
Fundamenta Informaticae 80 (2007) 1–20 1

IOS Press

Static BiLog: a Unifying Language for Spatial Structures ∗

Giovanni Conforti

DI, Universit̀a di Pisa, Italy

Damiano Macedonio

DSI, Universit̀a Ca’ Foscari di Venezia, Italy

Vladimiro Sassone†

ECS, University of Southampton, UK

vs@ecs.soton.ac.uk

Abstract. Aiming at a unified view of the logics describing spatial structures, we introduce a gen-
eral framework, BiLog, whose formulae characterise monoidal categories. As a first instance of the
framework we consider bigraphs, which are emerging as a an interesting (meta-)model for spatial
structures and distributed calculi. Since bigraphs are built orthogonally on two structures, a hier-
archical place graph for locations and a link (hyper-)graphfor connections, we obtain a logic that
is a natural composition of other two instances of BiLog: a Place Graph Logic and a Link Graph
Logic. We prove that these instances generalise the spatiallogics for trees, for graphs and for tree
contexts. We also explore the concepts of separation and sharing in these logics. We note that both
the operator∗ of Separation Logic and the operator| of spatial logics do not completely separate the
underlying structures. These two different forms of separation can be naturally derived as instances
of BiLog by using the complete separation induced by the tensor product of monoidal categories
along with some form of sharing.

Keywords: Bigraphs, Spatial Logics, Context Logic, Separation.

1. Introduction

To describe and reason about structured and distributed resources is one of the main goals of global
computing research. Recently, manyspatial logicshave been studied to fulfill this aim [3, 4, 5, 6, 7, 8,

∗Work partially supported by M.I.U.R (Italian Ministry of Education, University and Research) under contract n. 2005015785.
†Address for correspondence: ECS, University of Southampton, UK

2 G. Conforti et al. / Static BiLog

15, 23, 25]. The term ‘spatial,’ as opposed to ‘temporal,’ refers to the use of operators inspecting the
structure of the terms in the model, rather than a temporal behaviour. Spatial logics are usually equipped
with a separation/composition connective thatsplitsa term into two parts, in order to ‘talk’ about them
separately. The notion ofseparationis interpreted differently in different logics.

In ‘separation’ logics [23], separation is used to reason about heap-like structures, and it isstrongas
it forces names of resources in separated components to be disjoint. Consequently, term composition is
usually partially defined. In spatial logics for trees [4] and graphs [6] the separation/composition operator
is structural, as it induces separation in the spatial structure, butweakon names, as there is no constraint
on terms, and names are usually shared between separated parts. In spatial logics which describe models
with name restriction, like the Ambient Logic [8] or the Spatial Logic for π-calculus [3], separation is
generally intended only for locations in space. Nevertheless, as a consequence of name restriction com-
bined with name extrusion, the logical separation/composition operator separates on private/restricted
names, and shares public names. Context Tree Logic [5] integrates Separation Logic with a spatial logic
for trees. The result is a logic that describes tree-shaped structures (and contexts) with pointers.

All these logics have no a direct way of specifying the publicnames that can be shared among
logically separated components, thus they cannot expressexplicit sharing. Here we introduce a new
form of separation that subsumes the different kinds of separation discussed above, and define a form of
explicit sharing that naturally subsumes unrestricted sharing (viz. parallel composition of spatial logics)
when combined with a quantification on names à la Nominal Logic [24].

Bigraphs [17, 19] are an emerging model for structures in global computing, and they can be instan-
tiated to model several well-known examples, including CCS[22], π-calculus [17], ambients [16] and
Petri nets [20]. Bigraphs consist essentially of two graphssharing the same nodes. The first graph, the
place graph, is tree-structured and expresses a hierarchical relationship on nodes (viz. locality in space
and nesting of locations). The second graph, thelink graph, is an hyper-graph and expresses a generic
“many-to-many” relationship among nodes (e.g. data link, sharing of channels). The two structures are
orthogonal, so links between nodes can cross locality boundaries.

In this paper we introduce a logic for distributed resourcesas a natural composition of a Place Graph
Logic, for tree contexts, and a Link Graph Logic, for name links. The main point is that a resource is
associated both to a spatial structure and to a link structure. Suppose for instance to describe a tree-
shaped distribution of resources in locations. We may use anatomic formula likePC(A) for a resource
of ‘type’ PC (e.g. a personal computer) whose contents satisfyA, and a formula likePCx(A) for the
same resourceat the locationx. Note that the location type is orthogonal to the name. We canthen write
PC(T) ⊗ PC(T) to characterise terms with two unnamedPC resources whose contents satisfy the
tautological formulaT – i.e., with anything whatsoever inside. Named locations, as e.g. inPCa(T) ⊗
PCb(T), can express name separation – i.e., that namesa andb are different (because separated by⊗).
Furthermore, link expressions can force name-sharing between resources by means of formulae such as

PCa(inc ⊗ T) ⊗c PCb(outc ⊗ T).

This formula describes twoPCs with different names,a andb, ‘uniquely’ sharing a link on a distinct
namec, which may model a communication channel. Namec is used as input (in) for the firstPC and as
an output (out) for the secondPC. No other name is shared, andc cannot be used elsewhere insidePCs
(because of⊗).

A bigraphical structure is, in general, a context with several holes and open links that can be filled
by composition. Therefore, when instantiated to bigraphs,the logic describes contexts for resources at

G. Conforti et al. / Static BiLog 3

no additional cost. We can then express formulae likePCa(T ⊗ HD(id1)), that describes a modular
computerPC, whereid1 represents a ‘plug-able’ hole in the hard discHD. Contextual resources have
many important applications. In particular, the contextual nature of bigraphs is useful to characterise
their dynamics (cf. [9, 18]), and it can also be used as a general mechanism to describe contexts of
bigraphical data structures (cf. [11]).

As bigraphs are establishing themselves as a truly general (meta)model of global systems, and appear
to encompass several existing calculi and models (as shown in [16, 17, 20, 22]), our bigraph logic,BiLog,
aims at achieving the same generality as a description language: as bigraphs specialise to particular
models, we expect BiLog to specialise to powerful logics on these. In this sense, the contribution of this
paper is to propose BiLog as a unifying language for the description of global resources. We will explore
this path in future work, fortified by the embedding results for the static spatial logics presented in§4,
and the positive preliminary results obtained for semistructured data [11] and CCS [9, 18]. Here, our
main technical results are the encoding in BiLog fragments of the static spatial logics of [4, 5, 6].

BiLog was introduced in [12], this paper deepens some of the points covered there. In particular, we
consider the static fragment of BiLog, we discuss more in detail about separation and we outline proofs.
Further considerations and issues on BiLog are in [9, 11, 18]. Finally, we remind the reader to [21, 22]
for a detailed background on bigraphs.

Structure of the paper:§2 recalls the basic background on bigraphs;§3 introduces the general frame-
work and the model theory of BiLog;§4 instantiates the framework to obtain logics for place, link and
bi-graphs;§5 focuses on separation and sharing concepts and§6 presents our conclusions.

2. Background

A bigraph consists of a set ofnodes, which may be nested in a hierarchical tree structure expressing
locality, the so-calledplace graph, and haveports that may be connected to each other bylinks, the
so-calledlink graph. The two structures are completely orthogonal.

The picture on the right represents a bigraphG. Nodes,
shown with bold outlines, are associated with acontrol (ei-
therA, B, C, D). Controls have fixedarities to determine the
number of ports. For instance,B has arity2, andC has arity
3. The nesting of nodes (place graph) is shown by the inclu-
sion of nodes into each other; the connections (link graph)
are drawn as lines. At the top level of the nesting structure
sit the regions. The bigraphG has one sole region (the dashed box). Inside the nodes there may be
‘context’ holes, drawn as shaded boxes. Regions and holes are uniquely identified by finite ordinals.

Place graphs arearrowsover a symmetric monoidal category whose objects are finite ordinals. The
arrowP : m→ n is a place graphP with m holes andn regions. The place graph ofG has type1→ 1.
The composition of place graphsP1 ◦ P2 is defined only if the holes ofP1 are as many as the regions of
P2, and amounts tofilling holes with regions, according to the number each carries. The tensor product
P1 ⊗ P2 is not commutative, as it lays the two place graphs one next tothe other (left-to-right), thus
obtaining a graph with more regions and holes, and it ‘renumbers’ regions and holes ‘from left to right’.

