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In present-day computing environments, a user often employs programs which are sent or fetched
from different sites to achieve his/her goals, either privately or in an organization. Such programs
may be run as a code to do a simple calculation task or as interactive parallel programs doing 10
operations or communications between resources located almost everywhere in the world. To face
up such a complex situation we need frameworks for the formalization, analysis and verification
of distributed and mobile systems properties.

A process on a network can be influenced by the environment surrounding it, possibly modifying
the intended behaviour of the process. Traditional correctness properties and methodologies for
sequential systems are no more applicable in presence of distributed and mobile systems. Hence
the necessity of designing new formal models for the description of and the reasoning on properties
of distributed processes. This necessity has been recently recognized by several authors; milestones
papers on this subject are [19, 7]. In particular, the m-calculus [4, 17, 19] is a process calculus
where processes interact by sending communication links to each other. The basic computational
step is the transfer of a communication link between two processes; the recipient can then use
the link for further interaction with other parties. This makes the calculus suitable for modelling
systems where the accessible resources vary over time.

Following the traditional approaches for the analysis of concurrent systems, properties of mobile
processes can be expressed in terms of observational equivalences [20] or modal logics [8, 25].
Traditional verification methods such as type systems, model checking and control flow analysis
can been applied also to distributed processes [15, 16, 22]. Although correctness and security issues
motivated the studies of abstract models for distributed systems, there are still few works dealing
with the verification of correctness or security properties of concurrent and mobiles systems.

We propose to study semantic characterizations of distributed systems which are suitable to
analyze processes in dynamic environments. Our purpose is to specify a logical/formal tool which
makes it easier to deal with concurrent or mobile systems. A logical formalism should simplify
the definition of correctness and security properties for a distributed system. A logical formula
defines a property and so it detects a class of processes, the processes that enjoys that property.
Moreover the logical framework helps in deriving new properties as well as connections between
different characterization of process properties. Our purpose is to individuate a logical language
which is able to describe the the behaviour and spatial structure of concurrent systems, and thus
it is a useful instrument in deriving correct systems in a compositional way. A candidate language
is Spatial Logic [5, 6] which provides a powerful language to formally describe the structure of
concurrent processes.

Our principal intention is to play on Spatial Logic, or logic in general, to describe process
behaviour w.r.t mobility and in particular security. In fact security is a basic property for distrib-
uted systems [23]. To this aim we started by analyzing the definition of secure process in other
formalisms, such as SPA [20] and 7 calculi.

First of all we are studying how security properties are defined in SPA [1, 2, 3, 10, 11, 12],
especially noninterference [13, 14]. In particular in SPA we are extending the notion of noninter-
ference to contexts, i.e. processes with a variable subprocess (a hole) that can be replaced by any
process, in order to characterize the environments in which such properties can be guaranteed.
This will lead us to a notion of “well formed” context. We believe that a “well formed” context
is a context which cannot change in unpredictable ways, but follows some predetermined rules.
These behavioral constraints should be reflected in the structure of the context itself.
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Then we are studying m-calculus in order to make a comparison with other formalization of
noninterference among processes [15, 16]. In particular we want to transfer into m-calculus the
notion of noninterference properties of SPA, such as secure contexts, and try to express them
within a logical framework.

To conclude we propose a possibly title for our project: “A logical framework to deal with
concurrency and security properties”.

This presentation is organized as follows. In Section 1 we present w-calculus as a model for
Spatial Logic. In Section 2 we present some noninterference results on SPA and m-calculus. Finally,
in Section 3 we present a calculus, called Basic Logic [18, 24], developed by the logic group of
Padua with which I'm cooperating. Basic Logic is a weak logic which represent the core of all
the logics. In fact it can be extended in order to obtain a lot of well known logics. In particular
Spatial Logic should be one of its extension.

In Appendix we report all the formalisms we refer to during the presentation.

