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Abstract. A DNA algorithm for SAT, the satisfiability of propositional
formulae, is presented where the number of separation steps is given by
the number of clauses of the instance. This represents a computational
improvement for DNA algorithms based on Adleman and Lipton’s ex-
traction model, where the number of separations equates the number of
literals of the instance.

1 Introduction

Since seminal Adleman’s experimental DNA solution of a Directed Hamilto-
nian Path Problem [1], many experiments, based on molecular biology methods,
were carried on to solve hard combinatorial problems. In fact, DNA provides
a massive computational parallelism which allows us to attack combinatorial
problems that, in terms of conventional computation models, are intractable
(technically, deterministically solvable in a time that is not polynomial with
respect to the dimension of the instances [6]). In the area of formal language
theory, a great number of theoretical studies [19,16,4], related to mathemati-
cal models of DNA recombinant behavior, were inspired by this experimental
possibility. Recently, in the context of DNA computing, membrane computing,
and aqueous computing the combinatorial NP-complete problem SAT, of satisfi-
ability for formulae of propositional logic [6], was considered by several authors,
e.g. [12,9,17,3,20,21,24,8,23]. In general, in many different fields – ranging from
classical combinatorial analysis to statistical physics – there is a growing inter-
est in using SAT as a practical tool for solving real-world problems [22,7]. In
this paper we apply a sort of duality principle which transforms the candidate
solutions expressed as Literal Strings in [21] into Clause Strings. This will allow
us to reduce in a remarkable way the number of more critical DNA operations
necessary to solve the propositional satisfiability, according to the Adleman and
Lipton’s canonical model of DNA computing [5].
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2 Propositional Satisfiability

SAT can be formulated in the following way. Given a propositional formula ϕ, i.e.
an instance for SAT, find if it can be satisfied for some values of its propositional
variables (i.e. ϕ ∈ SAT ).

An equivalent formulation, directly derived by the clause representation of
propositional formulae, can be expressed in terms of solvability of a system of
boolean equations. Let us say literal any boolean variable or any negation of a
boolean variable. Consider a system of equations over the boolean algebra of
the truth values 0, 1 with the unary operation of negation (¬) and the binary
operation of disjunction (∨) such that ¬0 = 1,¬1 = 0, 0∨0 = 0, 1∨1 = 1, 0∨1 =
1, 1 ∨ 0 = 1. Assume that in every equation the left member is a disjunction of
literals, called a clause, and the right member is 1. We say assignment the values
associated to the variables. An instance (expressed as boolean equations) belongs
to SAT if there is an assignment that satisfy all equations of the system.

¬X3 ∨ X6 ∨ X8 = 1
X2 ∨ X4 ∨ X8 = 1
X3 ∨ X7 ∨ X11 = 1
X1 ∨ ¬X2 ∨ X5 = 1

¬X5 ∨ X6 ∨ X10 = 1
¬X3 ∨ ¬X4 ∨ ¬X10 = 1
¬X4 ∨ ¬X10 ∨ ¬X11 = 1

X4 ∨ ¬X5 ∨ X10 = 1
X5 ∨ ¬X7 ∨ X11 = 1
X3 ∨ ¬X4 ∨ ¬X9 = 1

¬X1 ∨ X7 ∨ ¬X8 = 1
X4 ∨ X8 ∨ X9 = 1
X4 ∨ ¬X7 ∨ ¬X10 = 1

¬X2 ∨ X9 ∨ ¬X11 = 1
X1 ∨ X6 ∨ ¬X8 = 1

¬X6 ∨ ¬X8 ∨ ¬X9 = 1
¬X6 ∨ ¬X8 ∨ ¬X10 = 1

X2 ∨ ¬X5 ∨ X11 = 1
X1 ∨ X7 ∨ X10 = 1

¬X1 ∨ X3 ∨ ¬X9 = 1

A 3-SAT instance as a system of boolean equations

The instance considered, we call it TAMPA [14], is of type 3-SAT(11, 20) because
it has 3 literals per clause, 11 variables, and 20 clauses. It derives from a 3-
SAT(11, 22) instance randomly generated, that was slightly modified by deleting
the clauses 5 and 12 that resulted to be tautologies (equal to 1 for any value
of their variables) and by performing some other minor changes. Experiments
on its DNA solvability are currently in progress at Laboratories of Microbial
Biotechnology and Environmental Microbiology of the Dipartimento Scientifico
e Tecnologico at the University of Verona [14].
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3 The Extract Model

The canonical computation model of DNA computing remains so far the extract
model of Adleman [1] as generalized by Lipton [12]. This model is based on
two basic parts [5]: i) a test tube of DNA strands encoding a set of candidate
solutions of the problem (usually obtained by annealing and ligation from an
initial test tube encoding the data), and ii) a procedure that extracts the true
solutions (the “good strands”) from the non-solutions (the “bad strands”). The
extraction procedure can be performed by a minimal set of DNA operations on
test tubes: separate, combine, detect. The operation “separate” takes as input a
test tube T and a sequence S, and produces as output a yes-tube containing the
strands in T where S occurs as subsequence, and a no-tube containing the other
strands of T. The “combine” operation takes as input two tubes and produces as
output a single tube containing the strands of both the input tubes. The “detect”
operation checks if the final test tube contains any DNA strands, and in that
case it chooses one of them and determines the sequence of their nucleotides.
Due to the DNA realization of these operations, the computational cost of a
DNA computation can be identified with the number of separation steps.