Link graphs are arrowsX → Y of a partial monoidal category whose objects are (finite) sets of
names, belonging to a denumerable set. The setX represents theinner names (customarily drawn at

4 G. Conforti et al. / Static BiLog

the bottom of the bigraph) andY represents the set ofouter names (drawn at the top). The link graph
of G has type{x} → {y, z}. The link graph connects ports to names or toedges(represented by a
line between nodes), in any finite number. A link to a name isopen– i.e., it may be connected to other
nodes as an effect of composition. A link to an edge isclosed, as it cannot be further connected to ports.
Thus, edges areprivate, or hidden, connections. The composition of link graphsW ◦ W ′ corresponds
to linking the inner names ofW with the corresponding outer names ofW ′ and forgetting about their
identities. As a consequence, the outer names ofW ′ (resp. inner names ofW) are not necessarily inner
(resp. outer) names ofW ◦ W ′. For instance, the fact that the outer names inW ′ disappear in the
composition means that names may be renamed and that edges may be added to the structure. As in [17],
the tensor product of link graphs is defined in the obvious wayonly if their inner (resp. outer) names are
disjoint.

By combining ordinals with names we obtaininterfaces– i.e.,
couples〈m,X〉 wherem is an ordinal andX is a finite set of names.
By combining the notion of place graph and link graphs on the
same set of nodes we obtain the notion of bigraphs – i.e., arrows
G : 〈m,X〉 → 〈n, Y 〉. The bigraphG can be represented as the
compositionH ◦ F of the bigraphs depicted on the right. At the
bottom of the picture, the systemF1, F2 andF3 represents the ten-
sor productF = F1 ⊗ F2 ⊗ F3. The idea of the composition is to
insertF into the contextH. The operation is partially defined, since
it requires the inner names and the number of holes ofH to match
the outer names and the number of regions ofF , respectively. Shared
names create the new links between the two structures. Intuitively,
compositionfirst places every region ofF in the proper hole ofH
(place composition) andthenjoins equal inner names ofH and outer
names ofF (link composition). Note the edge connecting the inner names t andu in H: it links two
nodes ofF after the composition.

3. The logic

This paper aims at defining a logic that describes bigraphs and their substructures. As bigraphs, place
graphs, and link graphs are arrows of a (partial) monoidal category, we first introduce a meta-logical
framework with monoidal categories as models; we then adaptit to model the orthogonal structures of
place and link graphs. Finally, we specialise the logic to model the whole structure of (abstract) bigraphs.

Following the approach of spatial logics, we introduce connectives that reflect the structure of the
model. The models are monoidal categories and the logic describes spatially the structure of theirarrows.
Our meta-logical framework is inspired by the bigraph axiomatisation of [21]. The model of the logic is
composed of structures that can be placed one near to the other, via horizontal composition, or one inside
the other, viavertical composition, and are generated by a set ofunary constructors. These structures
satisfy astructural congruencethat conforms to the axioms of monoidal categories and possibly more.
Thus the model theory is parametric both on term constructors and on structural congruence.

G. Conforti et al. / Static BiLog 5

Table 3.1.Axioms

Congruence Axioms: G ≡ G Reflexivity
G ≡ G′ implies G′ ≡ G Symmetry
G ≡ G′ and G′ ≡ G′′ implies G ≡ G′′ Transitivity
G ≡ G′ and F ≡ F ′ implies G ◦ F ≡ G′ ◦ F ′ Congruence ◦
G ≡ G′ and F ≡ F ′ implies G ⊗ F ≡ G′ ⊗ F ′ Congruence ⊗

Monoidal Axioms: G ◦ id I ≡ G ≡ idJ ◦ G Identity
(G1 ◦ G2) ◦ G3 ≡ G1 ◦ (G2 ◦ G3) Associativity
G ⊗ id ε ≡ G ≡ id ε ⊗ G Monoid Identity
(G1 ⊗ G2) ⊗ G3 ≡ G1 ⊗ (G2 ⊗ G3) Monoid Associativity
idI ⊗ idJ ≡ id I⊗J Interface Identity
(G1 ⊗ F1) ◦ (G2 ⊗ F2) ≡ (G1 ◦ G2) ⊗ (F1 ◦ F2) Bifunctoriality

3.1. Models

To evaluate formulae, we consider the terms freely generated from a set of constructorsΘ by using the
vertical composition (the partial composition◦) and the horizontal composition (the partial tensor⊗).
The order of binding precedence is◦, ⊗. BiLog terms are defined asG,G′ ::= Ω | G ◦ G′ | G ⊗ G′,
whereΩ ranges overΘ. We refer to these terms asbifunctorial terms, since the two operations must
satisfy thebifunctoriality propertyof monoidal categories (the last rule in Table 3.1).

Terms are structures built on a monoid(M,⊗, ε) whose elements are dubbedinterfacesand denoted
by I, J . To model nominal resources, e.g. heaps or link graphs, the monoid may bepartial. Intuitively,
terms represent typed structures with a source and a target interface (G : I → J). Each constructorΩ in
Θ has a fixed typetype(Ω) = I → J . For each interfaceI, we assume a distinguished constructid I :
I → I. The types of constructors, together with the obvious rulesfor composition and tensor [9, 18],
determine the type of each term. Terms of typeε → J are calledground. We consider only well typed
terms.

Terms are defined up to a structural congruence≡ (see Tab. 3.1) which subsumes the axioms of (par-
tial) monoidal categories. All axioms are required to hold whenever both sides are well typed. Through-
out the paper, when using= or ≡ we imply that both sides are defined; and when we need to remark
that a bigraphical expressionE is well defined, we write(E)↓ . The congruence will be refined to model
specialised structures: place graphs, link graphs and bigraphs.

3.2. Formulae

BiLog internalises the bifunctorial terms in the style of the Ambient Logic [8]. Constructors appear in
the logic as constant formulae, while tensor product and composition are expressed by connectives. Thus
the logic presents two binary spatial operators. This contrasts with other spatial logics, that have a single
operator: Spatial and Ambient Logics [3, 8], with the parallel compositionA | B, Separation Logic [23],
with the separating conjunctionA ∗B, and Context Tree Logic [5], with the applicationK(P). Both the
operators inherit the monoidal structure and non-commutativity properties from the model.

Given the monoid(M,⊗, ε), the set of simple termsΘ and the structural congruence relation≡,
the logic BiLog(M,⊗, ε,Θ,≡) is formally defined in Tab. 3.2. The satisfaction relation|= gives the

6 G. Conforti et al. / Static BiLog

Table 3.2.BiLog(M,⊗, ε,Θ,≡)

Ω ::= idI | . . . a constant formula for every Ω ∈ Θ

A,B ::= F false id identity Ω constant
A ⊗ B tensor product A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct
A ◦ B composition A B left comp. adjunct A (B right comp. adjunct
A⇒ B implication

G |= F iff never
G |= A⇒ B iff G |= A implies G |= B
G |= Ω iff G ≡ Ω
G |= id iff exists I s.t. G ≡ idI

G |= A ⊗ B iff exists G1, G2 s.t. G ≡ G1 ⊗ G2, with G1 |= A and G2 |= B
G |= A ◦ B iff exists G1, G2. s.t. G ≡ G1 ◦ G2, with G1 |= A and G2 |= B
G |= A B iff for all G′, the fact that G′ |= A and (G′ ◦ G)↓ implies G′ ◦ G |= B
G |= A (B iff for all G′, if G′ |= A and (G ◦ G′)↓ then G ◦ G′ |= B
G |= A ⊗− B iff for all G′, if G′ |= A and (G′ ⊗ G)↓ then G′ ⊗ G |= B
G |= A −⊗ B iff for all G′, if G′ |= A and (G ⊗ G′)↓ then G ⊗ G′ |= B

semantics. The logic features a constantΩ for each constructΩ and an identityidI for each interfaceI.
The satisfaction of logical constants is simply the congruence to the corresponding constructor. The

horizontal decompositionformulaA ⊗ B is satisfied by a term that can be decomposed as the tensor
product of two terms satisfyingA andB respectively. The degree of separation enforced by⊗ between
terms plays a fundamental role in the various instances of the logic, notably link graph and place graph.
The vertical decompositionformulaA ◦ B is satisfied by terms that can be the composition of terms
satisfyingA andB. We shall see that in some cases both connectives correspondto well known spatial
ones. We define theleft andright adjunctsfor composition and tensor to express extensional properties.
The left adjunctA B expresses the property of a term to satisfyB whenever inserted in a context
satisfyingA. Similarly, the right adjunctA (B expresses the property of a context to satisfyB
whenever filled with a term satisfyingA. A similar description holds for⊗− and−⊗, the adjoints of⊗.
Clearly, these adjoints collapse whenever the tensor is commutative in the model.

