Reconstruction of Trees from Jumbled and Weighted Subtrees

Dénes Bartha, Péter Burcsi, Zsuzsanna Lipták

CPM 2016 Tel Aviv, June 27-29, 2016

Given partial information on object x, is it possible to reconstruct x?

Given partial information on object *x*, is it possible to reconstruct *x*? E.g. if *x* is a string, can it be reconstructed ...

• from the set of its subsequences (Simon, 1975)

Given partial information on object *x*, is it possible to reconstruct *x*? E.g. if *x* is a string, can it be reconstructed ...

- from the set of its subsequences (Simon, 1975)
- from the multiset of its subsequences (Krasikov & Roditty, 1997; Levenshtein, 2001)

Given partial information on object *x*, is it possible to reconstruct *x*? E.g. if *x* is a string, can it be reconstructed ...

- from the set of its subsequences (Simon, 1975)
- from the multiset of its subsequences (Krasikov & Roditty, 1997; Levenshtein, 2001)
- from the set of its substrings (de Luca & Carpi, 1999-2001; Fici et al, 2006)

Given partial information on object *x*, is it possible to reconstruct *x*? E.g. if *x* is a string, can it be reconstructed ...

- from the set of its subsequences (Simon, 1975)
- from the multiset of its subsequences (Krasikov & Roditty, 1997; Levenshtein, 2001)
- from the set of its substrings (de Luca & Carpi, 1999-2001; Fici et al, 2006)
- from the multiset of its substrings (Piña & Uzcágetui, 2008)

Given partial information on object x, is it possible to reconstruct x? E.g. if x is a string, can it be reconstructed ...

- from the set of its subsequences (Simon, 1975)
- from the multiset of its subsequences (Krasikov & Roditty, 1997; Levenshtein, 2001)
- from the set of its substrings (de Luca & Carpi, 1999-2001; Fici et al, 2006)
- from the multiset of its substrings (Piña & Uzcágetui, 2008)
- from the set of its *k*-mers (substrings of length *k*): SBH (Pevzner, 1989; ...)
- from the set of its RC-subsequences (Cicalese et al., 2012)
- from the multiset of Parikh vectors of its substrings (= jumbled substrings) (Acharya et al., 2010, 2014, 2015)

Bartha, Burcsi, Lipták

Different types of questions:

- How much information do we need to have a unique solution x?
- When does a solution x exist?
- When does a unique solution x exist?
- If not unique, how many different solutions exist? (equivalence class sizes)
- Find (efficient?) reconstruction algorithms

Reconstruction from multiset of jumbled substrings

Jumbled substrings

Given string t over constant-size ordered alphabet Σ , with $|\Sigma| = \sigma$. The Parikh vector counts multiplicity of characters in t. Jumbled substring: only P.v. is known.

Reconstruction from multiset of jumbled substrings

Jumbled substrings

Given string t over constant-size ordered alphabet Σ , with $|\Sigma| = \sigma$. The Parikh vector counts multiplicity of characters in t. Jumbled substring: only P.v. is known.

Ex.:
$$\Sigma = \{a, b, c\}$$
, then these 3 substrings have P.v. $(3, 1, 2)$

Bartha, Burcsi, Lipták

Weighted substrings

Weighted substrings

Given string t over constant-size alphabet Σ , with $|\Sigma| = \sigma$, and a weight function $\mu : \Sigma \to \mathbb{N}$.

The weight of t is $\mu(t) = \sum_{i=1}^{|t|} \mu(t_i)$. Weighted substring: only weight is known.

Weighted substrings

Weighted substrings

Given string t over constant-size alphabet Σ , with $|\Sigma| = \sigma$, and a weight function $\mu : \Sigma \to \mathbb{N}$.

The weight of t is $\mu(t) = \sum_{i=1}^{|t|} \mu(t_i)$. Weighted substring: only weight is known.

Ex.: $\Sigma = \{a, b, c\}, \mu(a) = 1, \mu(b) = 2, \mu(c) = 5$. Then these 3 substrings have weight 15, and so does *babcc*.

