unfortunately it might happen that a rule is applied too
many times with respect to the reactant allowance, due to a wrong choice of the
reactivity coefficients. In other words, the system in principle can consume more

Evolution and Oscillation in P Systems 71

reactants than those which are available at a given configuration. This violates
the Principle of Mass Conservation.

To account for this, we add in our model a set of constraints that force the
system to respect the Principle of Mass Conservation. One possible algorithm is
the following: for every object X, before calculating its molar variation ∆||X||
check if the amount |X| becomes negative; if so, then stop the computation, else
go on. Another possible work-around to a violation of the previously discussed
constraints is to decrease each of the values of the reactivity parameters by a
certain rate and, then, check again.

To clarify these ideas it is useful to calculate this set of constraints on a
concrete example. Consider a P system with the set of rules (9) previously dis-
cussed; in order not to use more reactants than those available, we add the above
constraints we to each reactant. In the example seen before these constraints be-
come:

C|A| : kr1||AC|| < |A|,
C|B| : kr2||BC|| + kr3||BBB|| < |B|,
C|C| : kr1||AC|| + kr2||BC|| < |C|,

(12)

where C|A|, C|B| and C|C|, respectively, denote the constraints on the corre-
sponding objects.

We want to stress that someone could think that the constraint on an object
X can be equivalently calculated after the updating of |X|, by simply checking
that it never assumes negative values. Once more, this is the wrong approach.
In fact, even if the balance of positive and negative contributions results in an
admissible variation, no one is able in this way to prevent that the amount of X
consumed by all the reactions (those including it among their reactants) during
a transition exceeds its real amount.

Once a constraint violation is discovered there are several ways to react. This
investigation is still in progress. There are some open questions in our model,
and our future work will try to give an answer to them. One of such questions
deals with the temporal variation of the reactivity parameters, as independent
functions in the system: we think that setting these parameters free to vary along
time would have a strong impact on the system behavior, enabling it to simulate
more complex reactions.

We would like to end this brief treatment outlining some of the results we
get by this model implemented in a simulator Psim, developed in Java with an
xml representation of membrane structure [2].

The first dynamical system we intend to model is a well known chemical
oscillator called Brusselator ; it is a simplified model of the Belousov-Zhabotinsky
reaction [13, 7, 19]. When certain reactants like sulphuric acid, malonic acid,
ferroin and bromate are combined together, in presence of a cerium catalyst,
the chemical compound obtained, after a period of inactivity, starts a series of
sudden oscillations in color ranging from red to blue. This chemical reaction
could be described by the following rewriting rules:

72 V. Manca, L. Bianco, and F. Fontana

X - m1 - in = Y - m1 - in =

O

47,4

300O

94,79

600O

142,19

900O

189,58

1200O

236,98

1500O

284,37

1800O

331,77

2100O

379,16

2400O

426,56

2700O

473,95

3000

N. cycles

Conc.

Fig. 1. Oscillations of Belousov-Zhabotinsky reaction model simulated by Psim with
parameters k1 = 0.9, k2 = 0.7, k3 = 0.36, k4 = 0.36, k5 = 0.1, k6 = 0.15 and µ = 1000
(|M | = 100000). Parameters could be rewritten in terms of k1 in this way: k2 = 0.78·k1,
k3 = 0.4 · k1 and k4 = 0.4 · k1

r1 : A → X,
r2 : BX → Y D,
r3 : XXY → XXX,
r4 : X → C.

(13)

It is usually made the assumption that the system described in this way inputs
continuously reactants A and B from the outside environment; for this reason, in
order to implement the reaction into our simulator, two rules have to be added
at the set of rules (13):

r5 : λ → A,
r6 : λ → B,

(14)

that are two generative rules which introduce some amount of objects A and B
into the system.

It turns out that the oscillating behavior of the chemical reaction is mirrored,
in the abstract system outlined by the rewriting rules, in the oscillations of the
amounts of objects X and Y . We have translated this extended set of rules into
our xml input file and fed it to the simulator: the trend of X and Y is visible
in Figure 1, where it is possible to appreciate the perfect oscillating behavior of

Evolution and Oscillation in P Systems 73

the system’s limit cycle. Accordingly with the assumptions made in [18] initially
all objects have multiplicity equal to zero. Note that it is possible to relate all
reactivity coefficients to their maximum value, as in Figure 1 k1. This relationship
is emphasized in Figure 1.