3.3. Logical Equivalence

BiLog induces a logical equivalence=L on terms in the usual sense: we say thatG1 =L G2 when
G1 |= A if and only ifG2 |= A for every formulaA. By induction on the structure of formulae, we can
prove that the relation=L respects the congruence. We can prove that the logical equivalence coincides
with the structural congruence, as every term admits acharacteristic formula. This fact is fundamental
to describe, query and reason about bigraphical data structures, as e.g. XML (cf. [11]). In other terms,
BiLog is intensionalin the sense of [25], namely it can observe internal structures, as opposed to the
extensional logics used to observe the behaviour of dynamicsystem.

Theorem 3.1. (Logical equivalence is congruence)
G =L G

′ if and only ifG ≡ G′, for every termG,G′.

G. Conforti et al. / Static BiLog 7

Proof:
The forward direction is proved by defining the characteristic formula for terms, as every term can be
expressed as a formula. The converse holds since=L respects the congruence. ut

The logical equivalence may be less discriminating when there are constructors not directly rep-
resented by logical constants. The work in [12] show how the framework can be parameterised by a
transparency predicatereflecting that not every term can be directly observed in thelogic: some terms
may be not visible to the logic or may be opaque without allowing inspection of their content. The
particular characterisation of the logical equivalence given in Theorem 3.1 can be generalised to a con-
gruence ‘up-to-transparency’: we can find an equivalence relation between trees that is ‘tuned’ by the
transparency predicate – the more the predicate covers, theless the equivalence distinguishes [9, 18].

4. Instances and encodings

In this section BiLog is instantiated to describe place graphs, link graphs and bigraphs. A spatial logic
for bigraphs is a natural composition of a Place Graph Logic (for tree contexts) and a Link Graph Logic
(for name linkings). Each instance admits an embedding of a well known spatial logic.

4.1. Place Graph Logic

Place graphs are essentially ordered lists of regions hosting unordered labelled trees with holes, namely
contexts for trees. Tree labels correspond to the controlsK : 1→ 1 belonging to a fixed signatureK. The
monoid of interfaces is the monoid(ω,+, 0) of finite ordinals, ranged over bym,n. Ordinals represent
the number of holes and regions of place graphs. Place graph terms are generated from the set

Θ = {1 : 0→ 1, idn : n→ n, join : 2→ 1, γm,n : m+ n→ n+m, K : 1→ 1 for K ∈ K}.

The only structured terms are the controlsK, representing regions containing a single node with a hole
inside. All the other constructors areplacingsand represent treesm → n with no nodes: the place
identity idn is neutral for composition; the constructor1 represents a barren region;join is a mapping of
two regions into one;γm,n is a permutation that interchanges the firstm regions with the followingn. The
structural congruence≡ for place graph terms is refined in Tab. 4.1 by the usual axiomsfor symmetry of
γm,n and by the place axioms that essentially turn the operationjoin ◦ (⊗) in a commutative monoid
with 1 as neutral element. In particular, the places generated by composition and tensor product from
γm,n arepermutations. A place graph isprime if it has typem→ 1, namely it has a single region.

The Place Graph Logic PGL(K) is BiLog(ω,+, 0,≡,K ∪ {1, join , γm,n}). Theorem 3.1 extends
to PGL, thus the logic describes place graphs precisely. PGLresembles a propositional spatial tree
logic as in [4], with the difference that PGL models contextsof trees and that the tensor product is
not commutative, thus enabling the modelling of the order among regions. The logic can express a
commutative separation by usingjoin and⊗, namely theparallel compositionoperator

A | B def
= join ◦ (id1 ◦ A ⊗ id1 ◦ B).

At the term level, this separation, purely structural, corresponds tojoin ◦ (P1 ⊗ P2), that is a total
operation on all prime place graphs. More precisely, the semantics says thatP |= A | B if and only if
there existP1 : I1 → 1 andP2 : I2 → 1 such that:P ≡ join ◦ (P1 ⊗ P2) andP1 |= A andP2 |= B.

8 G. Conforti et al. / Static BiLog

Table 4.1.Additional Axioms for Place Graphs Structural Congruence

Symmetry Axioms: γm,0 ≡ idm Symmetry Id
γm,n ◦ γn,m ≡ idm⊗n Symmetry Composition
γm′,n′ ◦ (G ⊗ F) ≡ (F ⊗ G) ◦ γm,n Symmetry Monoid

Place Axioms: join ◦ (1 ⊗ id1) ≡ id1 Unit
join ◦ (join ⊗ id1) ≡ join ◦ (id1 ⊗ join) Associativity
join ◦ γ1,1 ≡ join Commutativity

Table 4.2.Propositional Spatial Tree Logic

T |=STL F iff never
T |=STL 0 iff T ≡ 0
T |=STL A⇒ B iff T |=STL A implies T |=STL B
T |=STL a[A] iff there exists T ′ s.t. T ≡ a[T ′] and T ′ |=STL A
T |=STL A@a iff a[T] |=STL A
T |=STL A | B iff there exists T ′, T ′′ s.t. T ≡ T ′ | T ′′ and T ′ |=STL A and T ′′ |=STL B
T |=STL A . B iff for every T ′: if T ′ |=STL A implies T | T ′ |=STL B

Encoding STL. Not surprisingly, prime ground place graphs are isomorphicto the unordered trees that
model the static fragment of Ambient Logic. Here we show thatBiLog, when restricted to prime ground
place graphs, is equivalent to the propositional Spatial Tree Logic of [4] (STL in the following). The
logic STL expresses properties of unordered labelled trees, ranged over byT, T ′, T ′′ and constructed
from the empty tree0, the labelled node containing a treea[T], and the parallel composition of trees
T | T ′. Labelsa are elements of a denumerable set. The obvious congruence≡ on trees makes the set
of trees with| and0 a commutative monoid. STL is a static fragment of the AmbientLogic [8] and it
is characterised by the usual classical propositional connectives, the spatial connectives0, a[A], A | B,
and their adjunctsA@a,A . B. The semantics of the logic is outlined in Tab. 4.2.

Table 4.3 encodes the tree model of STL into prime ground place graphs, and STL operators into PGL
operators. We assume a bijective encoding between labels and controls, and we associate every labela
with a distinct controlK(a) of arity 0. We assume two auxiliary notations:A ◦1 B

def
= A ◦ id1 ◦ B

which forces the composition to the interface1, andA 1 B
def
= (A ◦ id1) B, which guarantees terms

with target type1. The monoidal properties of parallel composition are guaranteed by the axioms of
join (symmetry and unit). The equations are self-explanatory once we remark that:(i) the parallel
composition of STL is the structural commutative separation of PGL;(ii) tree labels can be represented
by the corresponding controls of the place graph;(iii) location and composition adjuncts of STL are
encoded by the left composition adjunct, as they add logically expressible contexts to the tree. This
encoding is actually a bijection from trees to prime ground place graphs. In fact, there is aninverse
encoding([]) for prime ground place graphs in trees defined on the normal forms of [21] as we shall see.

The theorem of discrete normal form in [21] implies that every ground place graphg : 0 → 1 can
be expressed, uniquely up to permutations, asg = joinn ◦ (M0 ⊗ . . . ⊗ Mn−1), where everyMj

is a molecular prime ground place graph of the formM = K(a) ◦ g, with ar(K(a)) = 0. As an
auxiliary notation,joinn is inductively defined asjoin0

def
= 1, andjoinn+1

def
= join ◦ (id1 ⊗ joinn).