Bartha, Burcsi, Lipták

Polynomial method

Polynomial method

- Acharya et al. (2010, 2014, 2015): String reconstruction from multiset of jumbled substrings,
- Bansal, Cieliebak, L. (CPM 2004): pattern matching for weighted substrings

Polynomial method

Polynomial method

- Acharya et al. (2010, 2014, 2015): String reconstruction from multiset of jumbled substrings,
- Bansal, Cieliebak, L. (CPM 2004): pattern matching for weighted substrings

Idea

The weight (or P.v.) of a substring is the difference of that of a prefix and that of another prefix.

Encode these in a polynomial.

Bartha, Burcsi, Lipták

Let $s = s_1 \dots s_n$, and let $prs_i(s)$, for $i = 0, \dots, n$ be the prefix sums of s. The prefix polynomial of s is

$$p(x) = x^0 + x^{s_1} + x^{s_1+s_2} + \ldots + x^{s_1+\ldots+s_n} = \sum_{i=0}^n x^{prs_i(s)}.$$

Then

$$f(x) = p(x)p(\frac{1}{x}),$$

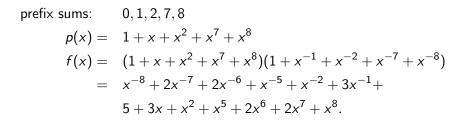
is the generating function of the multiset of weighted substrings of s.

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 7 / 31

```
Example (weighted)
Let s = aaba, and \mu(a) = 1, \mu(b) = 5.
```



Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 8 / 31

Example (weighted)
Let
$$s = aaba$$
, and $\mu(a) = 1, \mu(b) = 5$.

prefix sums: 0,1,2,7,8

$$p(x) = 1 + x + x^{2} + x^{7} + x^{8}$$

$$f(x) = (1 + x + x^{2} + x^{7} + x^{8})(1 + x^{-1} + x^{-2} + x^{-7} + x^{-8})$$

$$= x^{-8} + 2x^{-7} + 2x^{-6} + x^{-5} + x^{-2} + 3x^{-1} + 5 + 3x + x^{2} + x^{5} + 2x^{6} + 2x^{7} + x^{8}.$$

positive exponents: substring-weights, coefficients: multiplicities

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

Similar, use multivariate polynomials.

Example (jumbled)

Let s = aaba.

prefix P.v.s: 0, a, 2a, 2a + b, 3a + b

$$p(x) = 1 + x + x^{2} + x^{2}y + x^{3}y$$

$$f(x) = (1 + x + x^{2} + x^{2}y + x^{3}y)(1 + x^{-1} + x^{-2} + x^{-2}y^{-1} + x^{-3}y^{-1}$$

$$= x^{-3}y^{-1} + 2x^{-2}y^{-1} + 2x^{-1}y^{-1} + x^{-1} + x^{-2} + 3x^{-1} + 5 + 3x + x^{2} + y + 2xy + 2x^{2}y + x^{3}y.$$

positive exponents: substring-weights, coefficients: multiplicities

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

Using generating polynomials

- Multiset of jumbled (or weighted) substrings of *s* and *t* are equal iff the generating polynomials are equal
- factorization of polynomials
- pattern matching: p is the P.v. of a substring (m is weight of a substring) iff $c_p \neq 0$ resp. $c_m \neq 0$ (coefficient of x^p resp. x^m)
- c_p resp. c_m gives the multiplicity
- can use FFT for fast multiplication

What we are doing (CPM 2016)

Reconstruction of trees from jumbled or weighted subtrees with some property \mathcal{A} . Property \mathcal{A} can be

- 1. subtree
- 2. path
- 3. maximal path (i.e. between leaves)
- 4. or any other property of subtrees

Note that 1. and 2. are both generalizations of substrings for strings (i.e. the entire tree is a path).

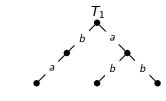
• Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

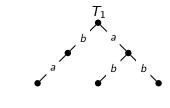
Example



• Parikh vector of T₁: (2,3)

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

Example

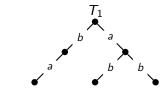


• Parikh vector of T_1 : (2,3)

alternative notation: a²b³

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

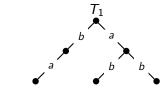
Example



- Parikh vector of T₁: (2,3)
- alternative notation: a^2b^3
- (size 1) 2 times *a*, 3 times *b*: 2*a*, 3*b*

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

Example

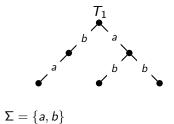


• Parikh vector of T_1 : (2,3)

