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Reconstruction problems

Given partial information on object x , is it possible to reconstruct x?

E.g. if x is a string, can it be reconstructed . . .

• from the set of its subsequences (Simon, 1975)

• from the multiset of its subsequences (Krasikov & Roditty, 1997;
Levenshtein, 2001)

• from the set of its substrings (de Luca & Carpi, 1999-2001; Fici et al,
2006)

• from the multiset of its substrings (Piña & Uzcágetui, 2008)

• from the set of its k-mers (substrings of length k): SBH (Pevzner,
1989; . . . )

• from the set of its RC-subsequences (Cicalese et al., 2012)

• from the multiset of Parikh vectors of its substrings (= jumbled
substrings) (Acharya et al., 2010, 2014, 2015)
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• from the set of its k-mers (substrings of length k): SBH (Pevzner,
1989; . . . )

• from the set of its RC-subsequences (Cicalese et al., 2012)

• from the multiset of Parikh vectors of its substrings (= jumbled
substrings) (Acharya et al., 2010, 2014, 2015)

Bartha, Burcsi, Lipták Jumbled and Weighted Subtrees CPM 2016 2 / 31



Reconstruction problems

Given partial information on object x , is it possible to reconstruct x?
E.g. if x is a string, can it be reconstructed . . .

• from the set of its subsequences (Simon, 1975)

• from the multiset of its subsequences (Krasikov & Roditty, 1997;
Levenshtein, 2001)

• from the set of its substrings (de Luca & Carpi, 1999-2001; Fici et al,
2006)

• from the multiset of its substrings (Piña & Uzcágetui, 2008)
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Reconstruction problems

Different types of questions:

• How much information do we need to have a unique solution x?

• When does a solution x exist?

• When does a unique solution x exist?

• If not unique, how many different solutions exist? (equivalence class
sizes)

• Find (efficient?) reconstruction algorithms
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Reconstruction from multiset of jumbled substrings

Jumbled substrings

Given string t over constant-size ordered alphabet Σ, with |Σ| = σ.
The Parikh vector counts multiplicity of characters in t. Jumbled substring:
only P.v. is known.

Ex.: Σ = {a, b, c}, then these 3 substrings have P.v. (3, 1, 2)

b b a c a c c a b a b b a b c c a a a c
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Weighted substrings

Weighted substrings

Given string t over constant-size alphabet Σ, with |Σ| = σ, and a weight
function µ : Σ→ N.

The weight of t is µ(t) =
∑|t|

i=1 µ(ti ). Weighted substring: only weight is
known.

Ex.: Σ = {a, b, c}, µ(a) = 1, µ(b) = 2, µ(c) = 5. Then these 3 substrings
have weight 15, and so does babcc.

b b a c a c c a b a b b a b c c a a a c
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Polynomial method

Polynomial method

• Acharya et al. (2010, 2014, 2015): String reconstruction from multiset
of jumbled substrings,

• Bansal, Cieliebak, L. (CPM 2004): pattern matching for weighted
substrings

Idea
The weight (or P.v.) of a substring is the difference of that of a prefix and
that of another prefix.

i j

Encode these in a polynomial.
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Generating polynomials

Let s = s1 . . . sn, and let prsi (s), for i = 0, . . . , n be the prefix sums of s.
The prefix polynomial of s is

p(x) = x0 + x s1 + x s1+s2 + . . .+ x s1+...+sn =
n∑

i=0

xprsi (s).

Then
f (x) = p(x)p( 1

x ),

is the generating function of the multiset of weighted substrings of s.
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Generating polynomials

Example (weighted)

Let s = aaba, and µ(a) = 1, µ(b) = 5.

prefix sums: 0, 1, 2, 7, 8

p(x) = 1 + x + x2 + x7 + x8

f (x) = (1 + x + x2 + x7 + x8)(1 + x−1 + x−2 + x−7 + x−8)

= x−8 + 2x−7 + 2x−6 + x−5 + x−2 + 3x−1+

5 + 3x + x2 + x5 + 2x6 + 2x7 + x8.

positive exponents: substring-weights, coefficients: multiplicities
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Generating polynomials

Similar, use multivariate polynomials.

Example (jumbled)

Let s = aaba.

prefix P.v.s: 0, a, 2a, 2a + b, 3a + b

p(x) = 1 + x + x2 + x2y + x3y

f (x) = (1 + x + x2 + x2y + x3y)(1 + x−1 + x−2 + x−2y−1 + x−3y−1)

= x−3y−1 + 2x−2y−1 + 2x−1y−1 + x−1 + x−2 + 3x−1+

5 + 3x + x2 + y + 2xy + 2x2y + x3y .

positive exponents: substring-weights, coefficients: multiplicities
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Using generating polynomials

• Multiset of jumbled (or weighted) substrings of s and t are equal iff
the generating polynomials are equal