G. Conforti et al. / Static BiLog 9

Table 4.3.Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[0]] def

= 1 [[a[T]]] def
= K(a) ◦ [[T]] [[T | T ′]] def

= join ◦ ([[T]] ⊗ [[T ′]])

STL formulae into PGL formulae
[[0]] def

= 1 [[F]] def
= F [[a[A]]] def

= K(a) ◦1 [[A]] [[A | B]] def
= [[A]] | [[B]]

[[A⇒ B]] def
= [[A]]⇒ [[B]] [[A@a]] def

= K(a) 1 [[A]] [[A . B]] def
= ([[A]] | id1) 1 [[B]]

The bifunctoriality property implies thatjoinn ◦ (M0 ⊗ . . . ⊗ Mn−1) ≡ join ◦ (M0 ⊗ · · · ⊗ (join ◦
(Mn−2 ⊗ Mn−1))). The inverse encoding([]) is defined on the discrete normal form of prime ground
place graphs, and, along with[[]], it gives a bijection between trees and prime ground placegraphs:

([join0]) def
= 0

([K(a) ◦ q]) def
= a[([q])]

([joins ◦ (M0 ⊗ . . . ⊗Ms−1)]) def
= ([M0]) | . . . | ([Ms−1])

Theorem 4.1. (Encoding STL)
For each treeT and formulaA of STL: T |=STL A if and only if [[T]] |= [[A]].

Proof:
Structural induction on STL formulae. The basic step involves the constantsF and0. ForF apply the
definition. For0: [[T]] |= [[0]] means[[T]] |= 1, that is[[T]] ≡ 1 and soT ≡ ([[[T]]]) ≡ ([1]) def

= 0,
namelyT |=STL 0. The inductive steps deal with connectives and modalities.

Case A ⇒ B. To assume[[T]] |= [[A ⇒ B]] means[[T]] |= [[A]] ⇒ [[B]]; by definition this says
that[[T]] |= [[A]] implies[[T]] |= [[B]]. By induction hypothesis, this is equivalent to say thatT |=STL A
impliesT |=STL B, namelyT |=STL A⇒ B.

Case a[A]. To Assume[[T]] |= [[a[A]]] means[[T]] |= K(a) ◦1 ([[A]]). Then there existG : 1 → 1
andg : 0 → 1 such that[[T]] ≡ G ◦ g andG |= K(a) andg |= [[A]], that is[[T]] ≡ K(a) ◦ g with
g |= [[A]]. ThenT ≡ ([K(a) ◦ g]) def

= a[([g])] with g |= [[A]], as the encoding is bijective. Since
g : 0→ 1, the induction says that([g]) |= A. HenceT |=STL a[A].

Case A@a. To assume[[T]] |= [[A@a]] means[[T]] |= K(a) 1 A, which says that if(G ◦ [[T]])↓
thenG ◦ [[T]] |= [[A]], for everyG such thatG |= K(a). By definition, this isK(a) ◦ [[T]] |= [[A]], then
[[a[T]]] |= [[A]]. By induction, this isa[T] |=STL A. HenceT |=STL A@a by definition.

Case A | B. To assume[[T]] |= [[A | B]] means[[T]] |= [[A]] | [[B]]. This is equivalent to say that
[[T]] |= join ◦ (id1 ◦ [[A]] ⊗ id1 ◦ [[B]]), namely there existg1, g2 : 0 → 1 such that[[T]] ≡ join ◦
(g1 ⊗ g2) andg1 |= [[A]] andg2 |= [[B]]. As the encoding is bijective this means thatT ≡ ([g1]) | ([g2]),
and the induction hypothesis says that([g1]) |= A and([g2]) |= B. By definition this isT |=STL A | B.

Case A . B. To assume[[T]] |= [[A . B]] means[[T]] |= join([[A]] ⊗ id1)) 1 [[B]] – i.e.,
for everyG : 1 → 1 if G |= join([[A]] ⊗ id1) thenG ◦ [[T]] |= [[B]]. Now, G : 1 → 1 and
G |= join([[A]] ⊗ id1) means that there existsg : 0 → 1 such thatg |= [[A]] andG ≡ join(g ⊗ id1).
Hence for everyg : 0 → 1 such thatg |= [[A]] it holds join(g ⊗ id1) ◦ [[T]] |= [[B]], that is
join(g ⊗ [[T]]) |= [[B]] by bifunctoriality. As [[]] is bijective, for everyT ′ such that[[T ′]] |= [[A]]
it holds join([[T ′]] ⊗ [[T]]) |= [[B]] – i.e., [[T ′ | T]] |= [[B]]. By induction, for everyT ′ such that
T ′ |=STL A it holdsT ′ | T |=STL B, thenT |=STL A . B. ut

10 G. Conforti et al. / Static BiLog

Table 4.4.Additional Axioms for Link Graph Structural Congruence

Link Node Axiom: α ◦ K~a ≡ Kα(~a) Renaming

Link Axioms: a/a ≡ ida Link Identity
/a ◦ a/b ≡ /b Closing renaming
/a ◦ a ≡ id ε Idle edge
b/(Y]a) ◦ (idY ⊗

a/X) ≡ b/Y]X Composing substitutions

Differently from STL, PGL can also describe structures withseveral holes and regions. In [11]
we show that PGL can describe contexts of tree-shaped semistructured data. Consider, for instance,
a function taking two trees and returning the tree obtained by merging their roots. Such a function is
represented by the termjoin, which solely satisfies the formulajoin. Similarly, a function that takes a
tree and encapsulates it inside a nodelabelled by K, is represented by the termK and captured by the
formulaK. Moreover, the formulajoin ◦ (K ⊗ (T ◦ id1)) expresses all contexts of form2 → 1 that
place their first argument inside the nodeK and their second one as a sibling of such node.

4.2. Link Graph Logic (LGL)

Fixed a denumerable set of namesΛ, we consider the monoid(Pfin(Λ),], ∅), wherePfin() is the finite
powerset operator and] is the disjoint union of subsets. Link graphs are the structures arising from such
a monoid. They can describe nominal resources, which are common in many areas: object identifiers,
location names in memory structures, channel names, and ID attributes in XML documents. Due to the
disjoint union, names cannot be shared implicitly; anyway,they can be referred to or linked explicitly
(e.g. as object references, location pointers, fusion in fusion calculi, and IDREF in XML files). Link
graphs describe connections between resources performed by means of names, that arereferences.

Wiring terms are a structured way to map a set of inner namesX into a set of outer namesY . They
are generated by the constructors:/a : {a} → ∅ anda/X : X → a. The closure/a hides the inner name
a in the outer face. The substitutiona/X associates all the names in the setX to the namea. We denote
wirings byω, substitutions byσ, τ , and bijective substitutions, dubbedrenamings, byα, β. Substitution
can be specialised ina def

=
a/∅, which introduces the namea, in a ← b def

=
a/{b}, which renamesb to a,

and ina ⇔ b def
=

a/{a,b}, which linksa andb to a.
Another class of constructors for link graphs are the controls K in the signatureK. They represent

nodes associated to names, and they have fixedarities to determine the number of ports – i.e., the number
of the outer names associated to the control. Arity is given by the arity functionar : K → N. Link graphs
are generated from wirings and the constructorsK~a : ∅ → ~a with~a = a1, . . . , ak, K ∈ K andk = ar(K).
The controlK~a represents a resource of kindK with named ports~a. Any ports may be connected to other
node ports via wiring compositions. The structural congruence≡ is refined as outlined in Tab. 4.4 with
the obvious axioms for links, which modelα-conversion and extrusion of closed names. In this case, the
horizontal decomposition inherits the commutativity property from the monoidal tensor product.

The Link Graph Logic LGL(K) isBiLog(Pfin (Λ),], ∅,≡,K∪{/a, a/X}). Theorem 3.1 extends to
LGL, thus the logic describes the link graphs precisely. On the one hand, the logic expresses structural
spatiality for resources and strong spatiality (separation) for names, therefore it can be seen as a general-
isation of a separation logic for contexts and multi-ports locations. On the other hand, the logic describes

G. Conforti et al. / Static BiLog 11

resources with local (hidden or private) names, and in this sense it is a generalisation of Spatial Graph
Logic [6]. To see this it is sufficient to consider the edges asresources.

The formulaA ⊗ B describes a decomposition into twoseparatelink graphs, which share neither
resources, nor names, nor connections, and which satisfyA andB respectively. Since it is defined only
on link graphs with disjoint inner/outer sets of names, the tensor product is a kind aspatial/separation
operator, in the sense that it separates the model into two distinct parts that cannot share names.