1. m-CALCULUS AND SPATIAL LOGIC

During the last years a lot of computational formalisms have been proposed to describe the
behaviour of concurrent and mobile systems. Almost of them have a common core which is
asynchronous m-calculus [4, 17] (henceforth simply m-calculus). The m-calculus is then a starting
point for studying mobile systems and experimenting with primitives for communication among
processes.

m-calculus is a nominal calculus, namely a computational formalism that includes a set of pure
names and allows the dynamic generation of fresh, unguessable names. The computations consist
of collections of parallel processes equipped with asynchronous communication channels. To see
the complete definition of processes we refer to Definition 1 in Appendix. If P and () are processes,
process P|Q consists of P and @) running in parallel, possibly communicating with each other or
with the outside world along communication channels. Channels are represented by names. Names
are the only data that may be communicated on channels, hence a process may communicate a
pure value or even a channel.

Although based on a handful of primitives, the m-calculus is very expressive. Functional pro-
gramming may be reduced to the m-calculus, since the A-calculus can be encoded. Similarly, a
variety of formulations of imperative, object oriented and concurrent programming may be reduced
to the m-calculus. All these encodings depend on the presence of pure names and generation.

A restriction in the w-calculus is a process of the form (vn)P, which means “make a fresh
unguessable name n, and then run P”. Restriction represent name generation in the m-calculus.
The name n in the restriction is a bound identifier, whose scope is P. Restricted names are
unguessable, namely one can learn a restricted name only if someone tells it.

The void process, 0, is a process that can do nothing. The input prefix m(n).P can receive
any name from the channel m, by a message m(n’), and continue the computation as P with the
received name substituted for n. Finally the replication ! P can be thought s an infinite composition
P|P|P|... Replication makes it possible to express infinite behaviours.

A basic point of m-calculus is its collection of equational laws for restricted names, see Definition
2. For instance, one law asserts that the processes (vn)P|Q and P|(vn)@ are the same, provided
that the name n does not occur in process P. This law allows the scope of a restricted name to
vary. Left to right, it allows scope contraction; right to left, it allows scope expansion. A series
of applications of this law, together with other laws, allows the scope of a name to expand and
contract as it is passed from one process to another during the computation. In this sense, the
scope of a restricted name is mobile.

Caires and Cardelli’s Spatial Logic [5, 6] has been proposed with the same aim of 7-calculus:
describing the behaviour and spatial structure of concurrent systems. Logics for concurrent sys-
tems are not new, but the intent to describe spatial properties seems to have arisen only recently.
The spatial properties that this logic consider are essentially of two kinds: whether a system is
composed of two or more subsystems (i.e. “Composition” of m-calculus), and whether a system
restricts the use of certain resources to certain subsystems (i.e. “Restriction” of m-calculus).
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A model of Spatial Logic is just w-calculus, but the idea can be easily extended to other calculi,
such as ambient calculi with locations.

A formula in Spatial Logic describes a property of a particular concurrent system at a particular
time; therefore it is modal both in space and in time.

The constructs of the logic are entirely reported in Definition 4. Now we give a brief overview of
the interpretation of formulae. Let P the set of processes of w-calculus, as described in Definition
1. A property on P is a set of processes: a subset of P. A spatial closed formula denotes a property,
namely it denotes the collection of processes satisfying that formula.

The collection of all properties (which is not quite the powerset of P, as reported in Appendix)
has the structure of a Boolean Algebra under set inclusion, so we naturally get boolean connectives
in the logic, such as F;, AN B and A — B.

The propositional fragment is extended to predicate logic via a universal quantifier Vz.A. This
quantifier has standard properties, but the bound variable x ranges always over the countable set
of channel names of w-calculus.

The collection of all properties has also the structure of a quantale, induced by the parallel
composition operator over processes. In the logic, this is reflected by the operators A|B, 0 and
A B. The formula A|B is the parallel composition of two properties and represents the processes
that have the form P|Q with P satisfying A and @ satisfying B. The formula 0 denotes the
collection of void processes. Finally the formula A > B is the linear implication associated with |.
It corresponds to context system specification, i.e. a process satisfies A > B if it gives a process
satisfying B in case it is computed in parallel with a process satisfying A.

m-calculus’s process restriction induces a pair of operators n®A and A @ n called revelation
and hiding, that give a basis for describing restricted processes at the logical level. In particular
n®A identifies all the processes that are of the form (vn)Q with @ satisfying A. The operator ®
is called revelation because it reveals the properties satisfied by the processes before the hiding of
name n. On the other hand A @ n identifies all the processes P such that (vn)P satisfies A. The
operator @ is called hiding because it hides the properties satisfied by the process P before the
hiding of name n.