The second dynamic system we intend to investigate is a very basic predator-
prey model, described, among others, in [7]. It is constituted by only two objects
evolving over time: preys X and predators Y . We make the following four sim-
plifying assumptions:

– preys grow up following a Malthusian model;
– preys’ growing rate is reduced proportionally to predators’ number;
– predators extinguish exponentially in absence of preys because they are

predators’ only sustenance;
– preys’ presence make predators’ growing rate increase proportionally to their

number.

Under these assumptions this predator-prey model could be described by
the well known Lotka-Volterra differential equations, where now x = ||X|| and
y = ||Y ||:

x′ = ax − dxy,
y′ = exy − by,

(15)

extended by the initial conditions that x0 > 0 and y0 > 0.
Starting from these differential equations we have translated them into the fol-
lowing rewriting rules:

r1 : X → XX,
r2 : XY → Y Y,
r3 : Y → λ,

(16)

with the following assignments:

a = kr1; d =
kr2

µ
; b = kr3; e =

kr2

µ

where kri and µ have the usual meaning and are input parameters of our model;
in this way we get the metabolic equations:

∆||X|| = kr1 · ||X|| − kr2 · ||XY ||
∆||Y || = − kr2 · ||XY || − kr3 · ||Y || (17)

Note that again all these rules and objects could be contained into a system
with just one membrane.

We tested the system described so far starting with an initial amount of 100
preys and 20 predators. The simulation, as we can see from Figure 2, confirmed
the oscillating behavior of the number of preys and predators in the predator-
pray model described by the Lotka-Volterra system of equations.

The last model we discuss in this paragraph is that of an infective disease
that spreads through a population and that could cause infected people’s death
or permanent immunity to the infection.

74 V. Manca, L. Bianco, and F. Fontana

X − m1 − in = Y − m1 − in =

O

17,19

100O

34,37

200O

51,56

300O

68,75

400O

85,93

500O

103,12

600O

120,31

700O

137,49

800O

154,68

900O

171,87

1000

N. cycles

Conc.

Fig. 2. Oscillations of the predator-prey model simulated by Psim with k1 = 0.01,
k2 = 0.02, k3 = 0.02 and µ = 100 (|M | = 10000)

We make the simplifying assumption that the population is closed (e.g., it
is made by a certain amount of people and where no births, immigration or
emigration are allowed). The population of this dynamical system is partitioned
into three different categories (objects of our system): healthy people C, ill people
G, and immune people K. When an healthy person meets an ill one he becomes
ill, with a probability depending on the reaction rate of the rule; an ill person has
two possibilities: he could die, and could otherwise become immune forever to
the infection. On the other hand, an healthy individual could keep his state until
he gets no contact with an ill one. This pattern is common to many contagious
phenomena, and could model also some forms of prion propagation that are the
biomolecular basis of various infectious diseases of the nervous system (as bovine
spongiform encephalopathy and Creutzfeldt-Jakob disease).

The behavior just described could be expressed with the following set of rules:

r1 : CG → GG,
r2 : G → K,
r3 : G → λ,

(18)

in which all the symbols have the meaning previously discussed. The simulation
of such a system with our tool has outlined results in agreement with literature.
In particular, it has put into evidence the existence of a threshold of activation

Evolution and Oscillation in P Systems 75

for the epidemic: on the one hand, if the initial healthy population is below a
certain amount, the epidemic does not start and so ill people decrease in number
until its complete vanishing. On the other hand, whenever the initial healthy
population is beyond that threshold the epidemic activates and the number of
ill people grows up until reaching its maximum and then drops again to zero
thus vanishing.

Due to our choice of the parameters, as indicated in Figure 3 and 4, it turns
out that the threshold we talked about is near 2570; we find accordingly two
kinds of behaviors depending of the initial amount of healthy people: in Figure
3 is depicted the case in which the epidemic doesn’t activate because of the
number of initial healthy people being 2000 and thus under the threshold. On
the other hand, in Figure 4 the initial amount of healthy people is 7000 and
the epidemic does its course reaching its maximum and then vanishing. In both
cases the initial number of ill people is fixed to 300.