If we want a namea to be shared between separated resources, we need to make thesharing explicit,
and we can do that only through the link operation. We therefore need a way to first separate the names
occurring in two wirings in order to apply the tensor, and then link them back together, as shown next.

As a shorthand, ifW : X → Y andW ′ : X ′ → Y ′ with Y ⊂ X ′, we write [W ′]W for (W ′ ⊗
idX′\Y) ◦W and if~a = a1, . . . , an and~b = b1, . . . , bn, we write~a← ~b for a1 ← b1 ⊗ . . . ⊗ an ← bn,

similarly for ~a ⇔ ~b. From the tensor product it is possible to derive a product with sharing on~a. Given
G : X → Y andG′ : X ′ → Y ′ with X ∩X ′ = ∅, we choose a list~b (with the same length as~a) of fresh
names. The composition with sharing on~a is

G ⊗~a G′ def
= [~a ⇔ ~b]([~b← ~a]G ⊗ G′).

In this case, the tensor product is well defined since all the common names~a in G are renamed to fresh
names, while the sharing is re-established afterwards by linking the names in~a with the names in~b.

By extending this sharing to all names we can define the parallel compositionG | G′ as a total
operation. However, such an operator does not behave ‘well’with respect to the composition, as shown
in [21]. In addition, a direct inclusion of a corresponding connective in the logic would impact the
satisfaction relation by expanding the finite horizontal decompositions to the boundless possible name-
sharing decompositions. This is due to the fact that the set of names shared by a parallel composition
is not known in advance, and therefore parallel compositioncan only be defined by using an existential
quantification over the entire set of shared names.

Names can be internalised and effectively made private to a bigraph by the closure operator/a. In
fact, the effect of the composition with/a is to add a new edge with no public name, and therefore
to makea disappear from the outerface and be completely hidden to theoutside. Separation is still
expressed by the tensor connective. This connective not only separates places, but also ensures that no
edge, whether visible or hidden, crosses the separating line.

As a matter of fact, without name quantification it is not possible to build formulae that explore a link,
since the closure has the effect of hiding names. For this task, we employ the name variablesx1, ..., xn

and the fresh name quantificationN in the style of Nominal Logic [24]. The semantics is defined as

G |= Nx1 . . . xn. A iff there exista1 . . . an /∈ fn(G) ∪ fn(A) such thatG |= A{x1...xn/a1...an
},

whereA{x1...xn/a1...an
} is the usual variable substitution.

By fresh name quantification we define a notion of~a-linked name quantification for fresh names,
whose purpose is to identify names linked to~a, as

~aL ~x.A def
= N~x. ((~a ⇔ ~x) ⊗ id) ◦ A.

This formula expresses that the variables~x in A denote names that are linked in the term to~a, and the
role of (~a ⇔ ~x) is to link the fresh names~x to ~a, while id deals with names not in~a. We also define a

12 G. Conforti et al. / Static BiLog

Table 4.5.Spatial graph Terms (with local names) and congruence

G,G′::= nil empty graph
a(x, y) single edge graph labelled a∈ Λ connecting the nodes x, y
G | G′ composing the graphs G,G′, with sharing of nodes
(νx)G the node x is local in G

G | nil ≡ G neutral element
G | G′ ≡ G′ | G commutativity
(G | G′) | G′′ ≡ G | (G′ | G′′) associativity
y /∈ fn(G) implies (νx)G ≡ (νy)G{x← y} renaming
(νx)nil ≡ nil extrusion Zero
x /∈ fn(G) implies G | (νx)G′ ≡ (νx)(G | G′) extrusion composition
x 6= y, z implies (νx)a(y, z) ≡ a(y, z) extrusion edge
(νx)(νy)G ≡ (νy)(νx)G extrusion restriction

separation-up-toas the decomposition in two terms that are separated apart from the link on the specific
names in~a, which crosses the separation line:

A ⊗~a B def
= ~aL ~x. (((~x← ~a) ⊗ id) ◦ A) ⊗ B.

The idea expressed by this formula is that the shared names~a are renamed in fresh names~x, so that the
product can be performed and finally~x is linked to~a to actually have the sharing. It is straightforward to
prove that the two definitions are consistent.

Lemma 4.1. (Separation-up-to)
If g |= A ⊗

~X B with g : ε→ X, and ~X is the vector of the elements inX, then there existg1 : ε→ X

andg2 : ε→ X such thatg ≡ g1 ⊗
~X g2 with g1 |= A andg2 |= B.

Proof:
Apply the definitions and observe that the identities forcing id must beid ε, as the outer face ofg is
X. ut

The corresponding parallel composition operator is not directly definable by using the separation-up-
to. In fact, in arbitrary decompositions the shared names are not all known a priori, hence we would not
know the vector~X in the operator sharing/separation operator⊗ ~X . However, next section shows that a
careful encoding is possible for the parallel composition of spatial logics with nominal resources.

Encoding SGL. Here we show that LGL can be seen as a contextual (multi-edge)version of Spatial
Graph Logic (SGL) [6], which expresses properties of directed graphsG with labelled edges. The syntax
of graphs outlined in Tab. 4.5. The notationa(x, y) represents an edge from the nodex to y and labelled
by a. The graphsG are built from the empty graphnil and the edgea(x, y) by using the parallel
compositionG1 | G2 and the binding for local names of nodes(νx)G.

The Spatial Graph Logic combines the standard propositional logic with two structural connectives:
composition and basic edge. Although we focus on its propositional fragment, the logic of [6] also in-
cludes edge label quantifier and recursion. In [6] SGL is usedas a pattern matching mechanism of a query

G. Conforti et al. / Static BiLog 13

Table 4.6.Propositional Spatial Graph Logic (SGL)

ϕ, ψ ::= F false a(x, y) an edge from x to y ϕ⇒ ψ implication
nil empty graph ϕ | ψ composition

G |=STL F iff never
G |=STL nil iff G ≡ nil

G |=STL ϕ⇒ ψ iff G |=STL ϕ implies G |=STL ψ
G |=STL a(x, y) iff G ≡ a(x, y)
G |=STL ϕ | ψ iff there exist G1, G2 s.t. G1 |=STL ϕ and G2 |=STL ψ and G ≡ G1 | G2

Table 4.7.Encoding Propositional SGL in LGL over ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[nil]]X

def
= X [[(νx)G]]X

def
= ((/x ⊗ idX\{x}) ◦ [[G]]{x}∪X)) ⊗ ({x} ∩X)

[[a(x, y)]]X
def
= K(a)x,y ⊗ X \ {x, y} [[G | G′]]X

def
= [[G]]X ⊗

~X [[G′]]X

SGL formulae into LGL formulae
[[nil]]X

def
= X [[a(x, y)]]X

def
= K(a)x,y ⊗ (X \ {x, y}) [[ϕ | ψ]]X

def
= [[ϕ]]X ⊗

~X [[ψ]]X
[[F]]X

def
= F [[ϕ⇒ ψ]]X

def
= [[ϕ]]X ⇒ [[ψ]]X

language for graphs. In addition, the logic is integrated with transducersto allow graph transformations.
The applications of SGL include description and manipulation of semistructured data. Table 4.6 depicts
the syntax and the semantics of the fragment we consider.

For the encoding, we consider a signatureK with controls of arity2, and we assume a bijective
function associating every labela to a distinct controlK(a). The ports represent the starting and arrival
node of the associated edge. The resulting link graphs are interpreted as contextual graphs with labelled
edges, whereas the resulting class of ground link graphs is isomorphic to the graph model of SGL.

Table 4.7 encodes the graphs that model SGL into ground link graphs and SGL formulae into LGL
formulae. The encoding is parametric on a finite setX of names which contains the free names of the
graph. As we force the outer face of the graphs to be a fixed setX, the encoding of parallel composition
is simply a separation-up-to the elements~X of X. Local names are encoded into name closures. The
Connected Normal Form of [21] helps in proving that ground link graphs featuring controls with exactly
two ports are isomorphic to spatial graph models.

