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Abstract. Aiming at a unified view of the logics describing spatial stures, we introduce a gen-
eral framework, BiLog, whose formulae characterise moalaidtegories. As a first instance of the
framework we consider bigraphs, which are emerging as ataresting (meta-)model for spatial
structures and distributed calculi. Since bigraphs ar#é brthogonally on two structures, a hier-
archical place graph for locations and a link (hyper-)grigtconnections, we obtain a logic that
is a natural composition of other two instances of BiLog: acelGraph Logic and a Link Graph
Logic. We prove that these instances generalise the spadiak for trees, for graphs and for tree
contexts. We also explore the concepts of separation amthgha these logics. We note that both
the operator of Separation Logic and the operataf spatial logics do not completely separate the
underlying structures. These two different forms of sefianacan be naturally derived as instances
of BiLog by using the complete separation induced by thedepsoduct of monoidal categories
along with some form of sharing.
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1. Introduction

To describe and reason about structured and distributexlinegss is one of the main goals of global
computing research. Recently, maspatial logicshave been studied to fulfill this aim [3, 4, 5, 6, 7, 8,
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15, 23, 25]. The term ‘spatial, as opposed to ‘temporafiere to the use of operators inspecting the
structure of the terms in the model, rather than a tempota\ieur. Spatial logics are usually equipped
with a separation/composition connective thplits a term into two parts, in order to ‘talk’ about them
separately. The notion akparationis interpreted differently in different logics.

In ‘separation’ logics [23], separation is used to reasauaheap-like structures, and itsgrongas
it forces names of resources in separated components tagjoati Consequently, term composition is
usually partially defined. In spatial logics for trees [4Haraphs [6] the separation/composition operator
is structural as it induces separation in the spatial structurewm#tkon names, as there is no constraint
on terms, and names are usually shared between separatedipapatial logics which describe models
with name restriction, like the Ambient Logic [8] or the St ogic for w-calculus [3], separation is
generally intended only for locations in space. Nevergglas a consequence of name restriction com-
bined with name extrusion, the logical separation/comntjmrsioperator separates on private/restricted
names, and shares public names. Context Tree Logic [5]rateg Separation Logic with a spatial logic
for trees. The result is a logic that describes tree-shagadtsres (and contexts) with pointers.

All these logics have no a direct way of specifying the pulblaames that can be shared among
logically separated components, thus they cannot exgngagcit sharing Here we introduce a new
form of separation that subsumes the different kinds ofrsjoa discussed above, and define a form of
explicit sharing that naturally subsumes unrestrictedisbdviz. parallel composition of spatial logics)
when combined with a quantification on names a la Nominald{f].

Bigraphs [17, 19] are an emerging model for structures ibaleomputing, and they can be instan-
tiated to model several well-known examples, including G238, w-calculus [17], ambients [16] and
Petri nets [20]. Bigraphs consist essentially of two gragering the same nodes. The first graph, the
place graphis tree-structured and expresses a hierarchical refdtipron nodes (viz. locality in space
and nesting of locations). The second graph,lifie graph is an hyper-graph and expresses a generic
“many-to-many” relationship among nodes (e.g. data link, sharing of cHahn€he two structures are
orthogonal, so links between nodes can cross locality bemiesl

In this paper we introduce a logic for distributed resou@esa natural composition of a Place Graph
Logic, for tree contexts, and a Link Graph Logic, for namédin The main point is that a resource is
associated both to a spatial structure and to a link strect@®uppose for instance to describe a tree-
shaped distribution of resources in locations. We may usg@mic formula likePC(A) for a resource
of ‘type’ PC (e.g. a personal computer) whose contents satisfgnd a formula likdPC,(A) for the
same resourcat the locationr. Note that the location type is orthogonal to the name. Wetloam write
PC(T) ® PC(T) to characterise terms with two unnamB@ resources whose contents satisfy the
tautological formuldl — i.e., with anything whatsoever inside. Named locatioss.g. inPC,(T) ®
PC,(T), can express name separation — i.e., that nange®l) are different (because separatedshy
Furthermore, link expressions can force name-sharingdmtwesources by means of formulae such as

PC.(in. ® T) ®° PCy(out. @ T).

This formula describes twBCs with different namesg andb, ‘uniquely’ sharing a link on a distinct
namec, which may model a communication channel. Nan®used as inputif) for the firstPC and as
an output ¢ut) for the secondPC. No other name is shared, andannot be used elsewhere insiIés
(because of).

A bigraphical structure is, in general, a context with sal/époles and open links that can be filled
by composition. Therefore, when instantiated to bigrapines,logic describes contexts for resources at
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no additional cost. We can then express formulae Bk, (T ® HD(id;)), that describes a modular

computerPC, whereid; represents a ‘plug-able’ hole in the hard di4D. Contextual resources have
many important applications. In particular, the contekngture of bigraphs is useful to characterise
their dynamics (cf. [9, 18]), and it can also be used as a gémeechanism to describe contexts of
bigraphical data structures (cf. [11]).

As bigraphs are establishing themselves as a truly gemeaghjmodel of global systems, and appear
to encompass several existing calculi and models (as shoj46, 17, 20, 22]), our bigraph logi8iLog,
aims at achieving the same generality as a description &geguas bigraphs specialise to particular
models, we expect BiLog to specialise to powerful logicstwse. In this sense, the contribution of this
paper is to propose BiLog as a unifying language for the datsmn of global resources. We will explore
this path in future work, fortified by the embedding resutis the static spatial logics presentedsify
and the positive preliminary results obtained for semittmed data [11] and CCS [9, 18]. Here, our
main technical results are the encoding in BiLog fragmehthestatic spatial logics of [4, 5, 6].

BiLog was introduced in [12], this paper deepens some of tliete covered there. In particular, we
consider the static fragment of BiLog, we discuss more iaitlabout separation and we outline proofs.
Further considerations and issues on BiLog are in [9, 11, EBjally, we remind the reader to [21, 22]
for a detailed background on bigraphs.

Structure of the pape$2 recalls the basic background on bigrapt&introduces the general frame-
work and the model theory of BiLog4 instantiates the framework to obtain logics for placek bmd
bi-graphs$5 focuses on separation and sharing conceptg@miesents our conclusions.

2. Background

A bigraph consists of a set afodes which may be nested in a hierarchical tree structure exjmgs
locality, the so-callecblace graph and haveports that may be connected to each otherlioks, the
so-calledink graph The two structures are completely orthogonal.

The picture on the right represents a bigr&gphNodes, . 5 .
shown with bold outlines, are associated withamtrol (ei- B el et S, S
therA, B, C, D). Controls have fixedrities to determine the :
number of ports. For instancB,has arity2, andC has arity
3. The nesting of nodes (place graph) is shown by the inclu:” ;
sion of nodes into each other; the connections (link graph) == * frommesnsm s ’
are drawn as lines. At the top level of the nesting structure
sit theregions The bigraphG has one sole region (the dashed box). Inside the nodes theréden
‘context’ holes drawn as shaded boxes. Regions and holes are uniquelyfiettbly finite ordinals.