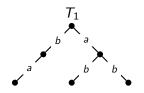
- alternative notation: a^2b^3
- (size 1) 2 times *a*, 3 times *b*: 2*a*, 3*b*
- (size 2) 4*ab*, 1*b*²

- Tree with edge labels from finite ordered alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$
- Parikh vector of tree: vector length σ with *i*th entry = multiplicity of a_i
- jumbled subtree: a subtree of which only the Parikh vector is known

Example



- Parikh vector of T_1 : (2,3)
- alternative notation: a^2b^3
- (size 1) 2 times *a*, 3 times *b*: 2*a*, 3*b*
- (size 2) 4*ab*, 1*b*²
- (size 3) 1a²b, 3ab²
- (size 4) 2a²b², 1ab³
- (size 5) 1*a*²*b*³



 $MP_{\text{TREE}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\}$

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 13 / 31

$$\begin{aligned} MP_{\text{TREE}}(T_1) &= \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\} \\ &= MP_{\text{TREE}}(T_2). \end{aligned}$$

 T_1 and T_2 are MP_{TREE} -equivalent, but non-isomorphic (as edge-labeled trees).

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

 $MP_{\text{TREE}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\} = MP_{\text{TREE}}(T_2).$

 T_1 and T_2 are MP_{TREE} -equivalent, but not MP_{PATH} -equivalent:

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 14 / 31

$$MP_{\text{TREE}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\} = MP_{\text{TREE}}(T_2).$$

 T_1 and T_2 are MP_{TREE} -equivalent, but not MP_{PATH} -equivalent:

 $MP_{\text{PATH}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1a^2b^3\} \\ \neq \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 1a^2b^2, 1ab^3, 1a^2b^3\} = MP_{\text{PATH}}(T_2).$

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

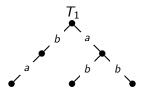
So we can differentiate between T_1 and T_2 via the multi-Parikh-set of paths but not of subtrees.

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 15 / 31

Multi-Parikh-sets as polynomials



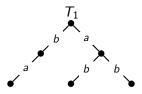
 $MP_{\text{TREE}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\}$

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 16 / 31

Multi-Parikh-sets as polynomials



 $MP_{\text{TREE}}(T_1) = \{2a, 3b, 4ab, 1b^2, 1a^2b, 3ab^2, 2a^2b^2, 1ab^3, 1a^2b^3\}$

Expressed as a polynomial, where $a \mapsto x$, $b \mapsto y$:

 $f_{\text{TREE}}(T_1) = 6 + 2x + 3y + 4xy + y^2 + x^2y + 3xy^2 + 2x^2y^2 + xy^3 + x^2y^3$

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

Polynomials for jumbled subtrees

 $f_{\text{TREE}}(T_1) = 6 + 2x + 3y + 4xy + y^2 + x^2y + 3xy^2 + 2x^2y^2 + xy^3 + x^2y^3$ In general:

$$f_{\text{TREE}}(T) = \sum_{\boldsymbol{p}=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_{\sigma})} \boldsymbol{c}_{\boldsymbol{p}} \cdot \boldsymbol{x}_1^{\boldsymbol{p}_1} \cdots \boldsymbol{x}_{\sigma}^{\boldsymbol{p}_{\sigma}},$$

where c_p is the number of subtrees with Parikh vector $p = (p_1, \ldots, p_{\sigma})$.

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 17 / 31

Polynomials for jumbled subtrees

 $f_{\text{TREE}}(T_1) = 6 + 2x + 3y + 4xy + y^2 + x^2y + 3xy^2 + 2x^2y^2 + xy^3 + x^2y^3$ In general:

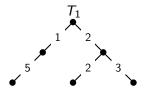
$$f_{\text{TREE}}(T) = \sum_{\boldsymbol{p}=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_{\sigma})} c_{\boldsymbol{p}} \cdot x_1^{\boldsymbol{p}_1} \cdots x_{\sigma}^{\boldsymbol{p}_{\sigma}},$$

where c_p is the number of subtrees with Parikh vector $p = (p_1, \ldots, p_{\sigma})$.

Similar: f_{PATH} ... number of paths ... $f_{MAXPATH}$... number of maximal paths ...