Lemma 4.2. (Isomorphism for spatial graphs)
There is a mapping([]) from two-ported ground bigraphs to spatial graphs, such that for every setX
of names:(i) the mapping([]) is inverse to[[]]X ; (ii) for every ground link graphg with outer faceX
featuring a countable set of controlsK, all with arity 2, it holdsfn(([g])) = X and[[([g])]]X ≡ g; and
(iii) for every spatial graphG with fn(G) = X it holds [[G]]X : ε→ X and([[[G]]X]) ≡ G.

Proof:
Represent link graphs as bigraphs of typeε → 〈1,X〉 without nested nodes, which, as proved in [21],
have the normal formG = (/Z | id 〈1,X〉) ◦ (X | M0 | . . . | Mk−1), whereZ ⊆ X andM ::=

14 G. Conforti et al. / Static BiLog

Kx,y(a) ◦ 1. The inverse encoding is based on this normal form:

([(/Z | id 〈1,X〉) ◦ (X |M0 | . . . |Mk−1)]) def
= (νZ) (nil | ([M0]) | . . . | ([Mk−1]))

([Kx,y(a) ◦ 1]) def
= a(x, y)

The encodings[[]] and([]) provide a bijection between graphs with free namesX and ground link graphs
with outer faceX and controls of arity two. ut

Theorem 4.2. (Encoding SGL)
For every graphG, every finite setX that containsfn(G), and every formulaϕ of the propositional
fragment of SGL:G |=SGL ϕ if and only if [[G]]X |= [[ϕ]]X .

Proof:
By induction on formulae of SGL. The basic steps deal with theconstantsF, nil anda(x, y).The case
F follows by definition. For the casenil, [[G]]X |= [[nil]]X means[[G]]X |= X, that by definition is
[[G]]X ≡ X and soG ≡ ([[[G]]X]) ≡ ([X]) def

= nil , namelyG |=SGL nil. For the casea(x, y), to assume
[[G]]X |= [[a(x, y)]]X means[[G]]X |= K(a)x,y ⊗ X \ {x, y}. SoG ≡ ([[[G]]X]) ≡ ([K(a)x,y ⊗
X \ {x, y}]) ≡ a(x, y), that isG |=SGL a(x, y). The inductive steps deal with connectives.

Case ϕ ⇒ ψ. [[G]]X |= [[ϕ ⇒ ψ]]X means[[G]]X |= [[ϕ]]X ⇒ [[ψ]]X that is: [[G]]X |= [[ϕ]]X
implies [[G]]X |= [[ψ]]X . By induction, this means thatG |=SGL ϕ impliesG |=SGL ψ – i.e.,G |=SGL

ϕ⇒ ψ.
Case ϕ | ψ. [[G]]X |= [[ϕ | ψ]]X means[[G]]X |= [[ϕ]]X ⊗

~X [[ψ]]X . By Lemma 4.1 there existsg1,

g2 such that[[G]]X ≡ g1 ⊗
~X g2 andg1 |= [[ϕ]]X andg2 |= [[ψ]]X . LetG1 = ([g1]) andG2 = ([g2]),

then [[G1]]X ≡ g1 and [[G2]]X ≡ g2. Hence[[G1]]X |= [[ϕ]]X and [[G2]]X |= [[ψ]]X . By induction:

G1 |=SGL ϕ andG2 |=SGL ψ. Now, [[G1 | G2]]X ≡ [[G1]]X ⊗
~X [[G2]]X ≡ g1 ⊗

~X g2 ≡ [[G]]X , thus
G |=SGL ϕ | ψ. ut

LGL enables the encoding of Separation Logic for heaps: names used as identifiers of location are
forcibly separated by tensor product, while names used for pointers are shared/linked. However we do
not encode it explicitly since in§4.3 we will encode a more general logic: the Context Tree Logic [5].

4.3. Pure Bigraph Logic

By combining link graphs and place graphs we generate all the(abstract pure) bigraphsof [17]. In this
case the underlying monoid is the product of link and place interfaces, namely(ω×Pfin(Λ),⊗, ε) where
〈m,X〉 ⊗ 〈n,X〉 def

= 〈m+ n,X] Y 〉 andε def
= 〈0, ∅〉. As a short notation, we useX for 〈0,X〉 andn

for 〈n, ∅〉.
A set of constructors for bigraphical terms is obtained as the union of place and link graph con-

structors. Only controls are subsumed by the newdiscrete ionconstructors, which are denoted by
K~a : 1 → 〈1,~a〉 and represent prime bigraphs containing a single node with ports named~a and an
hole inside. Bigraphical terms are thus defined in relation to a control signatureK and a set of namesΛ,
as detailed in [21].

The structural congruence for bigraphs corresponds to the sound and complete bigraph axiomatisa-
tion of [21]. The additional axioms are reported in Tab. 4.9:they are essentially a combination of the
axioms for link and place graphs, with slight differences due to the monoid of interfaces.

G. Conforti et al. / Static BiLog 15

Table 4.8.Additional axioms for Bigraph Structural Congruence

Symmetry Axioms: γI,ε ≡ id I Symmetry Id
γI,J ◦ γJ,I ≡ id I⊗J Symmetry Composition
γI′,J′ ◦ (G ⊗ F) ≡ (F ⊗ G) ◦ γI,J Symmetry Monoid

Place Axioms: join ◦ (1 ⊗ id1) ≡ id1 Unit
join ◦ (join ⊗ id1) ≡ join ◦ (id1 ⊗ join) Associativity
join ◦ γ1,1 ≡ join Commutativity

Link Axioms: a/a ≡ ida Link Identity
/a ◦ a/b ≡ /b Closing renaming
/a ◦ a ≡ id ε Idle edge
b/(Y]a) ◦ (idY ⊗ a/X) ≡ b/Y]X Composing substitutions

Node Axiom: (id1 ⊗ α) ◦ K~a ≡ Kα(~a) Renaming

PGL excels at expressing properties ofunnamedresources, that are resources accessible only by
following the structure of the term. On the other hand, LGL characterises names and their links to
resources, but it has no notion of locality. A combination ofthis two logics is useful to model nominal
spatial structures, either private or public.

BiLog promises to be a good (contextual) spatial logic for (semi-structured) resources with nominal
links, thanks to bigraphs’ orthogonal treatment of locality and connectivity. To testify this, next section
shows how the Context Logic for Trees (CTL) [5] can be encodedinto bigraphs.

Encoding CTL. In [5] the authors propose a spatial context logic to describe programs manipulating
a tree structured memory. The model of the logic is the set of unordered labelled treesT, T ′, T ′′ and
linear contextsC,C ′, C ′′ which are trees with a unique hole. Every node has a name, so toidentify
memory locations. The logic is dubbed Context Tree Logic, CTL in the following. Given a denumerable
set of labels and a denumerable set of identifiers, trees and contexts are defined in Tab. 4.9:a represents
a label andx an identifier. The insertion of a treeT in a contextC, denoted byC(T), is defined in
the standard way by filling the unique hole ofC with T . A well formed treeor contextis one where
the node identifiers are unique. The model of the logic is composed by well formed trees and contexts.
Composition, node formation and tree insertion arepartial as they are restricted to well-formed trees.
The structural congruence between trees and contexts is thesmallest congruence that makes the parallel
operator to be commutative, associative and with the empty tree as neutral element.

The logic exhibits two kinds of formulae:P , describing trees, andK, describing tree contexts. It
has two spatial constants, the empty tree forP and the hole forK, and four spatial operators: the node
formationax[K], the applicationK(P), and its two adjunctsK . P andP1 / P2. The formulaax[K]
describes a context with a single root labelled bya and identified byx, whose content satisfiesK. The
formulaK . P represents a tree that satisfiesP whenever inserted in a context satisfyingK. Dually,
P1 / P2 represents contexts that composed with a tree satisfyingP1 produce a tree satisfyingP2. The
complete syntax of the logic is outlined in Tab. 4.10, the semantics in Tab. 4.11.