The notion of fresh name is introduced by a quantifier |jz.A. This means that x denotes
a name that is fresh with respect to the names used either in A or in processes satisfying A.
A process satisfies []z.A if for some fresh names n (fresh in the process and in the formula) it
satisfies A[n/xz]. This quantifier exhibits the universal /existential ambivalence typical of freshness:
a property holding of some fresh names should also hold of any other fresh name.

The logical operator n(m) asserts that a message m is present over channel n, so it gives some
minimal power to observe the behaviour of processes.

The “next step” temporal operator ¢ A allows us to talk about the behaviour of a process after
a single reduction step.

In Definition 6 we report some derived connectives of basic interest. Standard operation of the
classical predicate calculus, namely —A (Negation), 3z.A (Existential quantification), AV B (Dis-
junction) and T (True), are defined as expected. An interesting connectives is A||B, De Morgan
dual of composition A|B, which supports the definition of a form of a spatial quantification. A
process P satisfies A||B if and only if every component of P, with respect the parallel composition,
satisfies either A or B. We also have the modality OA, which is the dual of 0 A. A process P
satisfies OA if and only if all processes to which it reduces in one step satisfy A. Finally the free
name predicate (©n holds of all processes with a free occurrence of name 7.

Moreover when combined with revelation, the fresh name quantifier gives rise to a natural
operation of quantification over hidden (restricted) names in a process. Intuitively, a name is

revealed under a fresh identity, and then a property of the restricted processes is asserted. One

can define Hz.A def Nz.x®A. According to the semantics given in Definition 5, we get the following

direct semantic characterization
[Hz.A] = {P: P = (vn)Q with Q € [A[n/z]] and n not free both in P and A}

A formula Hz.A reads “there is a restricted name z such that A holds for the process under
the restriction”. The hidden name quantifier makes it possible to express properties of processes
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that depend on some secret name. For a quite simple example, consider the closed formula
Jy.Hz.(y(z)|T). This formula holds precisely of those processes which are ready to send a secret
name over a public channel.

In Spatial Logic we have a primitive formula to observe messages, n{m), corresponding to the
asynchronous 7w-calculus. We do not have a corresponding input formula, but it can be express by
using the guarantee and next step operators. We can take the following definition of input:

n(x).A déf%c.n(x) > QA

The definition says literally, that an input process is one that, in presence of any output message
y over the given channel n, at the next step (after input) it behaves according to A. It is easy to
se that input and output interact as expected in 7 calculus communication, that is n{m)|n(z).A
entails O A[m/x].

The rules of spatial logic are sound w.r.t. the model built with 7-calculus’ processes and a
cut-elimination theorem is proved for the first-order fragment.

Some properties of the logic are very sensitive of the formulation of structural congruence (in
fact, Sangiorgi has shown that the process equivalence induced by a similar logic is essentially
structural congruence [25]). An open problem is to determine what is the processes equivalence
induced by Spatial Logic.

The general structure of Spatial Logic’s definition can be easily adapted to various process
calculi, and it is also largely independent from the details of the operational semantics. Hence
Spatial Logic may give a model in which we can abstract various process calculi in order to compare
their expressiveness.

Although the semantics considered is based on unlabelled transition systems, it could be ex-
tended in a natural way to labelled transition systems by introducing new modalities into the
logic.

In conclusion, Spatial Logic is a very intensional logic , that talks about fine details of process
structure. This is what is required if we want meaningfully describe the distribution of processes
and the use of resources over a network.

2. SECURITY AS NONINTERFERENCE

Protecting the confidentiality of information manipulated by concurrent systems is an impor-
tant problem. There is little assurance that current systems protect data confidentiality and
integrity. Analysing the confidentiality properties of a distributed system is difficult even when
insecurity arises only from unintentional errors in the design or implementation. Additionally mod-
ern systems commonly incorporate untrusted, possibly malicious host or code, making assurance
of confidentiality more difficult.

The standard way to protect confidential data is access control: some privileges, which we will
call high actions, are required in order to access files or objects containing the confidential data.
Access control checks place restrictions on the release of information but not its propagation. Once
information is released from its container, the accessing program may, through error or malice,
improperly transmit the information in some form. To ensure that information is used only in
accordance with the confidentiality policies, it is necessary to analyse how information flows within
the using program. The analysis must show that information controlled by a confidentiality policy
cannot flow to a location where that policy is violated.