Place graphs ararows over a symmetric monoidal category whose objects are findmals. The
arrow P : m — n is a place grapl® with m holes and regions. The place graph 6f has typel — 1.
The composition of place grapl#y o P; is defined only if the holes aP; are as many as the regions of
P, and amounts tilling holes with regions, according to the number each carries.tdisor product
P, ® P, is not commutative, as it lays the two place graphs one nettig¢mther (left-to-right), thus
obtaining a graph with more regions and holes, and it ‘rerensilyegions and holes ‘from left to right'.

Link graphs are arrowxX — Y of a partial monoidal category whose objects are (finite} sét
names, belonging to a denumerable set. TheXseepresents th@ner names (customarily drawn at
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the bottom of the bigraph) and represents the set oluter names (drawn at the top). The link graph
of G has type{z} — {y,z}. The link graph connects ports to names oetlges(represented by a
line between nodes), in any finite number. A link to a namepen-— i.e., it may be connected to other
nodes as an effect of composition. A link to an edgelésed as it cannot be further connected to ports.
Thus, edges arprivate, or hidden, connections. The composition of link graptisc W’ corresponds
to linking the inner names off” with the corresponding outer names1df and forgetting about their
identities. As a consequence, the outer namé# bfresp. inner names d¥’) are not necessarily inner
(resp. outer) names d/ o W’. For instance, the fact that the outer namestih disappear in the
composition means that names may be renamed and that edgés mdded to the structure. Asin [17],
the tensor product of link graphs is defined in the obvious @y if their inner (resp. outer) names are
disjoint.

By combining ordinals with names we obtaimerfaces— i.e.,
couples(m, X) wherem is an ordinal andX is a finite set of names. g
By combining the notion of place graph and link graphs on thej
same set of nodes we obtain the notion of bigraphs — i.e.warroi
G : (m,X) — (n,Y). The bigraphG can be represented as the:
compositionH o F of the bigraphs depicted on the right. At the? |
bottom of the picture, the systeiy, F, and F3 represents the ten- B
sor productF' = F; ® F» ® F3. The idea of the composition is to
insert £ into the contextd. The operation is partially defined, since -
it requires the inner names and the number of hole& dd match
the outer names and the number of regions'pfespectively. Shared
names create the new links between the two structures.tivelyj
compositionfirst places every region of' in the proper hole of{
(place composition) anthenjoins equal inner names éf and outer
names ofF’ (link composition). Note the edge connecting the inner ratrend« in H: it links two
nodes ofF" after the composition.

L Tp——

3. Thelogic

This paper aims at defining a logic that describes bigrapbstiagir substructures. As bigraphs, place
graphs, and link graphs are arrows of a (partial) monoidegmay, we first introduce a meta-logical
framework with monoidal categories as models; we then adlaptmodel the orthogonal structures of
place and link graphs. Finally, we specialise the logic taeiéhe whole structure of (abstract) bigraphs.

Following the approach of spatial logics, we introduce @miives that reflect the structure of the
model. The models are monoidal categories and the logicibescspatially the structure of theirrows
Our meta-logical framework is inspired by the bigraph axatisation of [21]. The model of the logic is
composed of structures that can be placed one near to thedthieorizontal compositionor one inside
the other, viavertical compositionand are generated by a setusfary constructors These structures
satisfy astructural congruencehat conforms to the axioms of monoidal categories and blyssiore.
Thus the model theory is parametric both on term constracod on structural congruence.
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Table 3.1.Axioms

Congruence Axioms: G =G Reflexivity
G =G implies G’ =G Symmetry
G =G and G = G"” implies G = G” Transitivity
G=G and F = F'impliesGo F=G' o F’ Congruence o
G=Gand F=F'implesG@ F=G' ® F' Congruence ®
Monoidal Axioms: Goidi=G=1idjoG Identity
(G1 o Gg) o G3 =G o (Gg ¢} G3) ASSOCiatiVity
Gud.=G=id. ® G Monoid Identity
(G1 ® G2) ® G3 =G ® (G2 ® G3) Monoid Associativity
idr ®idy =idgy Interface Identity

(G1 ® Fl) o (GQ ® FQ) = (Gl o GQ) & (Fl o FQ) BifUnCtoriality

3.1. Modds

To evaluate formulae, we consider the terms freely gergfaben a set of constructo® by using the
vertical composition (the partial compositiefl and the horizontal composition (the partial tensgr
The order of binding precedenceds®. BiLog terms are defined &,G' :=Q |G o G' | G ® &,
where() ranges ove®. We refer to these terms &sfunctorial terms since the two operations must
satisfy thebifunctoriality propertyof monoidal categories (the last rule in Table 3.1).

Terms are structures built on a monditf, ®, ¢) whose elements are dubbiederfacesand denoted
by I, .J. To model nominal resources, e.g. heaps or link graphs, theid may beartial. Intuitively,
terms represent typed structures with a source and a tatgefaice (- : I — J). Each constructof? in
© has a fixed typeype(2) = I — J. For each interfacé, we assume a distinguished construtt :

I — 1. The types of constructors, together with the obvious ride€omposition and tensor [9, 18],
determine the type of each term. Terms of type> J are calledground We consider only well typed
terms.

Terms are defined up to a structural congrueadsee Tab. 3.1) which subsumes the axioms of (par-
tial) monoidal categories. All axioms are required to holtewever both sides are well typed. Through-
out the paper, when using or = we imply that both sides are defined; and when we need to remark
that a bigraphical expressidtiis well defined, we writé E')| . The congruence will be refined to model
specialised structures: place graphs, link graphs andtdigr

3.2. Formulae

BiLog internalises the bifunctorial terms in the style of tAmbient Logic [8]. Constructors appear in
the logic as constant formulae, while tensor product andposmition are expressed by connectives. Thus
the logic presents two binary spatial operators. This estgrwith other spatial logics, that have a single
operator: Spatial and Ambient Logics [3, 8], with the patatiompositionA | B, Separation Logic [23],
with the separating conjunctias « B, and Context Tree Logic [5], with the applicatidn( P). Both the
operators inherit the monoidal structure and non-comrnvitiaproperties from the model.

Given the monoid M, ®, €), the set of simple term® and the structural congruence relatien
the logic BiLog(M, ®, €, ©, =) is formally defined in Tab. 3.2. The satisfaction relatiengives the
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Table 3.2 BiLog(M, ®, €,0, =)

Qu=1ids ... a constant formula for every 2 € ©

A B ::=F false id identity Q constant
A®B tensor product A ®@— B left prod. adjunct A —® B right prod. adjunct
AoB composition A B left comp. adjunct A — B right comp. adjunct
A= B implication

GEF iff never

GEA=B iff Gl Aimplies G} B

GEQ iff G=Q

GEid iff existsIst G=idy

GEA®B iff exists G1,G2st. G=G1 ® Gy, WithGy = Aand G, = B
GEAoB iff  exists G1,Gs.s.t. G =Gy 0 Gy, With G; E Aand Gs = B
GEAB iff forall G’, the fact that G’ = A and (G’ o G)] implies G’ o G = B
GEA—-B iff forallG,if G = Aand (GoG')| thenGo G =B
GE=A®-B iff forall G, ifG'|=Aand (G'® G)| thenG' @ G = B
G=EA-®B iff forall G, ifG'l=Aand (G®G')| thenG® G' =B

semantics. The logic features a const@rior each construc®2 and an identityid; for each interfacd.