CTL can be naturally embedded in an instance of BiLog. The complete structure of the Context Tree
Logic has also link values. For sake of simplicity, we consider its fragment without links. As already
said, the terms giving a semantics to CTL do not to share identifiers, as an identifier represents a precise

16 G. Conforti et al. / Static BiLog

Table 4.9.Trees with pointers and Tree Contexts

T, T ′ ::= 0 empty tree
ax[T] a tree labelled a with identifier x and subtree T
T | T ′ partial parallel composition

C ::= − an hole (the identity context)
ax[C] a tree context labelled a with identifier x and subtree C
T | C context right parallel composition
C | T context left parallel composition

T | 0 ≡ T neutral element
T | T ′ ≡ T ′ | T commutativity
(T | T ′) | T ′′ ≡ T | (T ′ | T ′′) associativity
(T | T ′)↓ if and only if identifiers of T and T ′ are disjoint
similarly for contexts

Table 4.10.Context Tree Logic (CTL)

P, P ′ ::= false K,K ′ ::= false

0 empty tree formula − identity context formula
K(P) context application ax[K] node context formula
K / P application adjunct P . P ′ application adjunct
P ⇒ P ′ implication P | K parallel context formula

K ⇒ K ′ implication

location in the memory. This property is obtained with bigraphs by encoding the identifiers as names
and the composition as tensor product. This structure is then encoded in BiLog by lifting the application
between contexts and trees to a particular kind of composition.

The tensor product on bigraphs is both a spatial separation,like in the models for STL, and a partially-
defined separation on names, like pointer composition for Separation Logic. Since we deal with both
names and places, we define a formulaid〈m, 〉 to represent identities on places by constraining the place
part of the interface to be fixed and leaving the name part to befree: id〈m, 〉

def
= idm ⊗ (id ∧ ¬(T ⊗

id1 ⊗ T)). The semantics says thatG |= id〈m,−〉 if and only if there exits a set of namesX such that
G ≡ idm ⊗ idX . By using such an identity formula we define the corresponding typed composition
A ◦〈m, 〉 B

def
= A ◦ id〈m, 〉 ◦ B and the typed adjuncts:A 〈m, 〉 B

def
= (id〈m, 〉 ◦ A) B andA (〈m, 〉

B def
= (A ◦ id〈m, 〉) B.
We then encode the operator for the parallel composition by the separation operator∗ defined as both

a term constructor and a logical connective:G ∗G′ def
= [join](G ⊗ G′) on prime bigraphs, and

A ∗B def
= (join ⊗ id〈0, 〉) ◦ (id〈1, 〉 ◦ A ⊗ id〈1, 〉 ◦ B)

on formulae. The operator∗ enables the encoding of trees and contexts into bigraphs. Finally, we
consider a signature with controls of arity1 and we assume a bijective function from tags to controls:
ax 7−→ K(a)x. The details of the encoding are outlined in Tab. 4.12. The encodings of trees are the
ground prime discrete bigraphs– i.e., bigraphs with open links and type0→ 〈1,X〉.

G. Conforti et al. / Static BiLog 17

Table 4.11.Semantics for CTL

T |=T false iff never
T |=T 0 iff T ≡ 0
T |=T K(P) iff there exist C, T ′ s.t. C(T ′) well-formed, T ≡ C(T ′), C |=K K and T ′ |=T P
T |=T K / P iff for every C: C |=K K and C(T) well-formed imply C(T) |=T P
T |=T P ⇒ P ′ iff T |=T P implies T |=T P ′

C |=K false iff never
C |=K − iff C ≡ −
C |=K ax[K] iff there exists C′ s.t. ax[C′] well-formed, C ≡ ax[C′] and C′ |=K K
C |=K P . P ′ iff for every T : T |=T P and C(T) well-formed imply C(T) |=T P ′

C |=K P | K iff there exist C′, T s.t. T | C′ well-formed, C ≡ T | C′, T |=T P and C′ |=K K
C |=K K ⇒ K ′ iff C |=K K implies C |=K K ′

Paper [21] shows that the normal form, up to permutations, for ground prime discrete bigraphs is
g = (joink ⊗ idX) ◦ (M1 ⊗ . . . ⊗Mk), whereMi are calleddiscrete ground moleculesand are of the
formM = (K(a)x ⊗ idY)g. Thanks to this result, we can define the reverse encoding([]) of [[]], from
ground prime discrete bigraphs to trees, just by considering such a normal form:

([join0]) def
= 0

([(K(a)x ⊗ idY) ◦ g]) def
= ax[([g])]

([(joink ⊗ idY) ◦ (M1 ⊗ . . . ⊗Mk)]) def
= ([M1]) ∗ . . . ∗ ([Mk])

Moreover, the encodings of linear contexts are theunary discrete bigraphs G– i.e., bigraphs with open
links and type〈1,X〉 → 〈1, Y 〉. Again, [21] says that the normal form, up to permutations, for unary
discrete bigraphs is:G = (joink ⊗ idY) ◦ (R ⊗ M1 ⊗ . . . ⊗ Mk−1), whereMi are discrete ground
molecules andR can be eitherid1 or (K~a ⊗ idY) ◦ Q. Again, we can define the reverse encoding([])
of [[]], from unary discrete bigraphs to linear contexts, just by considering such a normal form:

([id1]) def
= −

([(K(a)x ⊗ idY) ◦ Q]) def
= ax[([Q])]

([(joink ⊗ idY) ◦ (R ⊗M1 ⊗ . . . ⊗Mk−1)]) def
= ([R]) | ([M1]) | . . . | ([Mk−1])

As the model is specialised to context trees, so BiLog is specialised to the Context Tree Logic. The
encoding of the logic is in Tab. 4.12, and the proof of soundness mimes Theorems 4.1 and 4.2.

Theorem 4.3. (Encoding Context Tree Logic)
For each treeT and formulaP of CTL, T |=T P if and only if [[T]] |= [[P]]P . Moreover, for each
contextC and formulaK of CTL,C |=K K if and only if [[C]]C |= [[K]]K .

The encoding shows that the models in [5] are a particular kind of discrete bigraphs with one port
for each node and a number of holes and roots limited to one. Hence, this shows how BiLog for discrete
bigraphs is a generalisation of Context Tree Logic to contexts with several holes and regions. On the other
hand, since STL is more general than Separation Logic, cf. [5], and it is used to characterise programs
that manipulate tree structured memory model, BiLog may express Separation Logic as well.

18 G. Conforti et al. / Static BiLog

Table 4.12.Encoding CTL in BiLog over prime discrete ground bigraphs

Trees into prime ground discrete bigraphs Contexts into unary discrete bigraphs
[[0]] def

= 1 [[−]]C
def
= id1

[[ax[T]]] def
= (K(a)x ⊗ idfn(T)) ◦ [[T]] [[ax[C]]]C

def
= (K(a)x ⊗ idfn(C)) ◦ [[C]]C

[[T | T ′]] def
= [[T]] ∗ [[T ′]] [[T | C]]C

def
= [[T]] ∗ [[C]]C

TL formulae into PGL formulae [[C | T]]C
def
= [[C]]C ∗ [[T]]

[[false]]P
def
= F CTL formulae into PGL formulae

[[0]]P
def
= 1 [[false]]K

def
= F

[[K(P)]]P
def
= [[K]]K ◦〈1, 〉 [[P]]P [[−]]K

def
= id1

[[K / P]]P
def
= [[K]]K 〈1, 〉 [[P]]P [[P . P ′]]K

def
= [[P]]P (〈1, 〉 [[P ′]]P

[[P ⇒ P ′]]P
def
= [[P]]P ⇒ [[P ′]]P [[ax[K]]]K

def
= ((K(a)x) ⊗ id 〈0, 〉) ◦ [[K]]K

[[K ⇒ K ′]]K
def
= [[K]]K ⇒ [[K ′]]K [[P | K]]K

def
= [[P]]P ∗ [[K]]K

5. BiLog and separation

The notion of separation in BiLog is not fixed a priori, but it relies on the projection of the tensor
product to the logical level. The operators of the model, along with their logical projections, inherit
the characteristics and the behaviour from the underlying resource monoid. This fact is fundamental to
express the notions of separation/composition of other logics. When the resource monoid is partial, then
the tensor product of terms is partial as well, and thus its logical projection describes only well-defined
structures. Take for instance the heap memory addresses formalised by sets of names and consider their
disjoint union. In this case we find the operator∗ of Separation Logic, which says nothing about the
structures that do not have disjoint set of names, because they are not well-defined heaps. When the
resource monoid is commutative, then also the tensor product is commutative, its logical projection is
commutative and its two adjuncts collapse.