If a user want to keep some data confidential, he might choose a policy stating that no data vis-
ible to other users is affected by confidential data. This policy allows programs to manipulate and
modify private data, so long as visible outputs of those programs do no improperly reveal infor-
mation about the data. This is called noninterference policy [13], because it state that confidential
data may not interfere with public data.

An attacker (or unauthorized user) is assumed to be allowed to view information that is not
confidential (i.e. public). The usual method for showing that noninterference holds is to demon-
strate that the attacker cannot observe any difference between two executions that differ only in
their confidential input.
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Noninterference policy has been implemented in various formalisms such as Security Process
Algebra (SPA for short), or m-calculus, or ambient calculus. We first studied noninterference in
SPA, then we moved to m-calculus.

SPA is a process algebra that express the interactions (actions) among processes. In SPA there
is not value passing. The set of visible actions is partitioned into high level actions (H) and
low level ones (L), in order to specify multilevel systems. A special action 7 models internal
computations, namely actions that are not visible outside the system. Actions may be inputs ,c,
or output, a&. Input and output on the same channel may synchronize and produce a 7 action.

The operational semantics of SPA is given in terms of Labelled Transition Systems, see Sub-
section 3.3 in appendix. A Labelled Transition System (LTS) is a triple (S, A, —) where S is a set
of states, A is a set of labels (actions), =C S x A x S is a set of labelled transitions. The notation
S; % S, means that the system can move from the state S; to the state Sy by performing the
action a.

The concept of observational equivalence between two processes is based on the idea that two
systems have the same semantics if and only if they cannot be distinguished by an external
observer. This is obtained by defining an equivalence relation over the set of processes, equating
two processes when they are indistinguishable. Two particular observation equivalences are strong
bistmulation and weak bisimulation [20]. Intuitively strong bisimulation equates two processes if
they are able to mutually simulate their behaviour step by step. A weak bisimulation does not
care about internal 7 actions, that corresponds to synchronization inside the system. So, when a
process simulates an action, it can also execute some 7 actions before or after that action.

Noninterference among processes has been formalized in [10, 11]with the definition of Bisimulation-
based Non Deducibility on Compositions (BNDC). The BNDC security property aims at guaran-
teeing that no information flow from the high to the low level is possible, even in the presence
of malicious processes. The main motivation is to protect a system also from internal attacks,
which could be performed by the so called Trojan Horse programs. Property BNDC is based on
the idea of checking the system against all high level potential interactions, representing every
possible high level malicious program. In particular, a system E is BNDC if for every high level
process II alow level user cannot distinguish F from E|II.

BNDC property is not strong enough to analyse systems in dynamic execution environments.
For instance, if code mobility is allowed, a program could migrate to different host in the middle
of its computation. In this setting we have to guarantee that every reachable state of the process
is secure. Another interesting example is the execution of an applet on a Java Card, where an
attacker could try to bring the card in an unstable (insecure) state by powering off the card in the
middle of applet computation. To deal with these situations it has been introduced the security
property named P_BNDC that requires that every state reachable by the process has to be secure.

However, this property still requires a universal quantification over all the possible reachable
states from the initial process. This can be avoided by including the idea of “being secure in every
state” inside the bisimulation equivalence notion. This is done by defining an equivalence notion
which just focus on observable actions not belonging to H. To do this, it is used a transition
relation (= g) which does not take care of both internal and high level actions. By using this
equivalence, one can show that a process E is P_.BNDC if and only if £ ~\y E'\ H.

Noninterference is given treatment also in w-calculus [15]. Here the problem of quantification
has been solved by using types. Numerous typing systems have been developed for this language.
Most are based on judgments of the form I' - P, indicating that the process P is well-typed with
respect to the security policy I', which associates capabilities with the free channel names of P.
Usually these capabilities are of the form:

r(T) : the ability to read values of type T form a channel (read capability);
w(T) : the ability to write values of type T to a channel (write capability).

