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Abstract. We present a new proof that languages generated by (non
extended) H systems with finite sets of axioms and rules are regular.

1 Introduction

Splicing is the basic combinatorial operation which DNA Computing [8] is based
on. It was introduced in [4] as a formal representation of DNA recombinant
behavior and opened new perspectives in the combinatorial analysis of strings,
languages, grammars, and automata. Indeed, biochemical interpretations were
found for concepts and results in formal language theory [11,8] and Molecular
Computing emerged as a new field covering these subjects, where synergy be-
tween Mathematics, Computer Science and Biology yields an exceptional stimu-
lus for developing new theories and applications based on discrete formalizations
of biological processes. In this paper we express the combinatorial form of splic-
ing by four cooperating combinatorial rules: two cut rules (suffix and prefix dele-
tion), one paste rule, and one (internal) deletion rule. This natural translation
of splicing allows us to prove in a new manner the regularity of (non extended)
splicing with finite sets of axioms and of rules.

2 Preliminaries

Consider an alphabet V and two symbols #, $ not in V . A splicing rule over V
is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗. For a rule r and for any
x1, x2, y1, y2 ∈ V ∗ we define the (ternary) splicing relation =⇒r such that:

x1u1u2x2 , y1u3u4y2 =⇒r x1u1u4y2.

In this case we say that x1u1u4y2 is obtained by a splicing step, according to
the rule r, from the left argument x1u1u2x2 and the right argument y1u3u4y2.
The strings u1u2 and u3u4 are respectively the left and right splicing points or
splicing sites of the rule r. An H system, according to [8], can be defined by a
structure Γ = (V, A, R) where V is an alphabet, that is, a finite set of elements
called symbols, A is a set of strings over this alphabet, called axioms of the
system, and R is a set of splicing rules over this alphabet.
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L0(Γ ) consists of the axioms of Γ . For n ≥ 0, Ln+1(Γ ) consists of Ln(Γ ) as
well as the strings generated by one splicing step from strings of Ln(Γ ), by apply-
ing all the rules in R that can be applied. The language L(Γ ) generated by Γ is
the union of all languages Ln(Γ ) for n ≥ 0. If a terminal alphabet T ⊂ V is con-
sidered, and L(Γ ) consists of the strings over T ∗ generated by Γ , then we obtain
an extended H system Γ = (V, T, A, R). H systems are usually classified by means
of two classes of languages FL1, FL2: a H system is of type H(FL1, FL2) when
its axioms form a language in the class FL1 and its rules, which are strings of
(V ∪{#, $})∗, form a language in the class FL2; EH(FL1, FL2) is the subtype of
extended H systems of type H(FL1, FL2). We identify a type C = H(FL1, FL2)
of H systems with the class of languages generated by C. Let FIN, REG, RE
indicate the classes of finite, regular, and recursively enumerable languages re-
spectively. It is known that: H(FIN, FIN) ⊂ REG, H(REG, FIN) = REG,
EH(FIN, FIN) = REG, EH(FIN, REG) = RE. Comprehensive details can
be found in [8]. We refer to [11] and [8] for definitions and notations in formal
language theory.

3 Cut-and-Paste Splicing

A most important mathematical property of splicing is that the class of languages
generated by a finite splicing, that is, by a finite number of splicing rules, from
a finite initial set of strings, is a subclass of regular languages: H(FIN, FIN) ⊂
REG and, more generally, H(REG, FIN) = REG. The proof of this result has a
long history. It originates in [1,2] and was developed in [9], in terms of a complex
inductive construction of a finite automaton. In [8] Pixton’s proof is presented
(referred to as Regularity preserving Lemma). More general proofs, in terms of
closure properties of abstract families of languages, are given in [5,10]. In [6] a
direct proof was obtained by using ω-splicing. In this section we give another and
more direct proof of this lemma, as a natural consequence of a representation of
splicing rules.

Let Γ be a H system of alphabet V , with a finite number of splicing rules.
The language L(Γ ) generated by a H system Γ can be obtained in the following
way. Replace every splicing rule

ri = u1#u2$u3#u4

of Γ by the following four rules (two cut rules, a paste rule, a deletion rule) where
•i and �i are symbols that do not belong to V , and variables x1, x2, y1, y2, x, y,
w, z range over the strings on V .