C - m1 - in = G - m1 - in =

O

200

3O

400

6O

600

9O

800

12O

1000

15O

1200

18O

1400

21O

1600

24O

1800

27O

2000

30

N. cycles

Conc.

Fig. 3. Not active epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 = 0.12
and µ = 3500

We end the section stressing once more the fact that all the examples dis-
cussed here, in spite of their extreme interest, are very simple from a topolog-
ical viewpoint but their study has been very useful in order to evaluate the
effectiveness of the metabolic algorithm proposed. Our work will, from now on,
concentrate on the simulation of more elaborate systems.

76 V. Manca, L. Bianco, and F. Fontana

C - m1 - in = G - m1 - in =

O

700

3O

1400

6O

2100

9O

2800

12O

3500

15O

4200

18O

4900

21O

5600

24O

6300

27O

7000

30

N. cycles

Conc.

Fig. 4. Active epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 = 0.12
and µ = 3500

4 Relationships with Linear Systems

As opposite to State Transition Dynamics, the traditional linear paradigm results
in systems that are extremely simple from a formal point of view; meanwhile a
lot of theoretical results exist about such systems that are useful in practice [8].
For these two reasons linear systems have found plenty of practical applications
in system modeling and control, even of nonlinear phenomena.

Here we want to show that P systems can represent linear systems. Although
this fact is implied by universality, nevertheless it is interesting to see how this
representation can be given. We will make use of no peculiar and/or advanced
properties to derive a linear restriction of P systems. In other words, we do not
want to define any novel or complicate kind of construct to characterize a weaker
family of P systems as those reproducing linear systems.

In its traditional formulation a discrete linear (DLI) system transforms, at a
temporal step n, an N -dimensional state vector v according to a linear (matrix)
transformation in a way that a new state will hold at the following time step.
In the meantime, an output vector is produced as a linear combination of the
actual state itself. It is well known by theory that for a stable system this output
consists of (however many) damped sinusoids.

Coherently with the classic notion of P system here we do not consider the
existence of an external input—though, this aspect is likely to be object of
future research in conjunction with formulations of P systems that are capable

Evolution and Oscillation in P Systems 77

of accepting an input from the external environment [1]. Indeed, the external
input is a crucial aspect in linear systems theory, and more in general in the
modeling of real phenomena, as a factor that excites initially quiet systems and
forces their evolution along time.

Apart from the input, the core structure (and, hence, the overall behavior,
or free evolution) of a linear system depends on the structure of the transition
matrix A, sized N × N . Thus, we can completely characterize a free-evolving
linear system by the following set of equations holding at time step n:

{
v(n + 1) = Av(n),

u(n) = Cv(n), (19)

in which the upper formula expresses the state transition, whereas the lower
formula is responsible of the system output. Let v(0) be the initial state.

P systems cannot associate real numbers to symbols directly, as it happens for
linear systems. We, then, restrict our numerical domain to rational numbers in a
way that A and C can be respectively approximated by two matrices containing
only rational numbers, with the desired precision. Now we collect all the matrix
elements and, for each matrix, we compute the least common factor of such
elements, kA and kC respectively. Similarly, we compute the least common factor
kv of the initial state elements. In this way we can move to a slightly different
system: {

ṽ(n + 1) = Ãṽ(n),
ũ(n) = C̃ṽ(n),

(20)

in which Ã = kAA, C̃ = kCC, and ṽ(0) = kvv(0). In other words we multiply
both the transition and output matrix by their respective least common factors,
in a way that the matrices resulting from this operation, Ã and C̃, respectively,
contain only signed integers. Likewise we define kv(0) as a modified initial state
made of only integer values. These three rescalings lead to a modified linear
system evolving within the domain of signed integers.

Since we are interested in studying the dynamic evolution of populations,
then we can restrict our analysis to linear systems whose state is positive or
null. The formal complications needed to account for negative values are left to
further research: at the moment Ã and C̃ are made of positive numbers, and the
modified initial state is positive as well.