In addition, a complete lattice SL of security levels is associated to obtain security types. By
varying the precise definition of a security type we can either implement resource access control
methodologies, or ensure forms of noninterference.
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Also in this case a notion of process behaviour, deriving from the definition of an observational
equivalence, is required to introduce a noninterference condition. In particular the may equivalence
is defined by introducing an observer process. An observer T is a process with an occurrence of a
new reserved resource name w, used to report success. When placed in parallel with a process P,
an observer may interact with P, producing an output on w whenever some desired behaviour of
P has been observed, in this case we say that P may T

We say that two processes are observational equivalent, in according to may equivalence (~,qy),
and we write I'>, P o4y @, if for every finite observer 7', such that it is typed by I' with security
level o, we have Pmay T if and only if Q mayT. The definition and the typing rules are enough
to ensure that

I'>, P~y Q implies T, PIH o0, QK

for all H, K processes that I' types with security level o.

This is quite a general non interference result. For instance in the case where @ is P and K is
the void process 0 we obtain

I'>, P~y PIH

indicating that, under previous conditions, the process H can not interfere with the behaviour of
P.

Our aim is to translate the noninterference notion of SPA into m-calculus in order to study the
relations with the noninterference definitions of m-calculus.

3. Basic LogGic

Up to the beginning of last century, there was only one logic, Aristotele’s Classical Logic, which
was conceived as a metaphysical absolute. Starting with Brouwer’s revolution, which introduced
Intuitionistic Logic, number of different new logics have been developed. Each of them aimed to
capture some of the distinctions which can be observed in a specific field of interpretation, but
which are ignored by Classical Logic. Excluding intensional logics (which considers modalities), all
such logics can be grouped under three main headings: intuitionistic logic (absence of principle of
double negation), quantum logic (absence of distributivity between conjunction and disjunction),
and relevance and linear logic (finer control of structural rules).

Although all of these logics are derived from Classical Logic, they have been considered as
mutually incompatible. Basic Logic [24] was developed in order to provide a common foundation
and to show that they share a common structure.

Basic Logic is introduced following the idea that connectives of logical language reflect a link
between assertions at metalanguage. The common explanation of the truth of a compound propo-
sition like A& B is that A& B is true if and only if A is true and B is true. In other terms, a
connective o between propositions, like & above, reflects at the level of object language a link
between assertions in the metalanguage, like and above. The semantical equivalence

A&B true if and oly if A true link B true (1)

which we call definitional equation for &, gives all we need to know about it. A& B is semantically
defined as that proposition which, when asserted true, behaves exactly as the compound assertion
A true link B true. The inference rules for & are easily obtained by solving the definitional
equation, and they provide an explicit definition. We the say that & is introduced according
to the principle of reflection. All the connectives of Basic Logic are introduced according this
principle.

We need only two metalinguistic links to solve equations and introduce all the rules of the
calculus: and and entails. Usually a sequent I' = A denotes Cy,...,Cp, F Dq,...,D,, which in
turn denotes (Cy True and ... and Cp, True ) entails (Dy True and ... and D,, True). A rule
such as

A

| K VAN
denotes (I' F A) entails (I" - A’). This vision can be extended to rules with two preconditions,
in such a case the empty space denotes and.
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All the assumptions we need are only:

identity AFA
" rA AT'FA " 'EAA AR A iR
composition TTFA cu TFA A cu

Now we can see how to obtain the inference rules for connective & starting from equation (1)
and using only “identity” and “composition”. The direction from right to left of (1) gives a good
rule:

r-rA I'tB
'+ A&B @)
The direction from right to left gives
'+ A&B '+ A&B
T+ A and T+ B )

But these are not good rules because the connective we have to define compares into the premisses.
We can solve the equation by founding an equivalent admissible rule. If we take I' = A& B we
obtain a trivial premiss (A&B F A&B) that gives us two axioms A&B F A and A&B + B.
Finally, by using composition with the axiom A& B F A and the premiss A - A we obtain a good
rule:
AFA

TR A (4)

A&BF A
Now we can observe that we can proceed in the opposite way to obtain (3) from (4). This proves
that all the rules are equivalent. We have obtained the rules (2) and (4) that are equivalent to the
definitional equation (1).

The main discovering is that all the connectives of well-known logics could be introduced ac-
cording to the principle of reflection, moreover the solution of the definitional equation follows
always the same schema.

Basic Logic provides a simple structure, in which all the usual logics are founded. We can obtain
all the extensions of our logic B by operating all the combinations of actions L (introduction of
contexts on the left), R (introduction of the contexts on the right), and S (adding structural rules
of weakening and contraction). In particular Girard’s Linear Logic is BLR, Intuitionistic Logic is
BLS, and Classical Logic is BLRS.