The satisfaction of logical constants is simply the congogeto the corresponding constructor. The
horizontal decompositioformula A ® B is satisfied by a term that can be decomposed as the tensor
product of two terms satisfying and B respectively. The degree of separation enforcegtpetween
terms plays a fundamental role in the various instanceseoloilic, notably link graph and place graph.
The vertical decompositiofiormula A o B is satisfied by terms that can be the composition of terms
satisfyingA and B. We shall see that in some cases both connectives correspovell known spatial
ones. We define thieft andright adjunctsfor composition and tensor to express extensional pragerti
The left adjunctA B expresses the property of a term to satigfywhenever inserted in a context
satisfying A. Similarly, the right adjunctd — B expresses the property of a context to satiBfy
whenever filled with a term satisfying. A similar description holds for— and—®, the adjoints of.
Clearly, these adjoints collapse whenever the tensor isvagative in the model.

3.3. Logical Equivalence

BiLog induces a logical equivalence; on terms in the usual sense: we say that =; G- when
G, E Aifand only if Go |= A for every formulaA. By induction on the structure of formulae, we can
prove that the relatior-;, respects the congruence. We can prove that the logicalagoie coincides
with the structural congruence, as every term admiabaacteristic formula This fact is fundamental
to describe, query and reason about bigraphical data stas;tas e.g. XML (cf. [11]). In other terms,
BiLog is intensionalin the sense of [25], namely it can observe internal strestuas opposed to the
extensional logics used to observe the behaviour of dynaysiem.

Theorem 3.1. (L ogical equivalence is congruence)
G =1 G'ifand only if G = &, for every termGz, G'.
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Proof:
The forward direction is proved by defining the characterigirmula for terms, as every term can be
expressed as a formula. The converse holds sinceespects the congruence. O

The logical equivalence may be less discriminating whemetlage constructors not directly rep-
resented by logical constants. The work in [12] show how thenework can be parameterised by a
transparency predicateeflecting that not every term can be directly observed indbe: some terms
may be not visible to the logic or may be opaque without alfmninspection of their content. The
particular characterisation of the logical equivalencsegiin Theorem 3.1 can be generalised to a con-
gruence ‘up-to-transparency’: we can find an equivalenlzioa between trees that is ‘tuned’ by the
transparency predicate — the more the predicate coverlegh¢he equivalence distinguishes [9, 18].

4. Instancesand encodings

In this section BiLog is instantiated to describe place bsapink graphs and bigraphs. A spatial logic
for bigraphs is a natural composition of a Place Graph Ldgict(ee contexts) and a Link Graph Logic
(for name linkings). Each instance admits an embedding cflakmown spatial logic.

4.1. PlaceGraph Logic

Place graphs are essentially ordered lists of regionsrigpatiordered labelled trees with holes, namely
contexts for trees. Tree labels correspond to the corirols — 1 belonging to a fixed signatus€. The
monoid of interfaces is the monoid, +, 0) of finite ordinals, ranged over by, n. Ordinals represent
the number of holes and regions of place graphs. Place geapis tire generated from the set

©={1:0—1,4d,:n—mn, join:2—1, Yy, :m+n—-n+m, K:1— 1forKe K}

The only structured terms are the contrilsrepresenting regions containing a single node with a hole
inside. All the other constructors amacingsand represent treee — n with no nodes: the place
identity id,, is neutral for composition; the constructorepresents a barren regigi;n is a mapping of
two regions into oney,, ,, is a permutation that interchanges the firstegions with the following:. The
structural congruence for place graph terms is refined in Tab. 4.1 by the usual axiomsymmetry of
¥m,n @nd by the place axioms that essentially turn the operatidno (- ® _) in a commutative monoid
with 1 as neutral element. In particular, the places generatedimpasition and tensor product from
Tm,n @repermutations A place graph iprimeif it has typem — 1, namely it has a single region.

The Place Graph Logic PGK]) is BiLog(w,+,0,=,K U {1, join, vy »}). Theorem 3.1 extends
to PGL, thus the logic describes place graphs precisely. R&Sembles a propositional spatial tree
logic as in [4], with the difference that PGL models conteafsrees and that the tensor product is
not commutative, thus enabling the modelling of the ordepmgnregions. The logic can express a
commutative separation by usifgin and®, namely theparallel compositioroperator

A| B ¥ joino (id; o A ® idy o B).

At the term level, this separation, purely structural, esponds tgoin o (P, ® P,), that is a total
operation on all prime place graphs. More precisely, theasgits says thaP = A | B if and only if
there existP; : I; — 1 andP; : I — 1 such that:P = join o (P, ® P») andP; = AandP, = B.
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Table 4.1.Additional Axioms for Place Graphs Structural Congruence

I
Symmetry AXioms: 7y, = idy, Symmetry Id
Tm,n © Yn,m = id?fb@ n Symmetry ComDOSition
Y © (GR F)=(F®QG)oymn Symmetry Monoid
Place Axioms: join o (1 ® idq) = id4 Unit
join o (join ® idy) = join o (idy ® join) Associativity
join o y1 1 = join Commutativity

Table 4.2 Propositional Spatial Tree Logic

TEs F iff never

T =sr 0 iff T=0

TkEst A= B iff T s A impliesT Esn. B

T st alA] iff there exists 7" s.t. T =a[T’] and T’ g1 A

T ':STL A@a |ff a[T] ':STL A

TEs A|B iff thereexists 7", 7" st. T=T'|T" and T’ =sn. A and T” |=sr. B
T Est A>B iff forevery T': if T' g1 A implies T | T’ =sr. B

L

Encoding STL. Not surprisingly, prime ground place graphs are isomorfihtbe unordered trees that
model the static fragment of Ambient Logic. Here we show Biabg, when restricted to prime ground
place graphs, is equivalent to the propositional SpatiakTrogic of [4] (STL in the following). The
logic STL expresses properties of unordered labelled tnegged over byl", T/, T" and constructed
from the empty tred), the labelled node containing a tregl’], and the parallel composition of trees
T | T'. Labelsa are elements of a denumerable set. The obvious congruemretrees makes the set
of trees with| and0 a commutative monoid. STL is a static fragment of the Amblesgic [8] and it

is characterised by the usual classical propositional ectires, the spatial connectivesa[A], A | B,
and their adjunctsl@a, A > B. The semantics of the logic is outlined in Tab. 4.2.