Let us define a P system using symbols describing the state, x1, x2, . . . , xN ,
and z, and the output: y1, y2, . . . , yN (output symbols are defined to add clarity
to the treatment although they are not strictly necessary):

V = {x1, x2, . . . , xN , y1, y2, . . . , yN , z},

T = {y1, y2, . . . , yN} .

Let this system contain N membranes inside the skin:

µ = [skin [1]1 [2]2 . . . [N]N]skin .

78 V. Manca, L. Bianco, and F. Fontana

The inner membrane labeled with j will contain the value of the j-th element of
ṽ(n + 1), in terms of multiplicity of objects z contained in the membrane itself.

In the beginning, the initial state is encoded in the skin membrane as the
following multiset of symbols:

wskin = x
ṽ1(0)
1 x

ṽ2(0)
2 . . . x

ṽN (0)
N ,

where ṽi(n) denotes the value of the i-th element of the state vector ṽ at time
step n. Any other membrane is set to be initially empty: w1 = . . . = wN = ∅.

A single-step evolution of the linear system is resolved in one transition of
the corresponding P system involving both the symbols in the skin and in every
inner membrane:

1. Every symbol xj located inside the skin is distributed, once turned into z,
into the i-th inner membrane with the multiplicity given by aij ∈ Ã, for
every i = 1, . . . , N . In the meantime the same symbol, once turned into yi,
is sent out of the system with a multiplicity given by cij ∈ C̃, again for each
i = 1, . . . , N . This happens for every component so that in the end we write

xj → z
a1j

in1
. . . z

aNj

inN
y

c1j

1 out . . . y
cNj

N out , j = 1, . . . , N . (21)

Thus, (21) stores symbols z accounting for the new state in the inner mem-
branes, meanwhile produces symbols y1, . . . , yN accounting for the system
output.

2. Every inner membrane sends its symbols back to the skin, once properly
renamed—say, every symbol z in the i-th membrane is sent out as xi. These
symbols form the new state and, at the end of the transition, they are ready
to take part in the next one-step evolution of the linear system.

Finally, the P system output must be converted back to the original linear
system output. This is made by clearing out, at temporal step n, the factors kA,
kC and kv from the multiplicity value of every output symbol yi, here denoted
with |yi|:

u(n) =
1

kn
AkCkn+1

v

∣∣ |y1| |y2| . . . |yN | ∣∣T (22)

in which T denotes transposition.
Although both ṽ(n+1) and ũ(n) are linear combinations of ṽ(n), nevertheless

we must note that the computation of the output is performed by a procedure
that differs from the one used for evolving the state. In fact, the latter makes
use of membranes in which to store the new state, whereas the former sends the
result directly out of the skin hence avoiding the use of additional membranes.
Indeed, inner membranes can be even avoided in the production of the new state
provided that additional symbols, z1, . . . , zN , are added to the P system to keep
trace of it. In this case (21) is rewritten as

xj → z
a1j

1 . . . z
aNj

N y
c1j

1 out . . . y
cNj

N out , j = 1, . . . , N, (23)

Evolution and Oscillation in P Systems 79

|z| = a31*|x1| + a32*|x2| + a33*|x3|

|z| = a21*|x1| + a22*|x2| + a23*|x3|

|z| = a11*|x1| + a12*|x2| + a13*|x3|

|x3||x2||x1|

|y1| = c11*|x1| + c12*|x2| + c13*|x3|

|y1| = c21*|x1| + c22*|x2| + c23*|x3|

|y1| = c31*|x1| + c32*|x2| + c33*|x3|

skin

3

1

2

Fig. 5. Graphic representation of the P system proposed in the example. Module op-
erators give the multiplicity of the respective surrounded symbols

meanwhile (again for each j) further rules of the type zj → xj update the state
in parallel, by transforming the (previous) new state in the actual state of the
system.

We think that the existence of inner membranes, as expressed by (21), puts
more emphasis on the system’s structural properties and paves the way for strate-
gies aimed at characterizing linearity in P systems containing multiple nested
membranes.