Other operations can be incorporated in the model that are based on PCR,
gel-electrophoresis, restriction enzymes, or more complex biotechnological proto-
cols, but they can be viewed as additional tools for performing separation steps
that are the dominant operations in a DNA computation.

Therefore, according to the paradigm of the extraction model, two parameters
are essential in the evaluation of a DNA algorithm based on this model: i) the size
of the solution space, that corresponds to the amount of DNA necessary to encode
the set of candidate solutions, and ii) the number of separation steps necessary
to get the final test tube. This means that in order to improve DNA algorithms
based on the extract model there are three possible ways, that might be also
integrated: 1) decreasing the size of the solution space [24], 2) finding more
efficient DNA implementation of the operation “separate” [3], or 3) decreasing
the number of separation steps necessary to get the final test tube [20,21]. The
best solution, with respect to the third point, would be some implementation
of one big-step separation that could perform all the separations in a time to a
great extent independent from the instance size. Papers [20] and [21] represent
attempts of separation in a constant time. But in the first case a sophisticated
biotechnology is necessary that needs more experimental work in order to be
applied to significant examples; in the second case, as it will shown later on,
the constant time for separation is obtained by increasing too much the number
of candidate solutions; therefore the problem remains of finding more efficient
implementations that could balance this solution space amplification.

For the further discussion it will be useful to recall the following resolution
schema of the first DNA algorithm introduced by Lipton for solving SAT [12].
Encode all possible assignments by DNA assignment strands where, for each
propositional variable X , a DNA oligonucleotide which encodes either X or ¬X
occurs in the strand. When a complete pool of assignment strands is supposed
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to be generated, then this pool is filtered by means of separation procedures,
one for each clause. For example for the clause (¬X3 ∨ X6 ∨ X8) the
strands are separated into two tubes A, B. In A are collected the strands where
(the encoding of) ¬X3 occurs, while in B are collected those where ¬X3 does
not occur. The strands of B are then separated into the tubes C, D. In C are
collected the strands where X6 occurs, while in D there are those where X6 does
not occur. Finally, the strands of D are separated into E and F , in E there
are the strands where X8 occur and in F the remaining strands of D. Then the
strands of A, C, E are merged in a test tube where the assignments which satisfy
the clause are collected. In general, for any clause, the strands are kept where at
least one literal of the clause occurs. This means that for a clause where k literals
occur we must apply k separation steps. Therefore, in the case of a 3-SAT(n, m)
we need 3m separation steps.

4 Contact Formulations of SAT

SAT is equivalent to the Contact Network Problem [12]. In fact, associate to
every clause C a graph with two nodes, the source and the target S(C), T (C),
and, for every literal in the clause, an edge connecting these nodes labeled by the
literal. Let X1, X2, . . . , Xn and C1, C2, . . . , Cm be the variables and the clauses
of our instance. Then, connect the target of Ci with the source of Ci+1, for
i = 1, . . . , m − 1.

¬ X

¬Z

T(C4)
S(C4)

u u
YY

Z

X

¬X

¬Z

¬YX

Z

¬Y
uuu uuu

S(C1) T(C1)

S(C2)
T(C2)
S(C3)

T(C3)

A Contact Network Instance

The following algorithm and an ingenious DNA implementation of it, which
uses DNA hairpin structures, was described in [9].

Jonoska et al’s algorithm:
Consider many copies of a graph G that is an instance for the Contact Network
Problem. Separate these copies into two different almost “equivalent” pools A, B.
Remove in all the graphs of A the edges labeled by X1 and in the graphs of B
the edges labeled by ¬X1. Unite the resulting pools into a unique pool and apply
the same procedure (separation, edge removing, unification) for X2, . . . , Xn. The
original propositional formula can be satisfied if, at end of this process, a graph
remains that connects the source of the first clause with the target of the last
one.