1. x1u1u2x2 =⇒ri x1u1•i right cut rule
2. y1u3u4y2 =⇒ri �iu4y2 left cut rule
3. xu1•i, �iu4y =⇒ri xu1 •i �iu4y paste rule
4. w •i �iz =⇒ri wz deletion rule
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If we apply these rules in all possible ways, starting from the axioms of Γ ,
then the set of strings so generated that also belong to V ∗ and coincides with
the language L(Γ ).

This representation of splicing has a very natural biochemical reading [3].
Actually, the first two rules are an abstract formulation of the action of restric-
tion enzymes, where the symbols •i and �i correspond to the sticky ends (here
complementarity is between •i and �i). The third rule is essentially the an-
nealing process that joins strands with matching sticky ends but leaves a hole
(represented by the string •i�i) in the fosphodiesteric bond between the 5’ and
3’ loci. The final rules express the hole repair performed by a ligase enzyme. The
proof that will follow is inspired by this analysis of the splicing mechanism and
develops an informal idea already considered in [7].

Theorem 1. If Γ is an H system with a finite number of axioms and rules, then
L(Γ ) is regular.

Proof. Let r1, r2, . . . , rn be the rules of Γ . For each rule ri = u1#u2$u3#u4,
introduce two new symbols •i and �i, for i = 1, . . . n, which we call bullet and
antibullet of the rule ri. If u1u2 and u3u4 are the left and the right splicing sites
of ri, then symbols •i and �i can be used in order to highlight the left and right
splicing sites that occur in a string. More formally, let h be the morphism

h : (V ∪ {•i | i = 1, . . . n} ∪ {�i | i = 1, . . . n})∗ → V ∗

that coincides with the identity on V and erases all the symbols that do not
belong to V , that is, associates the empty string λ to them. In the following
V ′ will abbreviate (V ∪ {•i | i = 1, . . . n} ∪ {�i | i = 1, . . . n})∗. For any rule
ri = u1#u2$u3#u4, with i = 1, . . . , n, we say that a string of V ′ is •i-factorizable
if it includes a substring u′

1u
′
2 ∈ V ′ such that h(u′

1) = u1, h(u′
2) = u2. In this

case the relative •i-factorization of the string is obtained by replacing u′
1u

′
2 with

u′
1 •i u′

2. Analogously, a string of V ′ is �i-factorizable if it includes a substring
u′

3u
′
4 ∈ V ′ such that h(u′

3) = u3, h(u′
4) = u4. In this case the relative �i-

factorization of the string is obtained by replacing u′
3u

′
4 with u′

3�i u
′
4. A string α

is a maximal factorization of a string η if α is a factorization such that h(α) = η,
α contains no two consecutive occurrences of the same bullet or antibullet, while
any further factorization of α contains two consecutive occurrences of the same
bullet or antibullet. It is easy to verify that the maximal factorization of a string
is unique.

Now, given an H system, we factorize its axioms in a maximal way. Let
α1, α2, . . . , αm be these factorizations and let �α1�, �α2�, . . . , �αm� be their ex-
tensions with a symbol marking the start and the end of these factorizations.
From the set Φ of these factorization strings we construct the following labeled
directed graph G0, which we call axiom factorization graph of the system, where:

1. A node is associated to each occurrence of a bullet or antibullet that occurs
in a strings of Φ, while a unique entering node �• is associated to all the
occurrences of symbol � at beginning of the strings of Φ, and a unique exiting
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node •� is associated to all the occurrences of symbol � at end of the strings
of Φ.

2. From any node n there is an arc to the node m if the occurrence to which
m is associated is immediately after the occurrence to which n is associated;
this arc is labeled with the string between these two occurrences.

3. Each bullet is linked by an arc with the empty label to the antibullet of the
same index.

As an example, let us apply this procedure to the following H system speci-
fied by:

Alphabet: {a, b, c, d},
Axioms: {dbab , cc},
Rules: {r1 : a#b$λ#ab , r2 : baa#aaa$λ#c}.