Table 4.3 encodes the tree model of STL into prime grouncepiaaphs, and STL operators into PGL
operators. We assume a bijective encoding between labelsantrols, and we associate every lafel
with a distinct controlK(a) of arity 0. We assume two auxiliary notationst o; B &£ Aoid; o B
which forces the composition to the interfateand A 1 B £ (A4 o id;) B, which guarantees terms
with target typel. The monoidal properties of parallel composition are goteed by the axioms of
join (symmetry and unit). The equations are self-explanatorgeomne remark thati(i) the parallel
composition of STL is the structural commutative separatibPGL,; (ii) tree labels can be represented
by the corresponding controls of the place grafili} location and composition adjuncts of STL are
encoded by the left composition adjunct, as they add logie@dpressible contexts to the tree. This
encoding is actually a bijection from trees to prime groutate graphs. In fact, there is @mverse
encoding( ]) for prime ground place graphs in trees defined on the normaldof [21] as we shall see.

The theorem of discrete normal form in [21] implies that gvground place graph : 0 — 1 can
be expressed, uniquely up to permutationsgas join, o (My ® ... ® M,_1), where everyM;
is a molecular prime ground place graph of the fabh = K(a) o g, with ar(K(a)) = 0. As an
auxiliary notation,join,, is inductively defined agoin, &' 1, andjoin, . ; £ join o (id; ® join,).
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Table 4.3 Encoding STL in PGL over prime ground place graphs

I
Trees into Prime Ground Place Graphs

[0] %1 [alT]] £'K(a) o [T] [T | T'] % join o ([T] @ [T'])

STL formulae into PGL formulae

[0] %1 [F]&F [alA]] €K(a) o1 [A]  [A|B]%[A]|[B]
I[[A:>B]]“':‘*’[[A]]:[[B]] [AQa] £'K(a) 1 [A] [AsB] £ ([A] |id1) 1 [B]

The bifunctoriality property implies thgbin, o (My ® ... ® M,_1) = join o (My ® --- ® (join o
(M,—2 ® M,_1))). The inverse encoding ) is defined on the discrete normal form of prime ground
place graphs, and, along wifH], it gives a bijection between trees and prime ground pre@hs:

(joing) % 0

(K(a)oq) = a[(q)]
(joingo (My® ... ® Ms—q)) = (Mo] ... | (Ms—1)

Theorem 4.1. (Encoding STL)
For each tred" and formulaAd of STL: T =gy, Aifandonly if [T'] = [A].

Proof:

Structural induction on STL formulae. The basic step ingslthe constantE and0. ForF apply the
definition. For0: [T] = [0] means[T'] 1, thatis[7] = 1and soT = ([T]) = (1] &0,
namelyT |=sr. 0. The inductive steps deal with connectives and modalities.

Case A= B. ToassumdT ]| = [A = B]means[T] = [A] = [ B]; by definition this says
that[T] = [A] implies[T] = [ B]. By induction hypothesis, this is equivalent to say thatsr. A
impliesT |=sr. B, namelyT' =s1. A = B.

Casea[A]. ToAssume[T'] = [a]A]] meand[ T'] = K(a) o1 ([A]). Then there existr : 1 — 1
andg : 0 — 1suchthaf]T] = G o gandG = K(a) andg = [A], thatis[T'] = K(a) o g with
g E [A]. ThenT = (K(a) o g)) ¥ a[(g])] with g = [A], as the encoding is bijective. Since
g : 0 — 1, the induction says thdtg ) = A. HenceT =sr. a[A].

Case AQa. Toassumd T ] = [AQa] meang[T'] = K(a) 1 A, which says that ifG o [T])]
thenG o [T'] = [ A], for everyG such thatG = K(a). By definition, this isK(a) o [T'] = [A], then
[a[T]] = [A]. By induction, this isz[T] st A. Hencel =g, AQa by definition.

Case A | B.ToassumdT ]| =[A | Bl meandT] = [A] | [ B]. This is equivalent to say that
[T] k= join o (id; o [A] ® id; o [ B]), namely there exisj;, g2 : 0 — 1 such thaff '] = join o
(1 ® g2) andg; = [A] andgs |= [ B]. As the encoding is bijective this means tiiat (g1 ]) | (g2 ),
and the induction hypothesis says tfiat ) = A and(( g2 )) = B. By definition this isT" =s1. A | B.

Case A> B. Toassume[T] = [A> B] means[T] [ join([A] ®idy)) 1 [B] —i.e.,
foreveryG : 1 — 1if G = join([A] ® id;) thenG o [T] = [B]. Now,G : 1 — 1 and
G [= join([ A] ® id;) means that there exisgs: 0 — 1 such thaty = [ A] andG = join(g ® idy).
Hence for everyg : 0 — 1 such thatg = [A] it holds join(g ® id1) o [T'] E [B], thatis
join(g @ [T]) E [B] by bifunctoriality. As| ] is bijective, for everyl” such that[7"] = [A]
it holds join([T"] @ [T]) = [B] —i.e.,[T" | T] = [B]. By induction, for everyl” such that
T st AitholdsT’ | T =1 B, thenT =g, A B. O
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Table 4.4 Additional Axioms for Link Graph Structural Congruence

I

Link Node Axiom: «a o Kz = K, 4 Renaming

Link Axioms: @0 = idg Link Identity
Jao%/,=/b Closing renaming
Jaoa=1id, Idle edge

*/(vwa) © (idy ® */x) ="/ywx Composing substitutions

Differently from STL, PGL can also describe structures vgtveral holes and regions. In [11]
we show that PGL can describe contexts of tree-shaped saatised data. Consider, for instance,
a function taking two trees and returning the tree obtaingdnbrging their roots. Such a function is
represented by the tergain, which solely satisfies the formujein. Similarly, a function that takes a
tree and encapsulates it inside a ndateelled by K, is represented by the terkhand captured by the
formulaK. Moreover, the formulgoin o (K @ (T o id;)) expresses all contexts of forln— 1 that
place their first argument inside the nddlend their second one as a sibling of such node.

4.2. Link Graph Logic (LGL)

Fixed a denumerable set of namfeswe consider the monoidPs,, (A), &, 0), wherePg, (-) is the finite
powerset operator andis the disjoint union of subsets. Link graphs are the strestarising from such
a monoid. They can describe nominal resources, which arenoomin many areas: object identifiers,
location names in memory structures, channel names, anttribuges in XML documents. Due to the
disjoint union, names cannot be shared implicitly; anyviagy can be referred to or linked explicitly
(e.g. as object references, location pointers, fusion &ofucalculi, and IDREF in XML files). Link
graphs describe connections between resources perfolyrmaddns of names, that aieferences

Wiring terms are a structured way to map a set of inner nakh@#to a set of outer namés. They
are generated by the constructofs:: {a} — () and®/x : X — a. The closure/a hides the inner name
a in the outer face. The substitutidif x associates all the names in the Zeto the name:. We denote
wirings byw, substitutions by, 7, and bijective substitutions, dubbezhamingsby «, 5. Substitution
can be specialised im & * /4, which introduces the name in a — b £ */y;,;, which renames$ to a,
and ina = b £/, 1, which linksa andb to a.