In the following, Lit(C) is the set of literals of the clause C, and Cla(L) is
the set of clauses where the literal L occurs. Let us call theory a set of clauses
and diagram a coherent set of literals (no literal and its negation can occur
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both in a diagram). Then Lit and Cla can be extended as functions from the
theories to the sets of diagrams, where a natural ordering relation is given by
the usual set inclusion. It is easy to verify that in this way Lit and Cla define a
Galois correspondence (a pair of functions between ordered sets which reverse the
order). This is a special case of a more general correspondence between models
and theories in the first order logic, and will be the basis of our formulation of
SAT given in the next section (the central role of Galois correspondences in the
solvability of algebraic equations is a well known fact which was the basis of
modern algebra).

The Contact Network Problem transforms easily in the following Literal
String Problem, that is, the problem of finding paths (if any) connecting all
the clauses by using a constructive approach rather than a destructive one, as in
Jonoska et al.’s algorithm, followed by a successive extraction procedure.

Assume a pair of nodes, source and target S(C), T (C) for any clause C. The
following algorithm was described in [21].

Sakamoto et al’s algorithm:
Assume a pool of elementary graphs, each one constituted by an edge labeled
by a literal L that connects the nodes S(C), T (C) if L belongs to Lit(C). Then
start a linking process that constructs a literal string by adding an edge between
a target of a clause and the source of the next clause (w.r.t. a prefixed order
of the clauses). After that, a decimation of the paths is performed by applying
a test which controls whether a given path is incoherent, that is, whether a
literal label occurs in both its positive and negative forms. Any literal string
that results to be incoherent is then removed. The initial propositional formula
is satisfiable if, at end, some coherent contact paths remain after the elimination
of the incoherent ones.

The following diagram is relative to a SAT(3,4) instance.

δ ∈ Lit(C4)

T(C4)
S(C4) uu

T(C3)
S(C3)

T(C2)S(C2)T(C1)S(C1) u u uu u u

α ∈ Lit(C1) β ∈ Lit(C2) γ ∈ Lit(C3)

Literal Strings

The strings: (X ¬Y X Z), (¬Y ¬Y X Z), (Z ¬Y X Z) are some coherent literal
strings, in the case the clauses are those given in the contact network instance
above.

It is easy to realize that for a 3-SAT instance the solution space of this algo-
rithm is 3m where m is the number of clauses. A DNA solution of this algorithm
has been implemented for a 3-SAT(6, 10) instance in [21]. This algorithm uses a
more complex separation method that is based on hairpin formation rather than
on hybridization-affinity. In this way the separation procedure can be made in
a constant time (by using traditional separations, 4n steps would be necessary,
where n is the number of variables). However, although the method is really
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interesting, and requires a constant time for separation, in its actual form the
size of the solution space is a strong limitation for its scale up. In fact, typically
the number of clauses is about 3 or 4 times the number of variables.

5 Clause String Formulation of SAT

Let us consider another contact formulation of the propositional satisfiability, in-
troduced in [13], that is related to the Galois correspondence (Lit, Cla) indicated
in the previous section.

Consider the pair of nodes S(X), T (X) (source and target) for each variable
X . A dual perspective of the literal string formulation of SAT leads to the
following algorithm.

A clause string algorithm:
Assume a pool of elementary graphs where S(X), T (X) are connected either with
an edge labeled by Cla(X), or with an edge labeled by Cla(¬X) (the clauses
where X occurs and those where ¬X occurs, respectively). Then start a linking
process building the clause strings where the target of a variable is linked to the
source of the next variable (according to a prefixed order of the variables).

The clause strings coincide with the paths of the graph above that connect
one node of the first variable with one of the last variable. A clause string is
complete if each clause belongs to some set that occurs as a label. Remove the
clause strings that are not complete. If some complete clause strings remain,
they are solutions of the considered instance of SAT.
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Clause Strings

It is easy to realize that the solution space of the clause string algorithm is
2n where n is the number of variables. Moreover, as it will be completely clear
in the following section, the number of separations that are necessary in order
to extract the solutions are m, that is the same number of the clauses of the
instance. This fact implies the possibility of a scale up in the DNA solution of
SAT, independently from any DNA implementation of the separation steps.

Another advantage of representing candidate solution by means of clause
strings is due to the fact that a clause is encoded several times in a clause string,
as much as it can belong to Lit(L) for several literals L (3 in the average case,
for 3-SAT). This aspect will give for free an increasing in the probability of
the expected hybridizations necessary for separations, according to the analysis
developed in [2] for double encoding.
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In order to define our DNA algorithm we use a further formulation of SAT.
In fact, we encode the clause string formulation of SAT in terms of the Bipartite
Covering Problem problem (BCP) that can be stated in the following way.

Given a finite set C and n pairs of subsets of C: A1/B1, . . . , An/Bn such that
Ai ∩ Bi = ∅ for i = 1, . . . , n, find (or at least, say if it is possible to find) n sets
Y1, . . . , Yn such that C = Y1 ∪ · · · ∪ Yn, and either Yi = Ai or Yi = Bi.