As an example, suppose to have

A =

∣∣∣∣∣∣
1 1/2 0
0 1 0
1 1/3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
1 0 0
0 1 0
1 0 1

∣∣∣∣∣∣ , v(0) =

∣∣∣∣∣∣
0
1
0

∣∣∣∣∣∣ .

First, we compute kA = 6, kC = 1 and kv = 1 in a way that

Ã =

∣∣∣∣∣∣
6 3 0
0 6 0
6 2 6

∣∣∣∣∣∣ , C̃ = C, ṽ(0) = v(0) .

Then, provided V , T , µ, wskin, w1, . . . , wN as above, the rule set is the following:

Rskin = { x1 → z6
in1

z6
in3

y1 out y3 out,

x2 → z3
in1

z6
in2

z2
in3

y2 out,

x3 → z6
in3

y3 out},

R1 = { z → x1 out},

R2 = { z → x2 out},

R3 = { z → x3 out} .

Figure 5 can help the reader in decoding the process.

80 V. Manca, L. Bianco, and F. Fontana

The absence of further elements in the construct such as, for example, pri-
orities on the rules, proves that such a construct is not universal, as it had to
be expected. Despite this, the symbols which are read out of the skin give,
at each temporal step n, the linear system solution once it is computed as
u(n) = (1/6n)

∣∣ |y1| |y2| . . . |yN | ∣∣T according to (22).

5 Conclusion and Future Research Directions

Let us call MA the metabolic algorithm. If E is a system of metabolic equations
derived from a set of rewriting rules, then MA(E, µ) is the dynamics we get
with a molarity unit µ. Let us call [E]µ the “molar normalization” of equations
E which is obtained by replacing every reactivity parameter k in E by k/µ(t−1)

where t is the degree of reactant monomial associated to k. Finally, let us call
by d(E) the differential form of equations E which is obtained by replacing in E
the ∆ finite difference operator by the differential operator d/dt, and the molar
quantities by absolute quantities, that is, by putting µ = 1. If Euler is the
Euler’s approximation method for solving differential equations, the following
proposition is easily proved.

Proposition 2 MA(E, µ) = Euler(d([E]µ)).

It is very interesting that, in the case of oscillatory phenomena that we stud-
ied, especially in the Brusselator reported in [13], we get the following exper-
imental result where Runge−Kutta is a very common and reliable integration
method.

Proposition 3 MA(E, µ) = Runge−Kutta(d([E])).

This result shows the relevance of molar normalization. We plan to develop
further experimental and theoretical work for a better understanding of this
phenomenon and for improving our metabolic algorithm by means of a more
systematic and adaptive use of molar normalization. However, it is important

min E(f)__

_

X(f)x(t)_

y(t)_

FFT
C

K
PSIM

Y(f)

i

Fig. 6. Schematic of our resolution strategy of the inverse oscillating problem

.

.

Evolution and Oscillation in P Systems 81

A B D

YXC

R1

R6

R2

R4 R3

R5

Fig. 7. The neuron-like structure of Brusselator Metabolic Graph

that this metabolic approach seems to be a basis for a reliable direct discrete
tool for computing the behavior of P systems. The next step is the extension of
this dynamic approach to more complex membrane topologies, and to situations
where reaction parameters change in time under the influence of external factors.

Now let us express the rewriting rules of Brusselator with the graph given in
Fig. 7. This formulation suggests us a new perspective in P system analysis. First,
we could extend this representation to any membrane structure by a suitable use
of labels. In this way any membrane system becomes a dynamical network, that
is a graph where at each time nodes have a state that depend on the state of
other nodes of the graph (nodes and arcs can be added and removed in time).
In other words, a membrane system is always related to a sort of “neuron-like”
membrane structure, according to Păun’s terminology. It is easy to discover that
a dynamics associated to some rewriting rules can present oscillatory phenomena
only if the relative metabolic graph has (some form) of cycles. But in general
finding parameters that ensure some kind of oscillations is not a simple task. In
the case of the Brusselator graph, the search space is a vector space of twelve
dimensions (six for initial concentrations and six for reactivities). The Inverse
Oscillation Problem can be stated in the following way: Given a metabolic graph,
find initial concentrations and reactivity parameters that ensure an oscillation of
quantities of some given types.