Another class of constructors for link graphs are the cdmtioin the signatureC. They represent
nodes associated to names, and they have firdds to determine the number of ports —i.e., the number
of the outer names associated to the control. Arity is giwethb arity functionar : K — N. Link graphs
are generated from wirings and the construckys () — awithd = aq, ..., a;, K € K andk = ar(K).
The controlK; represents a resource of kikdvith named portg. Any ports may be connected to other
node ports via wiring compositions. The structural congoge= is refined as outlined in Tab. 4.4 with
the obvious axioms for links, which modetconversion and extrusion of closed names. In this case, the
horizontal decomposition inherits the commutativity pedp from the monoidal tensor product.

The Link Graph Logic LGLK) is BiLog(Pf,(A),w,0,=,KU{/a,*/x}). Theorem 3.1 extends to
LGL, thus the logic describes the link graphs precisely. @ndne hand, the logic expresses structural
spatiality for resources and strong spatiality (sepamatior names, therefore it can be seen as a general-
isation of a separation logic for contexts and multi-pootsakions. On the other hand, the logic describes
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resources with local (hidden or private) names, and in thiss it is a generalisation of Spatial Graph
Logic [6]. To see this it is sufficient to consider the edgeseasurces.

The formulaAd ® B describes a decomposition into tweparatdink graphs, which share neither
resources, nor names, nor connections, and which satisfiyd B respectively. Since it is defined only
on link graphs with disjoint inner/outer sets of names, tesor product is a kind spatial/separation
operator, in the sense that it separates the model into stimcli parts that cannot share names.

If we want a name to be shared between separated resources, we need to makeutimg explicit,
and we can do that only through the link operation. We theeefieed a way to first separate the names
occurring in two wirings in order to apply the tensor, anditliek them back together, as shown next.

As a shorthand, itV : X — Y andW’ : X' — Y/ with Y C X'/, we write[W']W for (W' ®
idxny) o Wandifd = ay,...,a, andb = by, ..., b,, we writed < bfor a « by @ ... ® a,, < by,
similarly for @ &= b. From the tensor product it is possible to derive a produth sharing oni. Given
G:X —YandG& : X’ — Y’ with X N X’ = (), we choose a ligk (with the same length a# of fresh
names. The composition with sharing @is

GG “a=b(b—adGod).

In this case, the tensor product is well defined since all tmemon nameg in G are renamed to fresh
names, while the sharing is re-established afterwardskinkj the names ia with the names .

By extending this sharing to all names we can define the paradimpositionG | G’ as a total
operation. However, such an operator does not behave ‘wigh’respect to the composition, as shown
in [21]. In addition, a direct inclusion of a correspondingnaective in the logic would impact the
satisfaction relation by expanding the finite horizontataapositions to the boundless possible name-
sharing decompositions. This is due to the fact that the fseaimes shared by a parallel composition
is not known in advance, and therefore parallel compositamonly be defined by using an existential
guantification over the entire set of shared names.

Names can be internalised and effectively made private tigrajth by the closure operatge. In
fact, the effect of the composition witfu is to add a new edge with no public name, and therefore
to makea disappear from the outerface and be completely hidden tmtitside. Separation is still
expressed by the tensor connective. This connective ngtsmplarates places, but also ensures that no
edge, whether visible or hidden, crosses the separatiag lin

As a matter of fact, without name quantification it is not plgsto build formulae that explore a link,
since the closure has the effect of hiding names. For this tes employ the name variables, ..., x,
and the fresh name quantificatidhin the style of Nominal Logic [24]. The semantics is defined as

G = Nzy ...z, Aiff there exista; ... a, ¢ fn(G)U fn(A) such thatG = A{****" /.. .},

whereA{*1--*n /, ..} is the usual variable substitution.
By fresh name quantification we define a notionaeiinked name quantification for fresh names,
whose purpose is to identify names linkeditas

ALZ. AN (@ = 7) ®id) o A.

This formula expresses that the variabiem A denote names that are linked in the tern@t@nd the
role of (@ & Z) is to link the fresh names to @, while id deals with names not id@. We also define a
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Table 4.5.Spatial graph Terms (with local names) and congruence
I

G,G':= nil empty graph
a(x,y) single edge graph labelled a € A connecting the nodes z, y
G|G composing the graphs G, G’, with sharing of nodes
(ve)G the node z is local in G
Glnil=G neutral element
G|G=G|G commutativity
G|GY|G"=G| (GG associativity
y ¢ fn(GQ) implies (vz)G = (vy)G{z «— y} renaming
(vz)nil = nil extrusion Zero
z ¢ fn(G) implies G| (vz)G' = (vz)(G | G') extrusion composition
x #y,z implies (vz)a(y, z) = aly, 2) extrusion edge
(va)(vy)G = (vy)(ve)G extrusion restriction

separation-up-tas the decomposition in two terms that are separated aparttfre link on the specific
names inz, which crosses the separation line:

AR B GLE (F — @) ®id) o A) ® B.

The idea expressed by this formula is that the shared n&rmaesrenamed in fresh namg&sso that the
product can be performed and finadlyis linked toa to actually have the sharing. It is straightforward to
prove that the two definitions are consistent.

Lemma4.1. (Separation-up-to)
If g = A®% Bwith g: e — X, andX is the vector of the elements i, then there exisy; : ¢ — X

andg, : ¢ — X such thay = ¢; R g2 With g1 = A andg, = B.

Proof:
Apply the definitions and observe that the identities fagdd must beid., as the outer face qof is
X. a

The corresponding parallel composition operator is n&aty definable by using the separation-up-
to. In fact, in arbitrary decompositions the shared namesat qll known a priori, hence we would not
know the vectorX in the operator sharing/separation operatdr. However, next section shows that a
careful encoding is possible for the parallel compositibapatial logics with nominal resources.

Encoding SGL. Here we show that LGL can be seen as a contextual (multi-edeggsjon of Spatial
Graph Logic (SGL) [6], which expresses properties of dedaraphgs with labelled edges. The syntax
of graphs outlined in Tab. 4.5. The notatiefr, y) represents an edge from the nade y and labelled
by a. The graphsG are built from the empty graphil and the edge(z,y) by using the parallel
compositionG; | G2 and the binding for local names of nodes:)G.