Bartha, Burcsi, Lipták

Polynomials for weighted subtrees



$$f_{\text{TREE}}(T_1) = 6 + x + 2x^2 + 2x^3 + x^4 + 4x^5 + 2x^6 + x^7 + 2x^8 + x^{10} + x^{11} + x^{13}.$$

n general:

$$f_{\text{TREE}}(T) = \sum_{m} c_{m} \cdot x^{m},$$

where c_m is the number of subtrees with weight m.

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 18 / 31

Polynomials for jumbled subtrees

Why is using polynomials useful?

- additional algebraic structure (see results for strings)
- efficient decision of equivalence (Schwartz-Zippel lemma)

Bartha, Burcsi, Lipták

Efficient decision of equivalence

Schwartz-Zippel lemma (1979,1980)

Let f_1 and f_2 be polynomials in k variables over a field, both of total degree at most d. Let S be a set in the coefficient field. If we evaluate f_1 and f_2 by substituting a uniformly randomly chosen k-tuple $\underline{x} \in S^k$ into them, then the probability of $f_1(\underline{x}) = f_2(\underline{x})$ is at most d/|S|.

As a consequence, if we can evaluate f_1 and f_2 in polynomial time, then we have a polynomial time Monte-Carlo algorithm for testing $f_1 = f_2$, by repeatedly substituting random *k*-tuples and reporting "not equal" if and only at least one substitution fails to evaluate to the same value.

Bartha, Burcsi, Lipták

Questions we ask

- Computation: How can we compute these polynomials?
- **Reconstruction:** Can *T* be uniquely reconstructed from the multiset of jumbled subtrees, paths, or maximal paths?

Two sub-problems:

- 1. Large Unjumble: Is the unlabeled tree (i.e., its topology) uniquely determined by the multiset of jumbled or weighted subtrees, paths, or maximal paths?
- 2. **Small Unjumble:** Given the topology of the tree, is the labeling uniquely determined by the multiset of jumbled or weighted subtrees, paths, or maximal paths?

• Reconstruction algorithms

Polynomial for MP_{TREE}

- Root tree T in arbitrary vertex v.
- auxiliary polynomial r(T, v): multiset of all subtrees containing v

Theorem

Let T be a rooted tree with root v. Let $v_1, v_2, ..., v_k$ be the children of v. Denote the subtrees rooted at v_i by T_i for i = 1, ..., k. Denote the index in Σ of the label on the edge connecting v and v_i by I_i . Then

$$r(T, v) = \prod_{j=1}^{k} (1 + x_{l_j} \cdot r(T_j, v_j))$$
 and $f(T) = r(T, v) + \sum_{j=1}^{k} f(T_j)$

Note that the number of subtrees can be exponential, but evaluation is efficient (for equivalence testing).

Bartha, Burcsi, Lipták

Polynomial for MP_{PATH}

- Root tree T in arbitrary vertex v.
- auxiliary polynomial r(T, v): multiset of all paths at least one end is v

Theorem

Let T be a rooted tree with root v. Let $v_1, v_2, \ldots v_k$ be the children of v in T. Denote the subtrees rooted at v_1 (resp. v_2 etc.) by T_1 (resp. T_2 etc.). Denote the index in Σ of the label on the edge connecting v and v_j by l_j . Then

$$r(T, v) = 1 + \sum_{j=1}^{k} (T_j, v_j),$$

$$f(T) = r(T, v) + \sum_{j=1}^{k} f(T_j) + \sum_{1 \le i < j \le k}^{k} (x_{l_i} x_{l_j} r(T_i, v_i) r(T_j, v_j))$$

Bartha, Burcsi, Lipták

Using generating polynomials for trees

- Recursive computation of polynomials straightforward in all cases
- We do not have all nice properties of string case (not only multiplication of polynomials: also addition)
- Efficient evaluation still possible (using the recursive definition)
- In some cases, can be used for (non-)reconstructibility results

Reconstructibility / Non-reconstructibility

(Case: weighted, MAXPATH, Small Unjumble) n-star: n-1 leaves

Theorem

Let T_1 and T_2 be two edge-weighted *n* stars.

- 1. If n-1 is not a power of 2, then $MW_{MAXPATH}(T_1) = MW_{MAXPATH}(T_2)$ implies that T_1 and T_2 are isomorphic as edge weighted trees.
- 2. If $n 1 = 2^k$ for some $k \le 0$, then there are non-isomorphic edge weighted *n*-stars that are $MW_{MAXPATH}$ -equivalent.