2

��

c��

c

� 1
�

1

�� ��
badb
��� � �

�
�
�
�

��

2

�
�
�
��

Fig. 1. An Axiom Factorization Graph

In Figure 1 the graph G0 of our example is depicted. Hereafter, unless it is
differently specified, by a path we understand a path going from the entering
node to the exiting node. If one concatenates the labels along a path, one gets
a string generated by the given H system. However, there are strings generated
by the system that are not generated as (concatenation of labels of) paths of
this graph. For example, the strings dbaac, dbaacc do not correspond to any path
of the graph above. In order to overcome this inadequacy, we extend the graph
that factorizes the axioms by adding new possibilities of factorizations, where
the strings u1 and u4 of the rules are included and other paths with these labels
are possible.

Before going on, let us sketch the main intuition underlying the proof, that
should appear completely clear when the formal details are developed. The axiom
factorization graph suggests that all the strings generated by a given H system
are combinations of: i) strings that are labels of the axiom factorization graph,
and ii) strings u1 and u4 of splicing rules of the system. Some combinations of
these pieces can be iterated, but, although paths may include cycles, there is only
a finite number of ways to combine these pieces in paths going from the entering
node to the exiting node. An upper bound on this number is determined by: i)
the number of substrings of the axioms and of the rules, and ii) the number of
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factorization nodes that can be inserted in a factorization graph when extending
the axiom factorization with the rules, as it will be shown in the proof.

The detailed construction of the proof is based on two procedures that expand
the axiom factorization graph G0. We call the first procedure Rule expansion
and the second one Cross bullet expansion. In the following, for the sake of
brevity, we identify paths with factorization strings.

3.1 Rule Expansion

Let G0 be the graph of the maximal factorizations of the axioms of Γ . Starting
from G0, we generate a new graph Ge which we call rule expansion of G0.
Consider a symbol ⊗ which we call cross bullet. For this symbol h is assumed
to be a deleting function, that is, h(⊗) = λ. For every rule ri = u1#u2$u3#u4

of Γ , add to G0 two rule components: the u1 component that consists of a pair
of nodes ⊗ and •i, with an arc from ⊗ to •i labeled by the string u1, and the
u4 component that consists of a pair of nodes ⊗,�i with an arc from �i to ⊗
labeled by the string u4.

Then, add arcs with the empty label from the new node •i to the correspond-
ing antibullet nodes �i that were already in the graph. Analogously, add arcs
with the empty label from the nodes •i that were already in the graph to the
new antibullet node �i.

---�

⊗
u4

�

i
��

i

⊗

�
u1

�

�---

Fig. 2. Rule i Expansion Components

In the case of the graph in Figure 1, if we add the rule expansions of the two
rules of the system, then we get the graph of Figure 2.

3.2 Cross Bullet Expansion

Now we define the cross bullet expansion procedure. Consider a symbol ◦, which
we call empty bullet. For this symbol, h is assumed to be a deleting function,
that is, h(◦) = λ. Suppose that in Ge there is a cycle �j −•j. A cycle introduces
new factorization possibilities that are not explicitly present in the graph, but
that appear when we go around the cycle a certain number of times. Let us
assume that, by iterating this cycle, a path θ is obtained that generates a new
splicing site for some rule. We distinguish two cases. In the first case, which
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Fig. 3. The Rule Expansion of the Graph of Figure 1

we call 1-cross bullet expansion, the path θ, considered as a string, includes the
splicing site u1u2 of a rule

θ = ηξβ

for some ξ beginning with a symbol of V such that h(ξ) = u1u2. In the second
case, which we call 4-cross bullet expansion, the path θ, considered as a string,
includes the splicing site u3u4 of a rule

θ = ηξβ

for some ξ ending with a symbol of V such that h(ξ) = u3u4. As it is illustrated
in the following pictures, the positions where the beginning of ξ or the end of ξ
are respectively located could be either external to the cycle or internal to it. In
both cases we insert an empty bullet in the path θ.

– In the case of a 1-cross bullet expansion, we insert an empty bullet ◦, exactly
before ξ, with an arrow going from this empty bullet to the cross bullet of the
u1 expansion component of ri. Let 1/i be the type of this empty bullet. This
expansion is performed unless η does not already include an empty bullet of
type 1/i after its last symbol of V .