The Spatial Graph Logic combines the standard proposiltiogé with two structural connectives:
composition and basic edge. Although we focus on its préiposil fragment, the logic of [6] also in-
cludes edge label quantifier and recursion. In [6] SGL is asealpattern matching mechanism of a query
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Table 4.6.Propositional Spatial Graph Logic (SGL)
I

e, =F  false a(z,y) anedgefromztoy ¢ =1 implication
nil empty graph o | composition

GEsy F iff never

G Esr nil iff G = nil

Glsip=v iff G s implies G Esr ¥
G ':STL a(a:, !J) iff G= a(:c, y)
GEsnel|v iff thereexist G1,Gy st. Gy f=sn pand G s and G = Gy | Gy

Table 4.7 Encoding Propositional SGL in LGL over ground link graphs

ISpatial Graphs into Two-ported Ground Link Graphs
[nil]x =X [(v2)Gx E((/x ® idx\(23) © [Gliapux)) @ ({2} N X)
[a(z,y)]x EK(a)sy ® X\ {z,y} [G1G']x E[C]x & [(']x
SGL formulae into LGL formulae
[nil]x £'X [a(z,y)]x £ K(a)ey ® (X \ {z,y}) [olv]x Elelx @* [v]x
[F]x ZF [o=vlx Elelx = [¢]x

language for graphs. In addition, the logic is integratethwansducergo allow graph transformations.
The applications of SGL include description and manipatatf semistructured data. Table 4.6 depicts
the syntax and the semantics of the fragment we consider.

For the encoding, we consider a signatéfewith controls of arity2, and we assume a bijective
function associating every labelto a distinct controK(a). The ports represent the starting and arrival
node of the associated edge. The resulting link graphs segpneted as contextual graphs with labelled
edges, whereas the resulting class of ground link grapkstisarphic to the graph model of SGL.

Table 4.7 encodes the graphs that model SGL into ground liaghg and SGL formulae into LGL
formulae. The encoding is parametric on a finite ebf names which contains the free names of the
graph. As we force the outer face of the graphs to be a fixed stite encoding of parallel composition
is simply a separation-up-to the elemeffsof X. Local names are encoded into name closures. The
Connected Normal Form of [21] helps in proving that groumdt jraphs featuring controls with exactly
two ports are isomorphic to spatial graph models.

Lemma 4.2. (Isomorphism for spatial graphs)

There is a mapping ) from two-ported ground bigraphs to spatial graphs, suchftiraevery setX
of names:(i) the mapping( ]) is inverse to] ] x; (ii) for every ground link graply with outer faceX
featuring a countable set of contrd{s all with arity 2, it holds fn((g])) = X and[(g] ]Jx = ¢; and
(i) for every spatial grapliy with fn(G) = X itholds[G]x : e — X and([G]x ) = G.

Proof:
Represent link graphs as bigraphs of type> (1, X') without nested nodes, which, as proved in [21],
have the normal forntx = (/Z | id( xy) o (X | Mo | ... | My_1), whereZ C X and M =
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Kz,y(a) o 1. The inverse encoding is based on this normal form:

((/Z ]idaxy) o (X | Mo|...| My—1)) £ @Z) (nil | (Mo]) | ... [ (My-1))
(Kzy(a) o 1)) Ea(z,y)

The encoding§ | and( ]) provide a bijection between graphs with free nam¥eand ground link graphs
with outer faceX and controls of arity two. O

Theorem 4.2. (Encoding SGL)
For every graplG, every finite setX that containsfn(G), and every formulapy of the propositional
fragment of SGLG s ¢ ifandonly if [G]x = [¢]x.

Proof:

By induction on formulae of SGL. The basic steps deal withabestants', nil anda(x, y).The case
F follows by definition. For the caseil, [G ]x | [nil]x means[G]x | X, that by definition is
[G]lx =X andsoG = ([G]x]) = (X)) £ nil, namelyG [=se, nil. For the case(z, y), to assume
[Glx F [a(z,y)]x means[G]x | K(a)sy ® X \{z,y}. S0G = ([G]x) = (K(a)y @
X \{z,y}) = a(z,y), that isG [=seL a(z,y). The inductive steps deal with connectives.

Casep = ¢. [G]x = [¢ = ¢]x means[G]x = [¢]lx = [¢]x thatis:[G]x = [¢]x
implies[G ]x E [¢]x. By induction, this means th&@ =sc. ¢ impliesG Fsc. ¥ —i.e.,G FEscL
@ = 1.

Casep | 9. [Glx E e[ v]x meand Glx = [¢]x ®@% [ ]x. By Lemma 4.1 there existg,
92 such thatﬂG]]X =0 ®X () andg1 ': [[(p]]x andgg ): [[w]]x LetGy = ([91 D andGs = ([gg]),
then[G1]x = g1 and[ G2 ]x = g2. Hence[G1[x = [¢]x and[ G2 ]x = [¢]x. By induction:
Gl ):SGL <pandG2 |:SGL ¢ NOW,[[Gl | G2]]X = [[Gl]]X ®X [[GQ]]X =0 ®X go = [[Gﬂx, thus
G FseLy | Y. 0

LGL enables the encoding of Separation Logic for heaps: samsed as identifiers of location are
forcibly separated by tensor product, while names useddortgrs are shared/linked. However we do
not encode it explicitly since if4.3 we will encode a more general logic: the Context Tree ¢ gji

4.3. PureBigraph Logic

By combining link graphs and place graphs we generate allabstract pure) bigraphsf [17]. In this
case the underlying monoid is the product of link and platerfaces, namelyw x Pz, (A), ®, €) where
(m, X) ® (n,X) £ (m+n,XwY)ande £ (0,0). As a short notation, we us¥ for (0, X) andn
for (n,0).

A set of constructors for bigraphical terms is obtained &suhion of place and link graph con-
structors. Only controls are subsumed by the migcrete ionconstructors, which are denoted by
Kz : 1 — (1,d) and represent prime bigraphs containing a single node vaitts mamedi and an
hole inside. Bigraphical terms are thus defined in relatioa tontrol signaturéC and a set of names,
as detailed in [21].

The structural congruence for bigraphs corresponds todtedsand complete bigraph axiomatisa-
tion of [21]. The additional axioms are reported in Tab. 48y are essentially a combination of the
axioms for link and place graphs, with slight differenceg tluthe monoid of interfaces.
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Table 4.8.Additional axioms for Bigraph Structural Congruence

I
Symmetry Axioms: vy =1id; Symmetry Id
V1,0 Y51 = idigs Symmetry Composition
Yo (G F)=(F®G)onr,s Symmetry Monoid
Place Axioms: join o (1 ® idq) = id4 Unit
join o (join ® idy) = join o (id1 ® join) Associativity
join o y1 1 = join Commutativity
Link Axioms: @0 = idg Link Identity
Jao®y=/b Closing renaming
Jaoa=id. Idle edge
) ivwa) © (idy @ */x) ="/yux Composing substitutions
Node Axiom: (id1 ® a) o Kg = Kya) Renaming

PGL excels at expressing propertiesusinamedresources, that are resources accessible only by
following the structure of the term. On the other hand, LGlaretterises names and their links to
resources, but it has no notion of locality. A combinatiortto$ two logics is useful to model nominal
spatial structures, either private or public.

BiLog promises to be a good (contextual) spatial logic fengsstructured) resources with nominal
links, thanks to bigraphs’ orthogonal treatment of logadind connectivity. To testify this, next section
shows how the Context Logic for Trees (CTL) [5] can be encddambigraphs.