Proof

Simple polynomial manipulation, and sets of numbers $\{a_1, \ldots, a_{n-1}\} \neq \{b_1, \ldots, b_{n-1}\}$ s.t. their pairwise sums coincide. Always exist if n-1 is a power of 2. (e.g. $\{1,4\}, \{2,3\}; \{1,4,102,103\}, \{2,3,101,104\}, \ldots$).

Proof: Let a_1, \ldots, a_{n-1} and b_1, \ldots, b_{n-1} distinct labelings s.t. the MW_{MAXPATH} coincide. Then for $f(x) = x^{a_1} + \cdots + x^{a_{n-1}}$ and $g(x) = x^{b_1} + \cdots + x^{b_{n-1}}$

$$f^{2}(x) - f(x^{2}) = g^{2}(x) - g(x^{2}),$$

since the pairw. sums determine $(f(x))^2 - f(x^2) = \sum_{i,j} x^{a_i+a_j} - \sum_i x^{2a_i}$. So

$$f(x^{2}) - g(x^{2}) = f^{2}(x) - g^{2}(x) = (f(x) - g(x))(f(x) + g(x))$$

Factor out as many (x - 1) factors from f - g as you can: $f(x) - g(x) = (x - 1)^k h(x)$. Then

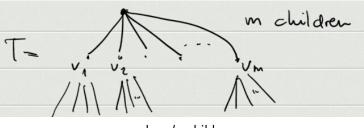
$$f(x) + g(x) = \frac{f^2(x) - g^2(x)}{f(x) - g(x)} = \frac{f(x^2) - g(x^2)}{f(x) - g(x)} = \frac{(x^2 - 1)^k h(x^2)}{(x - 1)^k h(x)} = (x + 1)^k \frac{h(x^2)}{h(x)}$$

Setting x = 1 results in $2(n - 1) = 2^k$, so n - 1 is a power of 2.

Bartha, Burcsi, Lipták

Reconstructibility / Non-reconstructibility

(Case: jumbled/weighted, PATH, Large Unjumble)



v_i has k_i children

Theorem

Let $m \ge 3$. Then there are non-isomorphic trees T_1 , T_2 as above s.t. if all edges are labeled with the same character (resp. the same weight), then T_1 and T_2 are MP_{PATH} -equivalent (resp. MW_{PATH} -equivalent).

Bartha, Burcsi, Lipták

Proof Idea: The generating polynomial is determined by $\sum_i k_i$ and $\sum_i k_i^2$. See Prouhet-Tarry-Escott problem:

Distinct sets $\{a_i\}$ and $\{b_i\}$ of card. *m* s.t. for all $p \leq r : \sum_i a_i^p = \sum_i b_i^p$.

$$f_{\text{PATH}}(T) = r(T, v) + \sum_{i} f(T_{i}) + \sum_{i < j} x^{2} r(T_{i}, v_{i}) r(T_{j}, v_{j})$$
$$r(T, v) = 1 + mx + (\sum_{i} k_{i}) x^{2}$$
(1)

$$f(T_i) = (1+k_i) + k_i x + \binom{k_i}{2} x^2 \text{ and } r(T_i, v_i) = (1+k_i x)$$
(2)

$$\sum_{i < j} r(T_i, v_i) r(T_j, v_j) = \binom{m}{2} + x2(m-1) \sum_i k_i + x^2 \sum_{i < j} k_i k_j$$
(3)

All coefficients can be computed from $\sum_i k_i$ and $\sum_i k_i^2$: $\sum_{i < j} k_i k_j = ((\sum_i k_i)^2 - \sum_i k_i^2)$, and $\sum_i {k_i \choose 2} = \frac{1}{2} (\sum_i k_i^2 - \sum_i k_i)$.

Bartha, Burcsi, Lipták

First results

- Generating polynomial method for multisets of P.v.s or subweights can be generalized to trees
- different types of substructures (subtrees, paths etc.)
- not all nice algebraic properties preserved (not only multiplication!)
- polynomial method can be used for uniqueness / non-uniqueness results
- special cases for certain classes of trees
- reconstruction algorithm for some cases

source: hebrewword.org

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 30 / 31

source: www.israelhebrew.com

Bartha, Burcsi, Lipták

Jumbled and Weighted Subtrees

CPM 2016 31 / 31