We are currently working on a strategy of solution of the inverse oscillation
problem1. As suggested by the name of the problem, we are mainly interested in
dynamic oscillating behaviors. The initial data typically consist in a metabolic
graph, that provides relations on the system constituents, and in a set of oscil-

1 In fact the proposed strategy deals with a simplified instance of the problem, in
which we know, even roughly, the initial concentrations and moreover we need initial
estimates of the reactivity parameters. In this way the solution of the Brusselator’s
inverse oscillation problem lies within a six-dimensional vector space rather than a
twelve one.

82 V. Manca, L. Bianco, and F. Fontana

lating functions, usually obtained by experiments, that we intend to reproduce.
Our goal is to define an automatic procedure that, in the same initial conditions
(mainly in terms of reactivity coefficients) realizes the desired oscillating system
behavior.

Starting from a periodic signal, in the time domain, we can describe its behav-
ior in a more compact way by analyzing its dual representation in the frequency
domain. Let y(t) be the signal to be reproduced and let us denote with x(t)
the signal obtained from the simulation. The simulated signal will depend on
the reactivity coefficients k1, . . . , kN , whose values are our subject of investi-
gation. For this reason, from now on we will denote the simulated signal x as
x(k1, . . . , kN , t), where N is the number of unknown reactivity coefficients.

Note that we have to consider a pair of signals yi, xi for each one of the
different kind of objects present in the system. Let’s denote with m the number
of different types of elements populating the system under investigation and
with n the number of discrete-time samples forming our signals. According to
the previous observation we have to deal with a couple of matrices y(t) and
x(k1, . . . , kN , t), sharing the same dimension, that is, m × n.

Our approach starts from the observation that a periodic signal (e.g., a sinu-
soidal function) is described in a compact way in the frequency domain by means
of the Fourier Transform operator (e.g. a sine in time becomes an impulse in
frequency). This translation from time to frequency domain is implemented very
efficiently, thanks to fast implementations of the Fourier Transform, known as
Fast Fourier Transform or FFT [8].

For the previously described reasons we suggest to perform a Fourier Trans-
form on our signals, y(t) and x(k1, . . . , kN , t), and this lead to their dual rep-
resentations Y (f) and X(k1, . . . , kN , f), where the symbol f reminds that Y
and X belong to the frequency domain. The target of our investigation is the
minimization of the norm:

E(f) = ||Y (f) − X(k1, . . . , kN , f)||, (24)

that is, to calculate

min
K

||Y (f) − X(f)|| = min
K

E(f), (25)

where we have defined the norm ||M || of a matrix M as the maximum value of
the norms of all rows of M .

In order to minimize the distance function E we can use several minimization
algorithms. The important thing to point out here is that the translation to the
frequency domain can be performed very efficiently by FFT algorithms, and
the minimization procedure is in general carried out in a more efficient way in
frequency rather than in the time domain; this efficiency is gained when E(f)
turns out to be an m′ ×n′ matrix where m′ = m and n′ < n, as it happens when
the maximum number of pure oscillatory behaviors under investigation (chosen
to be equal to n′/2 − 1) is likely to be smaller than the number n of temporal
samples included in the analysis window of every signal y1, . . . , ym.

Evolution and Oscillation in P Systems 83

Note also that, in general, the solution obtained in the frequency domain may
result in a phase-shifted time signal, but this is not limiting our point because
our interest focuses on the periodical trend of the system as a whole.

In Figure 6 our approach is depicted in a schematic way. The inputs of the
method are:

– C, the initial concentrations of all objects;
– K0, initial estimates of reactivities;
– y(t), the matrix of signals that we want to reproduce;
– the metabolic graph (not depicted in figure), necessary to describe all rela-

tionships between objects populating the system.

Starting from objects’ relationships described by the metabolic graph, and by
using K0 and C, an implementation of the metabolic algorithm provides the
simulated behavior x(t). The FFT block translates our signals y(t) and x(t) in
their frequency duals Y (f) and X(f). We perform a minimization algorithm
on Y (f) and X(f) in order to adjust the vector K0 into another one, say K1,
on which the metabolic algorithm is applied again and again until the distance
between Y (f) and X(f) falls below a certain threshold τ . If this happens at
the iteration cycle i + 1 then Ki contains the result, otherwise it’s desirable to
specify a maximum number of cycles after that the procedure terminates without
convergence.