Encoding CTL. In [5] the authors propose a spatial context logic to desgpitbgrams manipulating
a tree structured memory. The model of the logic is the senofdered labelled tre€s, 77, 7" and
linear contextsC, C’,C"” which are trees with a unique hole. Every node has a name, istenafy
memory locations. The logic is dubbed Context Tree Logicl-@the following. Given a denumerable
set of labels and a denumerable set of identifiers, treesartdxts are defined in Tab. 4.9 represents

a label andr an identifier. The insertion of a tréE in a contextC, denoted byC(T), is defined in
the standard way by filling the unique hole Gfwith 7. A well formed treeor contextis one where
the node identifiers are unique. The model of the logic is amwag by well formed trees and contexts.
Composition, node formation and tree insertion pagtial as they are restricted to well-formed trees.
The structural congruence between trees and contexts sthkkest congruence that makes the parallel
operator to be commutative, associative and with the emeéyas neutral element.

The logic exhibits two kinds of formulaeP, describing trees, anfl, describing tree contexts. It
has two spatial constants, the empty treeffoand the hole fors, and four spatial operators: the node
formationa, K], the applicationk (P), and its two adjunctdC > P and P; < P,. The formulaa, [K]
describes a context with a single root labelledabgnd identified byr, whose content satisfids. The
formula K > P represents a tree that satisfiegsvhenever inserted in a context satisfyifig Dually,

P, < P, represents contexts that composed with a tree satisfifingroduce a tree satisfying,. The
complete syntax of the logic is outlined in Tab. 4.10, the aefics in Tab. 4.11.

CTL can be naturally embedded in an instance of BiLog. Thepteta structure of the Context Tree
Logic has also link values. For sake of simplicity, we cossiils fragment without links. As already
said, the terms giving a semantics to CTL do not to shareiftenst as an identifier represents a precise
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Table 4.9.Trees with pointers and Tree Contexts

I
7.7 == 0 empty tree
a;[T] atree labelled a with identifier 2 and subtree T
T |T' partial parallel composition
C = = an hole (the identity context)
a;[C] atree context labelled « with identifier = and subtree C
T | C context right parallel composition
C | T context left parallel composition

T|I0=T neutral element

T|\T'=T|T commutativity

(T|THY|T'=T|(T"|T") associativity

(T17)] if and only if identifiers of 7" and T" are disjoint

similarly for contexts
L

Table 4.10Context Tree Logic (CTL)

I

P, P = false K,K' := false
0 empty tree formula — identity context formula
K(P) context application a; K] node context formula
K< P  application adjunct P> P application adjunct
P = P’ implication P|K parallel context formula

K = K’ implication

location in the memory. This property is obtained with bgra by encoding the identifiers as names
and the composition as tensor product. This structure iséheoded in BiLog by lifting the application
between contexts and trees to a particular kind of comjpositi

The tensor product on bigraphs is both a spatial separditierin the models for STL, and a partially-
defined separation on names, like pointer composition fpa&dion Logic. Since we deal with both
names and places, we define a formidg,, , to represent identities on places by constraining the place
part of the interface to be fixed and leaving the name part tvdee id,,, ) €id,, ® (id A =(T ®
id; ® T)). The semantics says that = id,, _ if and only if there exits a set of names such that
G = id, ® idx. By using such an identity formula we define the correspandyped composition
Ao,y BE Aoid, o Band the typed adjunctsd ,,, y B £ (id,, y o A) BandA —o, ,
B E(Aoidg, ) B.

We then encode the operator for the parallel compositiomégéparation operaterdefined as both
a term constructor and a logical connectitex G’ £ [join](G ® G') on prime bigraphs, and

Ax B d:ef (j()in X id<07_>) o (id<17_> oA X id<17_> o B)

on formulae. The operator enables the encoding of trees and contexts into bigraphsally;i we
consider a signature with controls of arityand we assume a bijective function from tags to controls:
a, — K(a),. The details of the encoding are outlined in Tab. 4.12. Thedings of trees are the
ground prime discrete bigraphsi.e., bigraphs with open links and type— (1, X).
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Table 4.11 Semantics for CTL

T =1 false iff  never

TEr0 iff T=0

T =7 K(P) iff there exist C,T" s.t. C(1”) well-formed, T = C(T"),C =x K and T' =7 P
TEr KaP iff forevery C: C |=x K and C(T) well-formed imply C(T) =7 P
TIZTPéP/ iff TFTPimpIies T':T P’

C = false iff  never

CEx— iff =-

C =k a[K] iff  there exists C’ s.t. a,[C'] well-formed, C = q,[C']and C' Ex K

CE=x PrP  iff foreveryT: T =7 P and C(T') well-formed imply C(T) =7 P’
CkExP|K iff thereexistC’,Ts.t. T |C" well-formed, C=T|C', T =7 P and C' =x K
CEx K=K iff Cx Kimplies C Ex K’

Paper [21] shows that the normal form, up to permutationsgfound prime discrete bigraphs is
g = (join, ® idx) o (M1 ® ... ® My), where)M; are calleddiscrete ground moleculemd are of the
form M = (K(a), ® idy)g. Thanks to this result, we can define the reverse encofif®f [ |, from
ground prime discrete bigraphs to trees, just by consigesurcth a normal form:

(joing) = 0
((K(a)s ®idy) o g]) = az[(g)]]
((oing, @ idy) o (M1 @ ... ® My)]) £ (My])*...* (M)

Moreover, the encodings of linear contexts areuhary discrete bigraphs G i.e., bigraphs with open
links and type(1, X) — (1,Y). Again, [21] says that the normal form, up to permutations,unary
discrete bigraphs is& = (join;, ® idy) o (R ® M; ® ... ® My_1), whereM; are discrete ground
molecules and? can be eitheiid; or (K; ® idy) o Q. Again, we can define the reverse encoding
of [ ], from unary discrete bigraphs to linear contexts, just hysatering such a normal form:

(i) & -
((K(a)s @ idy) 0 Q) = a,[(Q))
(Goiny ® idy) o (R® My ® ... ® My_1)) & (R)|(Mi)]...| (M)

As the model is specialised to context trees, so BiLog isiapieed to the Context Tree Logic. The
encoding of the logic is in Tab. 4.12, and the proof of sousdmaimes Theorems 4.1 and 4.2.