Finally Basic Logic admits a mathematical model, just a monoid equipped with a binary rela-
tion, that we call relational monoid [18]. This model can be extended by adding properties that
involves the monoidal operation and the binary relation, in such a way we can obtain well known
models for the extensions of Basic Logic, for instance Girard’s phase space for Linear Logic. In
particular, expressing Spatial Logic as an extension of Basic Logic could lead to a mathematical
model for Spatial Logic.
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APPENDIX

3.1. Syntax and operational semantics of the asynchronous m-Calculus. We report the
syntax and operational semantics of the asynchronous 7-calculus [4, 17] using the notation of [21].

Definition 1 (Processes). Given a countable set A of names, The set P of processes is given by

the following abstract syntax

m,n,p €A (Names)
P,Q,R =
0 (Void)
P|Q (Parallel)
(vn)P  (Restriction)
m(n) (Message)
m(n).P  (Input)
P (Replication)

By following the standard notation we say that in Restriction (vn)P and Input m(n), the
distinguished occurrence of the name n is bound, with scope the process P. We say that n is free
in a process P if there is an occurrence of n in P which is not bound. We identify processes up to
a-congruence (=, ), i.e. we do not distinguish processes up to the safe renaming of bound names.
Moreover with P[m/n] we denote the replacement of the free (possibly) occurrence of name n in
P by the name m (use the same idea to treat the formula A[m/n]).

Here we consider an operational semantics based on syntactic congruence and unlabelled tran-
sition systems.

Definition 2 (Structural congruence). Structural congruence, noted =, is the least congruence
on processes such that

P=,Q — P=Q Plo=r P|lQ =Q|P
P(QIR) = (P|Q)|R 10=0 P =IP|P
I(P|Q) =!P|'Q PP (vn)0=0

(vn)(vm)P = (vm)(vn)P
nfree in P = P|(vn)Q = (vn)P|Q
n#p,n#m = (vn)p(n).P = p(m).(vn)P

Definition 3 (Reduction). Reduction is the least binary relation — on processes inductively
defined as follows

m(n)|m(p).P — Pln/p] Q—Q = P|Q— P|Q
P—-Q = (wnn)P— (vm)Q P=P P —-Q,Q=Q = P—Q

3.2. Syntax and semantics of Spatial Logic. We here consider only propositional Spatial
Logic, i.e. a first order logic without quantification on formulae. Basic constructs of the Spatial
Logic include logical, spatial and temporal operation.
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Definition 4. Given an infinite set A = {m,n,p...} of names and a countable setV = {z,y,z...}
of name variables, formulae are defined as follows (letn € AUV):

A B,C =
F (False)
AANB  (Conjunction)
A= B (Implication)
0 (Void)
AlB (Composition)
Av B (Guarantee)
n®A (Revelation)
Aon  (Hiding)
niy)  (Message)
Vo A (Universal quantification)
Nz. A (Erresh name quantification)
OA (Next step)

Next we define the semantics of the Spatial Logic, without entering into details. The basic idea
consists in assigning to each formula A a set of processes [A], namely the set of all processes that
satisfy the property denoted by A.

However not any set of processes can denote a property in a proper way. For instance, it
is sensible to require [A] to be closed under structural congruence. Moreover suppose we have
P € [A] with n free in P, but not free in A, in this case we say that the free occurrence of n in P
are fresh w.r.t. formula A. So the particular choice of the name n should not depend on A itself,
hence it is natural to consider that all the fresh names w.r.t. A are to be treated uniformly.

Definition 5 (Semantics). The denotational map [A] is the function that assigns a subset of P
to each name-closed formula A. It is inductively defined as follows:

[F]1<0

[AAB] < [A] N [B]

[A= B]Y{P:if P e[A] then P € [B]}

[o]&yP:.P=0}

[A|B] d:ef{P : P =Q|R for any Q € [A] and R € [B]}

def

[AvB] =A{P:if Q € [A] then Q|P € [B]}
[n®A] dZEf{P : P =(vn)Q for any Q € [A]}

[Aon] P : (vn)P € [A]}

[m(n)] < {P: P=m(n)}
[vz.A]< () [Aln/2]]

neA
[Nz.A] Lef U([[A[n/x]]] \ {P :n is free in P}) with n not free in A
def

[0A]={P: P —Q and Q € [A]}
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Definition 6 (Basic Derived Connectives). Some derived connectives of basic interest are
defined as shown next.