• factorization of polynomials

• pattern matching: p is the P.v. of a substring (m is weight of a
substring) iff cp 6= 0 resp. cm 6= 0 (coefficient of xp resp. xm)

• cp resp. cm gives the multiplicity

• can use FFT for fast multiplication
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What we are doing (CPM 2016)

Reconstruction of trees from jumbled or weighted subtrees with some
property A. Property A can be

1. subtree
2. path
3. maximal path (i.e. between leaves)
4. or any other property of subtrees

Note that 1. and 2. are both generalizations of substrings for strings (i.e.
the entire tree is a path).
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Parikh vectors and jumbled subtrees

• Tree with edge labels from finite ordered alphabet Σ = {a1, . . . , aσ}

• Parikh vector of tree: vector length σ with ith entry = multiplicity of ai

• jumbled subtree: a subtree of which only the Parikh vector is known

Example

T1

b a

a b b

Σ = {a, b}

• Parikh vector of T1: (2, 3)

• alternative notation: a2b3

• (size 1) 2 times a, 3 times b: 2a, 3b

• (size 2) 4ab, 1b2

• (size 3) 1a2b, 3ab2

• (size 4) 2a2b2, 1ab3

• (size 5) 1a2b3
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Multi-Parikh-sets of trees

T1

T2

b a

a b b

a b

b b a

MPtree(T1) = {2a, 3b, 4ab, 1b2, 1a2b, 3ab2, 2a2b2, 1ab3, 1a2b3}

= MPtree(T2).

T1 and T2 are MPtree-equivalent, but non-isomorphic (as edge-labeled
trees).
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Multi-Parikh-sets of trees

T1 T2

b a

a b b

a b

b b a

So we can differentiate between T1 and T2 via the multi-Parikh-set of paths
but not of subtrees.
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Multi-Parikh-sets as polynomials

T1

b a

a b b

MPtree(T1) = {2a, 3b, 4ab, 1b2, 1a2b, 3ab2, 2a2b2, 1ab3, 1a2b3}

Expressed as a polynomial, where a 7→ x , b 7→ y :

ftree(T1) = 6 + 2x + 3y + 4xy + y2 + x2y + 3xy2 + 2x2y2 + xy3 + x2y3
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Polynomials for jumbled subtrees

ftree(T1) = 6 + 2x + 3y + 4xy + y2 + x2y + 3xy2 + 2x2y2 + xy3 + x2y3

In general:

ftree(T ) =
∑

p=(p1,...,pσ)

cp · xp1
1 · · · x

pσ
σ ,

where cp is the number of subtrees with Parikh vector p = (p1, . . . , pσ).

Similar: fpath . . . number of paths . . .
fmaxpath . . . number of maximal paths . . .
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Polynomials for weighted subtrees

T1

1 2

5 2 3

ftree(T1)

= 6 + x + 2x2 + 2x3 + x4 + 4x5 + 2x6 + x7 + 2x8 + x10 + x11 + x13.

In general:

ftree(T ) =
∑
m

cm · xm,

where cm is the number of subtrees with weight m.
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Polynomials for jumbled subtrees

Why is using polynomials useful?

• additional algebraic structure (see results for strings)

• efficient decision of equivalence (Schwartz-Zippel lemma)
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Efficient decision of equivalence

Schwartz-Zippel lemma (1979,1980)

Let f1 and f2 be polynomials in k variables over a field, both of total degree
at most d . Let S be a set in the coefficient field. If we evaluate f1 and f2 by
substituting a uniformly randomly chosen k-tuple x ∈ Sk into them, then
the probability of f1(x) = f2(x) is at most d/|S |.

As a consequence, if we can evaluate f1 and f2 in polynomial time, then we
have a polynomial time Monte-Carlo algorithm for testing f1 = f2, by
repeatedly substituting random k-tuples and reporting ”not equal” if and
only at least one substitution fails to evaluate to the same value.
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Questions we ask

• Computation: How can we compute these polynomials?

• Reconstruction: Can T be uniquely reconstructed from the multiset
of jumbled subtrees, paths, or maximal paths?

Two sub-problems:

1. Large Unjumble: Is the unlabeled tree (i.e., its topology) uniquely
determined by the multiset of jumbled or weighted subtrees, paths, or
maximal paths?

2. Small Unjumble: Given the topology of the tree, is the labeling
uniquely determined by the multiset of jumbled or weighted subtrees,
paths, or maximal paths?