Theorem 4.3. (Encoding Context Tree L ogic)
For each tred” and formulaP of CTL, T =7 P ifand only if [T'] = [P]p. Moreover, for each
contextC' and formulak’ of CTL, C = K ifand only if [C']¢ = [ K ] k-

The encoding shows that the models in [5] are a particulad kindiscrete bigraphs with one port
for each node and a number of holes and roots limited to onecéj¢his shows how BiLog for discrete
bigraphs is a generalisation of Context Tree Logic to castesth several holes and regions. On the other
hand, since STL is more general than Separation Logic, tfafid it is used to characterise programs
that manipulate tree structured memory model, BiLog mayesgSeparation Logic as well.
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Table 4.12 Encoding CTL in BiLog over prime discrete ground bigraphs

ITrees into prime ground discrete bigraphs Contexts into unary discrete bigraphs
[0] &1 [—]c £id,
[a.[T)] £ (K(a)s @ id pnery) o [T] [a:[C]lc = (K(a)z @ idfn(cy) © [Cle
[T[T']E[T]+[T] [T|Cle = [T]*[Clc

TL formulae into PGL formulae [C|T]c ¥ [Cle=[T]
[false]p &'F CTL formulae into PGL formulae
[0]p def [false] x def o
[K(P)]p E[K]x oqy [Plp [—1x &id,
[[KQP]]P d:ef[[K]]K (1,2 [[P]]p [[PDP/ K d:ef[[P]]p —0(1,.) [[P/]]p
[P=PlpE[Plp=[P]r [ax[K] T & (K(a)a) ® ido,y) © [ K [xc
[K =K'k €[K]x=[K']x [P| K]k E[P]p+[K]x

5. BiLogand separation

The notion of separation in BiLog is not fixed a priori, but @ies on the projection of the tensor
product to the logical level. The operators of the modelnglavith their logical projections, inherit
the characteristics and the behaviour from the underly@sgurce monoid. This fact is fundamental to
express the notions of separation/composition of othécsoyVhen the resource monoid is partial, then
the tensor product of terms is partial as well, and thus @&kl projection describes only well-defined
structures. Take for instance the heap memory addressralieed by sets of names and consider their
disjoint union. In this case we find the operatoof Separation Logic, which says nothing about the
structures that do not have disjoint set of names, becaeseatte not well-defined heaps. When the
resource monoid is commutative, then also the tensor ptaswommutative, its logical projection is
commutative and its two adjuncts collapse.

When we consider ordinals (as for place graphs) the tensmtupt is total, as it corresponds to
placing two structures one next to the other, and the sépari total and purely structural, like for
the Spatial Tree Logic. Notice that a commutative monoid lnioed with bifunctoriality has a peculiar
behaviour with respect to composition: for instance, githencontrolsk; andKs, commutativity and
bifunctoriality would say thatK; o K;) ® (Ky o Ky) and(K; o K3) ® (Ko o Kj) are congruent
as both are congruent {&K; ® Ks) o (K; ® Kjy). Thus commutativity cannot hold when controls
are intended as places. While the parallel composition fourd structures is commutative, the tensor
product for placing contexts is not commutative. Consetjyetine left and right tensor adjuncts have
different semantics in place graphs.

When ordinals and names are combined, the logic inheritsdhtbogonality. The resulting monoid
can be seen as the product of two monoids, the one for ordmaisplace graph) and the other for names
(e.g. link graph). The constructive character of this apphosays that, independently of the complexity
of the underlying algebra and the resource model, we catrtlsplimodel into ‘smaller’ parts and combine
the corresponding logics to obtain a spatial logic for theirdel model in a compositional way.

We do not explicitly encode Separation Logic and pointer€aifitext Logics in BiLog as we focus
on pure bigraphs. As a matter of fact, it would be sufficienhtbude a two sorts policy [2] that differ-
entiates input ports (the addresses) from output portspirgers/values) to obtain a partial monoid for
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heaps, and thus to have a natural encoding of Separatior.L®be separation induced by the tensor
product would be more strict than heap separation, as ie$oatso values to be separated. The heap
composition can be achieved by forcing the sharing of posnéed values and by preserving the sepa-
ration of addresses. The derived logical operators woubde as the tensor product on the names in
the first sort (the addresses) and as a (kind of) parallel ositipn for the names in the second sort (the
values/pointers). We do not necessarily need closure triratésn to model heaps. Open link graphs are
sufficient. Similarly, open discrete bigraphs are suffitfentrees with pointers.

6. Conclusions and related wor k

This paper moves a first step towards describing global resswby focusing on bigraphs. Our final
objective is to design a general dynamic logic able to copf@umly with all the models bigraphs have
been proved useful for, as of today these include Petrif2&f CCS [22], r-calculus [17], ambient
calculus [16], and context-aware systems [1]. Here we dhice the static fragment of BiLog, a logic
founded on bigraphs, whose formulae describe arrows in idahcategories.

BiLog may at first appear complex and ‘over-provided’ of cectives. On the contrary, the backbone
of the logic is relatively simple, consisting of two conriees regulated by elementary monoidal and
interchange laws. This structure gives rise to many — oona#liy complex — derived connectives. This is
a fundamental expressiveness property that does not piit as 8iLog is meant to be a comprehensive
meta-level framework in which several different logics tenisolated, understood and compared.

In particular, here show how the ‘separation’ plays in vasiéragments of the logic. For instance,
in the case oPlace Graph Logicwhere models are bigraphs without names, the separatiouréty
structural and coincides with the notion of parallel conippms in Spatial Tree Logic. Dually, as the
models forLink Graph Logicare bigraphs with no location, the separation in LGL is digjeess of
nominal resources. Finally, faigraph Logi¢ where nodes of the model are associated with names,
the separation is not only structural, but also nominalesithe constraints on composition force port
identifiers to be disjoint. In this sense, it can be seen asdparation in memory structures with pointers,
like Separation Logic’s heap structures [23], and treeh wither pointers [5] or hidden names [7].

The work in [10] proves that unrestricted sharing combinéith wame restriction makes the logic
undecidable. The sharing/separation operator providesl hiats that the real cause of undecidability is
the quantification on the set of names and suggests that tieatidity result of [4] can be extended to
logics with explicit sharing and name revelation. We ledwethis issue for future work.

In §3 we observed that the induced logical equivalence coisordéh the structural congruence of
terms. This property is fundamental to describe, query aadan about bigraphical data structures. For
a more detailed discussion we refer to [11], where we skétefapplication of BiLog to XML data.

To be as free as possible in choosing the level of intensigreadd to ‘tune’ the power of the logical
equivalence, the general definition for BiLog (c.f. [12])parameterised on @ansparencypredicate,
whose role is to identify the terms allowing inspection dfittcontent transparentterms, and the ones
that do notopaqueterms. Theorem 3.1 says that the logical equivalence istthetsral congruence if
every term is transparent, but [9, 18] show how BiLog becoless discriminating with opaque terms.

Moreover, in [9, 18] we show how BiLog can deal with dynami@s.natural solution is to add a
temporal modality basically describing bigraphs that canive (reac? according to a Bigraphical Reac-
tive System [17]. When the transparency predicate enaldemspection of ‘dynamic’ controls, BiLog
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is ‘intensional in the sense of [25], as it can observe internal structuheghe case of the bigraphical
system describing CCS [22], BiLog can be so intensional itiattatic fragment directly expresses a
temporal modality. A transparency predicate specifies whtouctures can be directly observed by the
logic, while a temporal modality, along with the spatial nentives, allows to deduce the structure by
observing the behaviour. It would be interesting to isokime fragments of the logic and investigate
how the transparency predicate influences their exprégsind intensionality, as done in [15]. Finally
the papers [13, 14] suggest applications and extensiorBifog.
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