A = A=F (Negation)
T ¥ F (True)
AvB ¥ -A-B (Disjunction)
A||B Lof —(=A|-B) (Decomposition)
A ¥ vr-a (Ezistential quantification)
©n def -n®T (Free names)
n=1n E (@ (@qor)) (Equality)
o4 & 0-4 (All next)

3.3. Secure Process Algebra (SPA). SPA syntax is based on a set of wvisible actions £ = TUO,
where I = {a,b,...} is a set of input actions and O = {a,b...} is a set of output actions. A special
action 7 models internal computations, namely actions that are not visible outside the system.
The complementation function ~ : £ — £ connects a with a for all ¢ € I, a with a = a for all
a € O, and 7 with 7 = 7. The set of all action is Act = L U {r}. The set L of visible actions
is partitioned into two sets: H and L of high and low level actions, such that H = H, L = L,
HUL=L,and HNL = (). The syntax of SPA agents is defined as follows:

Ew=0|aE|E+E|EE|E\v|E[f]]|Z

Where a € Act, v C L, f: Act — Act is such that f(a) = f(a) and f(7) = 7, and Z is a constant

that must be associated with a definition Z % E.

Intuitively, O is the void process that does nothing; a.F is a process that behaves as E after
performing an action a; E + FE represents the non deterministic choice between two processes;
E|E represent the parallel composition, where executions are interleaved, possibly syncrhronized
on complementary input/output actions, producing an internal action 7; F \ v represent a process
prevented from performing actions in v; E[f] is the process E whose actions are renamed via
relabelling function f. We indicate with £ the set made up of SPA agents, and with £y the set of
agents that can perform only high actions.

The operational semantics of SPA is the LTS (€, Act, —), where the states are the terms of the
algebra and the transition relation —C & x Act x £ is defined by structural induction as the least
relation generated by the following axioms and inference rules:

Prefix

ab % E

B, % E By % EY
Sum
By + E, % Ef B+ Ey % E)
E, % E| Ey, % E} E, % E, B, % E,
Parallel - -
E\|By % E{|Ey BBy 5 E\|E) E\|Ey; & Ef|Ey
ESFE
Restriction ifadwv
E\v% E\v

ESF

Relabelling

Elf) Y By
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Definition 7 (Strong Bisimulation). A binary relation R C £ x £ over agents is a strong
bisimulation if ERE implies, for all a € Act,

- if ES E', then there exists F' such that F % F' and E'RF’;
- if F % F’, then there exists E' such that E = E' and E'RF’.
Two agents E, F are strongly bisimilar, denoted E ~ F, if there exists a strong bisimulation R
such that ERF.
A weak bisimulation is a bisimulation which does not care about internal 7 actions, that corre-
sponds to synchronization inside the system. So, when F' simulates an action of F, it can also exe-

cute some 7 actions before or after that action. We consider another transition :a>§ Actx Lx Act
a a

such that F =% F denotes B(5)* % (5)*Fifa # 7, and E(5)*F if a = 7 (where (—)* denotes
a — possibly empty — sequence of 7 labelled transitions).

Definition 8 (Weak Bisimulation). A binary relation R C € x € over agents is a weak bisim-
ulation if ERF implies, for all a € Act,

- if E% E', then there exists F' such that F =2 F' and E'RF';
- if F % F', then there exists E' such that E = E' and E'RF’.

Two agents E, F are weakly bisimilar, denoted E ~ F, if there exists a weak bisimulation R such
that ERF.

In [20] it is proved that ~ is the largest strong bisimulation, = is the largest weak bisimulation,
and they are equivalence relations.
Next we give two definition of noninterference in SPA.

Definition 9 (BNDC). Let E € €.
E € BNDC iff VIleéy,E\H~ (E|II)\ H.
Definition 10 (Persistent BNDC). Let F € £.
E € P.BNDC iff VE' reachable from E and VII € Ex,
E'\ H ~ (E'|ll)\ H, i.e. E' € BNDC.