It is a simple exercise to transform any instance of SAT into an equivalent
instance of BCP and viceversa. The following is the BCP formulation of the
3-SAT(11,20) instance TAMPA, already given as system of boolean equations.
For the sake of brevity, we use the indexes of clauses instead of clauses, follow-
ing the order of the boolean equations; however, in order to keep the original
indexes of the randomly generated instance, numbers 5 and 12 are skipped (for
i = 1, . . . , 11, we put Ai = Cla(Xi) and Bi= Cla(¬Xi)).

A1/B1 = 4,17,21 / 13,22
A2/B2 = 2,20 / 4,16
A3/B3 = 3,11,22 / 1,7
A4/B4 = 2,9,14,15 / 8,7,11
A5/B5 = 4,10 / 6,9,20
A6/B6 = 1,6,17 / 18,19
A7/B7 = 3,13,21 / 10,15
A8/B8 = 1,2,14 / 13,17,18,19
A9/B9 = 14,16 / 11,18,22

A10/B10 = 6,9,21 / 7,8,15,19
A11/B11 = 3,10,20 / 8,16

The BCP Instance

6 The DNA Algorithm

Now we encode A1, B1, . . . , A11, B11 with DNA dominoes, that is, DNA
molecules constituted, for every i = 1, . . . , 11, by two different central parts
corresponding to Ai and Bi, but having the same left sticky end Xi, and the
same right sticky end –Xi+1. For every i = 1, . . . , 11, Xi and –Xi are comple-
mentary DNA single strands. This means that we have, for any variable Xi, two
dominoes with sticky ends (Xi, –Xi+1) where in the middle there are encoded ei-
ther all the clauses satisfied by Xi or all the clauses satisfied by ¬Xi, respectively.
For example, the dominoes for A3 and B3 have the following shape:



A Clause String DNA Algorithm for SAT 179

��

@@

@@

@@

��

@@

��

��

5’ 3’
3’ 5’

X3
-X4

C1C7

3’
3’ 5’

C3 C11 C22X3
-X4

5’

P OH

P

P

P

OH
OH

OH
DNA dominoes encoding A3 and B3

The sticky ends may correspond i) either to sites of non-palindromic re-
striction enzymes obtained by bigger purchased oligos after amplification and
digestion with the enzymes relative to the linkers, ii) or to dominoes obtained
from single stranded DNA molecules as in the original Adleman’s approach (see
[25] for a detailed analysis of the second method).

Now, put in a test tube many copies of the dominoes A1, B1, . . . , An, Bn.
After annealing and ligation of complementary sticky ends, we expect to obtain
a pool of linked DNA dominoes (actually, X1 and X12 do not perform any link,
but can be useful for amplification by PCR).

X1
A1 / B1

-X2

X2
A2 / B2

-X3

A DNA string with two dominoes

If we indicate by the oligo Li the pairing of the two complementary strands
–Xi and Xi, which acts as a linker between two dominoes, then a long string of
dominoes where all the linkers occur will have the following shape:

A1 / B1 L2 A2 / B2 L11 A11 / B11
X1

-X12

Linked DNA dominoes
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Our algorithm is based on the validity of the following proposition that fol-
lows from the analysis so far developed.

Proposition
DNA strings where all the clauses are encoded represent solutions of our instance.

7 Conclusions

The proposed algorithm is really different from Lipton’s method of generating
assignments and then filtering them (which a lot of DNA algorithms for SAT
are based on). But, it is also really different from the approach of generating 3

m

literal strings (m clauses, where typically m is three or four times the number
of variables) and filtering them by ‘coherence’ [21].

In fact, we have shown that we can generate clause strings and then filter
them by ‘completeness’. This leaves the dimension of the solution space the same
as in Lipton’s method, that is 2

n

(n variables), but in this case m separations are
enough, whereas the number of separations necessary in the Lipton algorithm is
given by the number of literals (or the number of binary connectives plus 1). This
means that in the case of a 3-SAT instance the number of dominating operations
in our case is one third with respect to the algorithms based on Lipton’s schema.
This analysis is independent from any particular DNA implementation that our
algorithm is based on. In other words, any DNA algorithm for SAT that is based
on: 1) a ligation protocol of small DNA ‘pieces’, and 2) a separation protocol
for filtering the solutions in the pool of candidate solutions, can be improved
if candidate solutions express clause strings rather than assignments or literal
strings. In conclusion, in the class of DNA algorithms for SAT based on Adleman
and Lipton’s extract model the clause strings approach implies a direct scale-
up in the size of DNA solvable instances. Other more theoretical aspects of the
clause string representation of SAT are related to other formulations of SAT in
terms of matrices and membrane systems that are under current investigation
[15] and that could turn to be relevant for DNA computing too.
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