When we consider ordinals (as for place graphs) the tensor product is total, as it corresponds to
placing two structures one next to the other, and the separation is total and purely structural, like for
the Spatial Tree Logic. Notice that a commutative monoid combined with bifunctoriality has a peculiar
behaviour with respect to composition: for instance, giventhe controlsK1 andK2, commutativity and
bifunctoriality would say that(K1 ◦ K1) ⊗ (K2 ◦ K2) and (K1 ◦ K2) ⊗ (K2 ◦ K1) are congruent
as both are congruent to(K1 ⊗ K2) ◦ (K1 ⊗ K2). Thus commutativity cannot hold when controls
are intended as places. While the parallel composition for ground structures is commutative, the tensor
product for placing contexts is not commutative. Consequently, the left and right tensor adjuncts have
different semantics in place graphs.

When ordinals and names are combined, the logic inherits their orthogonality. The resulting monoid
can be seen as the product of two monoids, the one for ordinals(e.g. place graph) and the other for names
(e.g. link graph). The constructive character of this approach says that, independently of the complexity
of the underlying algebra and the resource model, we can split the model into ‘smaller’ parts and combine
the corresponding logics to obtain a spatial logic for the desired model in a compositional way.

We do not explicitly encode Separation Logic and pointers ofContext Logics in BiLog as we focus
on pure bigraphs. As a matter of fact, it would be sufficient toinclude a two sorts policy [2] that differ-
entiates input ports (the addresses) from output ports (thepointers/values) to obtain a partial monoid for

G. Conforti et al. / Static BiLog 19

heaps, and thus to have a natural encoding of Separation Logic. The separation induced by the tensor
product would be more strict than heap separation, as it forces also values to be separated. The heap
composition can be achieved by forcing the sharing of pointers and values and by preserving the sepa-
ration of addresses. The derived logical operators would behave as the tensor product on the names in
the first sort (the addresses) and as a (kind of) parallel composition for the names in the second sort (the
values/pointers). We do not necessarily need closure or restriction to model heaps. Open link graphs are
sufficient. Similarly, open discrete bigraphs are sufficient for trees with pointers.

6. Conclusions and related work

This paper moves a first step towards describing global resources by focusing on bigraphs. Our final
objective is to design a general dynamic logic able to cope uniformly with all the models bigraphs have
been proved useful for, as of today these include Petri-nets[20], CCS [22],π-calculus [17], ambient
calculus [16], and context-aware systems [1]. Here we introduce the static fragment of BiLog, a logic
founded on bigraphs, whose formulae describe arrows in monoidal categories.

BiLog may at first appear complex and ‘over-provided’ of connectives. On the contrary, the backbone
of the logic is relatively simple, consisting of two connectives regulated by elementary monoidal and
interchange laws. This structure gives rise to many – occasionally complex – derived connectives. This is
a fundamental expressiveness property that does not put us off, as BiLog is meant to be a comprehensive
meta-level framework in which several different logics canbe isolated, understood and compared.

In particular, here show how the ‘separation’ plays in various fragments of the logic. For instance,
in the case ofPlace Graph Logic, where models are bigraphs without names, the separation ispurely
structural and coincides with the notion of parallel composition in Spatial Tree Logic. Dually, as the
models forLink Graph Logicare bigraphs with no location, the separation in LGL is disjointness of
nominal resources. Finally, forBigraph Logic, where nodes of the model are associated with names,
the separation is not only structural, but also nominal, since the constraints on composition force port
identifiers to be disjoint. In this sense, it can be seen as theseparation in memory structures with pointers,
like Separation Logic’s heap structures [23], and trees with either pointers [5] or hidden names [7].

The work in [10] proves that unrestricted sharing combined with name restriction makes the logic
undecidable. The sharing/separation operator provided here hints that the real cause of undecidability is
the quantification on the set of names and suggests that the decidability result of [4] can be extended to
logics with explicit sharing and name revelation. We leave the this issue for future work.

In §3 we observed that the induced logical equivalence coincides with the structural congruence of
terms. This property is fundamental to describe, query and reason about bigraphical data structures. For
a more detailed discussion we refer to [11], where we sketch the application of BiLog to XML data.

To be as free as possible in choosing the level of intensionality and to ‘tune’ the power of the logical
equivalence, the general definition for BiLog (c.f. [12]) isparameterised on atransparencypredicate,
whose role is to identify the terms allowing inspection of their content,transparentterms, and the ones
that do not,opaqueterms. Theorem 3.1 says that the logical equivalence is the structural congruence if
every term is transparent, but [9, 18] show how BiLog becomesless discriminating with opaque terms.

Moreover, in [9, 18] we show how BiLog can deal with dynamics.A natural solution is to add a
temporal modality basically describing bigraphs that can evolve (react) according to a Bigraphical Reac-
tive System [17]. When the transparency predicate enables the inspection of ‘dynamic’ controls, BiLog

20 G. Conforti et al. / Static BiLog

is ‘intensional’ in the sense of [25], as it can observe internal structures.In the case of the bigraphical
system describing CCS [22], BiLog can be so intensional thatits static fragment directly expresses a
temporal modality. A transparency predicate specifies which structures can be directly observed by the
logic, while a temporal modality, along with the spatial connectives, allows to deduce the structure by
observing the behaviour. It would be interesting to isolatesome fragments of the logic and investigate
how the transparency predicate influences their expressivity and intensionality, as done in [15]. Finally
the papers [13, 14] suggest applications and extensions forBiLog.

References

[1] Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T.,Niss, H.: Bigraphical Models of Context-aware Sys-
tems,FOSSACS, 2006.

[2] Birkedal, L., Debois, S., Hildebrandt, T.: Sortings forReactive Systems,CONCUR, 2006.

[3] Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I), TACS, 2001.

[4] Calcagno, C., Cardelli, L., Gordon, A.: Deciding Validity in a Spatial Logic for Trees,TLDI, 2003.

[5] Calcagno, C., Gardner, P., Zarfaty, U.: A Context Logic for Tree Update,POPL, 2005.

[6] Cardelli, L., Gardner, P., Ghelli, G.: A Spatial logic for querying graphs,ICALP, 2002.

[7] Cardelli, L., Gardner, P., Ghelli, G.: Manipulating Trees with Hidden Labels,FOSSACS, 2003.

[8] Cardelli, L., Gordon, A.: Ambient Logic,Mathematical Structures in Computer Science, To appear.

[9] Conforti, G.:Spatial Logics for Semistructured Resources, PhD Thesis, Univ. of Pisa, 2005.

[10] Conforti, G., Ghelli, G.: Decidability of Freshness, Undecidability of Revelation,FOSSACS, 2004.

[11] Conforti, G., Macedonio, D., Sassone, V.: BigraphicalLogics for XML, SEBD, 2005.

[12] Conforti, G., Macedonio, D., Sassone, V.: Spatial Logics for Bigraphs,ICALP, 2005.

[13] Damgaard, T., Birkedal, L.: Axiomatizing binding bigraphs,Nordic Journal of Computing, 13(1), 2006.

[14] Grohmann, D., Miculan, M.: Directed Bigraphs,MFPS, 2007.

[15] Hirschkoff, D.: An Extensional Spatial Logic for Mobile Processes,CONCUR, 2004.

[16] Jensen, O.: Forthcoming PhD Thesis, Aalborg Univ.

[17] Jensen, O., Milner, R.:Bigraphs and mobile processes (revised), Tech. rep., Univ. of Cambridge, 2004.

[18] Macedonio, D.:Logics for Distributed Resources, PhD Thesis, Univ. Ca’ Foscari of Venice, 2006.

[19] Milner, R.: Bigraphical Reactive Systems,CONCUR, 2001.

[20] Milner, R.: Bigraphs for Petri nets,Lectures on Concurrency and Petri Nets: Advances in Petri Nets, 2004.

[21] Milner, R.: Axioms for bigraphical structure,Mathematical Structures in Computer Science, 15(6), 2005.

[22] Milner, R.: Pure bigraphs: Structure and dynamics,Information and Computation, 204(1), 2006.

[23] O’Hearn, P., Reynolds, J., Yang, H.: Local Reasoning about Programs that Alter Data Structures,CSL, 2001.

[24] Pitts, A.: Nominal Logic: a First Order Theory of Names and Binding,TACS, 2001.

[25] Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logic,POPL, 2001.