Another research topic, related the inverse oscillation problem, is the finding
of parameters, possibly defined on the metabolic graphs of P systems, that could
have some dynamical relevance. Many of them are suggested by parameters in-
troduced for cellular automata and Kauffman networks, but a lot of experimental
work and theoretical analysis has to be developed along this direction.

References

1. F. Bernardini and V. Manca. Dynamical aspects of P systems. BioSystems, 70:85–
93, 2002.

2. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dynam-
ics. In G. Ciobanu, G. Păun, M.J. Pérez-Jiménez, eds., Applications of Membrane
Computing, Springer-Verlag, Berlin, 2005, to appear.

3. C. Bonanno and V. Manca. Discrete dynamics in biological models. Romanian
J. of Inform. Sc. and Tech., 5(1–2):45–67, 2002.

4. R.L. Devaney. Introduction to Chaotic Dynamical Systems. Addison-Wesley, 1989.
5. R. Freund. Energy-controlled P systems. In G. Pǎun and C. Zandron, editors,

Proc. Int. Workshop WMC-CdeA 2002, number 2597 in Lecture Notes in Computer
Science, pages 247–260, Curtea de Arges, Romania, August 2002. Springer.

6. R. C. Hilborn. Chaos and Nonlinear Dynamics. Oxford University Press, 2000.
7. D.S. Jones and B.D. Sleeman. Differential Equations and Mathematical Biology.

Chapman & Hall/CRC, London, 2003.
8. T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, 1980.
9. S.A. Kauffman. The Origins of Order. Oxford University Press, New York, NY,

1993.

84 V. Manca, L. Bianco, and F. Fontana

10. C.G. Langton. Computation at the edge of chaos: phase transitions and emergent
computation, Physica D, 42, 12, 1990.

11. V. Manca, G. Franco, and G. Scollo. State transition dynamics: basic concepts and
molecular computing perspectives. In M. Gheorghe, ed., Molecular Computational
Models: Unconventional Approaches, Idea Group Inc., 2004.

12. C. Martin-Vide, G. Pǎun, and G. Rozenberg. Membrane systems with carriers.
Theoretical Computer Science, 270:779–796, 2002.

13. G. Nicolis and I. Prigogine. Exploring Complexity, An Introduction. Freeman and
Company, San Francisco, 1989.

14. G. Păun. Computing with membranes. J. Comput. System Sci., 61(1):108–143,
2000.

15. G. Păun Membrane Computing - An Introduction. Springer-Verlag, Berlin, 2002.
16. G. Păun and G. Rozenberg. A guide to membrane computing. Theoretical Com-

puter Science, 287:73–100, 2002.
17. G. Pǎun, Y. Suzuki, and H. Tanaka. P systems with energy accounting.

Int. J. Computer Math., 78(3):343–364, 2001.
18. Y. Suzuki and H. Tanaka. Chemical oscillation in symbolic chemical systems and

its behavioral pattern. In Y. Bar-Yam, editor, Proc. International Conference on
Complex Systems, pages 0–7, New England Complex Systems Institute, 1997.

19. Y. Suzuki, H. Tanaka. Abstract rewriting systems on multisets and their applica-
tion for modelling complex behaviours, in G. Paun, M. Cavaliere, and C. Mart́in-
Vide eds., Brainstorming Week on Membrane Computing, Tarragona, February
5-11 2003, Tarragona, Feb 5-11 2003.

20. A. Wuensche. Discrete dynamical networks and their Attractor Basins, online
journal Complexity International, 1998.

21. A. Wuensche. Basins of attraction in network dynamics: A conceptual framework
for biomolecular networks, in G. Schlosser and G.P. Wagner, eds., Modularity in
Development and Evolution, Chicago University Press, 2003.

22. S. Wolfram. Theory and Application of Cellular Automata, Addison-Wesley, 1986.

	Introduction
	State Transition Dynamics
	Metabolic Algorithm and Oscillatory Phenomena
	Relationships with Linear Systems
	Conclusion and Future Research Directions