• Reconstruction algorithms
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Polynomial for MPtree

• Root tree T in arbitrary vertex v .
• auxiliary polynomial r(T , v): multiset of all subtrees containing v

Theorem
Let T be a rooted tree with root v . Let v1, v2, . . . , vk be the children of v .
Denote the subtrees rooted at vi by Ti for i = 1, . . . , k. Denote the index
in Σ of the label on the edge connecting v and vj by lj . Then

r(T , v) =
k∏

j=1

(1 + xlj · r(Tj , vj)) and f (T ) = r(T , v) +
k∑

j=1

f (Tj)

Note that the number of subtrees can be exponential, but evaluation is
efficient (for equivalence testing).
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Polynomial for MPpath

• Root tree T in arbitrary vertex v .
• auxiliary polynomial r(T , v): multiset of all paths at least one end is v

Theorem
Let T be a rooted tree with root v . Let v1, v2, . . . vk be the children of v in
T . Denote the subtrees rooted at v1 (resp. v2 etc.) by T1 (resp. T2 etc.).
Denote the index in Σ of the label on the edge connecting v and vj by lj .
Then

r(T , v) = 1 +
∑

(xlj · r(Tj , vj)),

f (T ) = r(T , v) +
k∑

j=1

f (Tj) +
∑

1≤i<j≤k
(xli xlj r(Ti , vi )r(Tj , vj))
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Using generating polynomials for trees

• Recursive computation of polynomials straightforward in all cases

• We do not have all nice properties of string case (not only
multiplication of polynomials: also addition)

• Efficient evaluation still possible (using the recursive definition)

• In some cases, can be used for (non-)reconstructibility results
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Reconstructibility / Non-reconstructibility

(Case: weighted, maxpath, Small Unjumble) n-star: n − 1 leaves

Theorem
Let T1 and T2 be two edge-weighted n stars.

1. If n − 1 is not a power of 2, then MWmaxpath(T1) = MWmaxpath(T2)
implies that T1 and T2 are isomorphic as edge weighted trees.

2. If n − 1 = 2k for some k ≤ 0, then there are non-isomorphic edge
weighted n-stars that are MWmaxpath-equivalent.

Proof
Simple polynomial manipulation, and sets of numbers {a1, . . . , an−1}
6= {b1, . . . , bn−1} s.t. their pairwise sums coincide. Always exist if n− 1 is a
power of 2. (e.g. {1, 4}, {2, 3}; {1, 4, 102, 103}, {2, 3, 101, 104}, . . . ).
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Proof: Let a1, . . . , an−1 and b1, . . . , bn−1 distinct labelings s.t. the
MWmaxpath coincide. Then for f (x) = xa1 + · · ·+ xan−1 and
g(x) = xb1 + · · ·+ xbn−1

f 2(x)− f (x2) = g2(x)− g(x2),

since the pairw. sums determine (f (x))2 − f (x2) =
∑

i ,j x
ai+aj −

∑
i x

2ai .
So

f (x2)− g(x2) = f 2(x)− g2(x) = (f (x)− g(x))(f (x) + g(x))

Factor out as many (x − 1) factors from f − g as you can:
f (x)− g(x) = (x − 1)kh(x). Then

f (x) + g(x) =
f 2(x)− g2(x)

f (x)− g(x)
=

f (x2)− g(x2)

f (x)− g(x)
=

(x2 − 1)kh(x2)

(x − 1)kh(x)
= (x + 1)k

h(x2)

h(x)

Setting x = 1 results in 2(n − 1) = 2k , so n − 1 is a power of 2.
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Reconstructibility / Non-reconstructibility

(Case: jumbled/weighted, path, Large Unjumble)

vi has ki children

Theorem
Let m ≥ 3. Then there are non-isomorphic trees T1,T2 as above s.t. if all
edges are labeled with the same character (resp. the same weight), then T1

and T2 are MPpath-equivalent (resp. MWpath-equivalent).
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Proof Idea: The generating polynomial is determined by
∑

i ki and
∑

i k
2
i .

See Prouhet-Tarry-Escott problem:
Distinct sets {ai} and {bi} of card. m s.t. for all p ≤ r :

∑
i a

p
i =

∑
i b

p
i .

fpath(T ) = r(T , v) +
∑
i

f (Ti ) +
∑
i<j

x2r(Ti , vi )r(Tj , vj)

r(T , v) = 1 + mx + (
∑
i

ki )x
2 (1)

f (Ti ) = (1 + ki ) + kix +

(
ki
2

)
x2 and r(Ti , vi ) = (1 + kix) (2)∑

i<j

r(Ti , vi )r(Tj , vj) =

(
m

2

)
+ x2(m − 1)

∑
i

ki + x2
∑
i<j

kikj (3)

All coefficients can be computed from
∑

i ki and
∑

i k
2
i :∑

i<j kikj = ((
∑

i ki )
2 −

∑
i k

2
i ), and

∑
i

(ki
2

)
= 1

2 (
∑

i k
2
i −

∑
i ki ).
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First results

• Generating polynomial method for multisets of P.v.s or subweights can
be generalized to trees

• different types of substructures (subtrees, paths etc.)

• not all nice algebraic properties preserved (not only multiplication!)

• polynomial method can be used for uniqueness / non-uniqueness results

• special cases for certain classes of trees

• reconstruction algorithm for some cases
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source: hebrewword.org
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source: www.israelhebrew.com
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