– In the cases of a 4-cross bullet expansion, we insert an empty bullet ◦, exactly
after ξ, with an arrow, entering this empty bullet and coming from the cross
bullet of the u4 expansion component of ri. Let 4/i be the type of this
empty bullet. This expansion is performed unless β does not already include
an empty bullet of type 4/i before its first symbol of V .

The two cases are illustrated in the following pictures (in 1-cross bullet expansion
the beginning of the splicing site is external to the cycle, in the 4-cross bullet
expansion the end of the splicing point is internal to the cycle).

The general situation of cross bullet expansion is illustrated in Figure 3.
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◦

i

------
�

i

---

�⊗
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�� ��
�

�

��
α

��

u1

γ

--- ---

� ---

Fig. 4. 1-Cross bullet Expansion: γαn includes a string of h−1(u1u2) as its prefix

---

�
�

�
◦

⊗

--- � �

u4

--- � ��

�
�

cycle

j j

α

�

i
��

i
--- ---

Fig. 5. 4-Cross bullet Expansion: αn includes a string of h−1(u3u4) as its suffix

If we apply cross bullet expansion to the graph of Figure 3 we get the graph
of Figure 7 where only one 1-cross bullet expansion was applied. The following
lemma establishes the termination of the cross bullet expansion procedure.

Lemma 1. If, starting from Ge, we apply again and again the cross bullet ex-
pansion procedure, then the resulting process eventually terminates, that is, after
a finite number of steps we get a final graph where no new cycles can be intro-
duced.

Proof. This holds because in any cross bullet expansion we insert an empty bul-
let ◦ and an arc with the empty label connecting it to a cross node, but empty
bullets, at most one for each type, are always inserted between two symbols of
V starting from the graph Ge, which is fixed at beginning of the cross bullet
expansion process. Therefore, only a finite number of empty bullets can be in-
serted. This ensures that the expansion process starting from Ge will eventually
stop.

Let G be the completely expanded graph. The cross bullet expansion procedure
is performed by a (finite) sequence of steps. At each step an empty bullet is
inserted and an arc is added that connects the empty bullet with a cross bullet.
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Fig. 7. Cross bullet Expansion of the Graph of Figure 3

Let L(G) be the language of the strings generated by paths of G. The inclusion
L(G) ⊆ L(Γ ) can be easily shown by induction on the number of cross bullet
expansion steps: obviously L(G0) ⊆ L(Γ ), thus, assume that all the paths of
the graph at step i generate strings of L(Γ ). Then the paths in the expanded
graph at step i + 1 generate strings spliced from paths which are present at step
i. Therefore, the inclusion holds for the completely expanded graph.

For the inverse inclusion we need the following lemma which follows directly
from the method of the cross bullet expansion procedure.

Lemma 2. In the completely expanded graph G, when there is a path ηθσρ where
h(θ) = u1, h(σ) = u2 and u1u2 is the splicing site of the rule ri, then also a path
ηθ′•i occurs in G with h(θ) = h(θ′). Analogously, if in G there is a path ηθσρ
where h(θ) = u3, h(σ) = u4 and u3u4 is the splicing site of the rule ri, then also
a path �iσ

′ρ occurs in G with h(σ) = h(σ′).
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The inclusion L(Γ ) ⊆ L(G) can be shown by induction on the number of
splicing steps. If η is an axiom, the condition trivially holds. Assume that η
derives, by means of a rule ri, from two strings. This means that these strings
can be factored as:

α •i β

γ �i δ

and, by the induction hypothesis, in G there are two paths θ, ρ generating αβ
and γδ, respectively. These paths include as sub-paths h−1(u1u2), h−1(u3u4),
respectively, therefore, according to the previous lemma, a path σ•i is in G
where h(σ) = α and a path �iπ is in G where h(π) = δ. This means that the
path σ •i �iπ is in G, but h(σ •i �iπ) = η, therefore η is generated by a path
of the completely expanded graph. In conclusion, L(Γ ) = L(G). The language
L(G) is regular because it is easy to define it by means of a regular expression
deduced from G.

Acknowledgments. I want to express my gratitude to Giuditta Franco, Tom
Head, Victor Mitrana, Gheorghe Păun, and Giuseppe Scollo for their suggestions
that were essential in improving some previous versions of this paper.
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