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Canada ⇒ Toronto ⇒ Guelph (Fun facts)

I Canada 2nd largest country by area, and has more lakes than the rest of the world

I Toronto is the 4th largest city in North America

I Home of NBA champion Toronto Raptors (basketball)

I Championship parade held yesterday - expected up to 2 million people!

I University of Guelph is 1 hour from Toronto, 30 minutes from Waterloo
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Combinatorial Generation

Primary Goal: Given a combinatorial object (permutations, trees, necklaces,
graphs), find an efficient algorithm to exhaustively list each instance exactly once
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(2) (3) (4) (5) (9) (10)(1) (6) (7) (8)

Important considerations

I Representation

I Ordering: lexicographic, Gray code

Related issues

I Enumeration

I Random generation

I Ranking, unranking
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Such algorithms are often very short but hard to
locate and usually are surprisingly subtle

– Steven Skiena, The Stony Brook Algorithm Repository
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The Combinatorial Object Server

Together with Torsten Mütze (UK) and Aaron Williams (USA), we recently began
revitalizing Frank Ruskey’s Combinatorial Object Server from the mid 1990s.

The revitalized Combinatorial Object Server:

http://combos.org
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An ATM with no Enter Key

Consider an ATM that does not have an ENTER key. It
accepts the last n digits as an attempted password.

To crack a 4 digit password, a brute force attack requires

I 4 · 24 = 64 key presses on a 2 digit keypad

I 4 · 104 = 40, 000 key presses on a 10 digit keypad

Can we do better?
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De Bruijn Sequences

A de Bruijn (DB) sequence is a circular string of length 2n where every binary string
of length n occurs as a substring (exactly once).

0000101101001111 is a DB sequence for n = 4

The 16 unique substrings of length 4 are:

0000, 0001, 0010, 0101, 1011, 0110, 1101, 1010,

0100, 1001, 0011, 0111, 1111, 1110, 1100, 1000.
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Back to Cracking the ATM Password

How can we crack the password more efficiently?

Enter a DB sequence then repeat the first n−1 symbols
to get the wraparound.

I The binary keypad requires 16 + 3 = 19
key presses instead of 64

I The 10-digit keypad requires 104 + 3 = 10, 003
key presses instead of 40,000

PROBLEM: How to efficiently construct a DB sequence?
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Outline of Seminar

1. DB sequence Construction Methods

I Greedy approaches

I Graph theoretic approach - de Bruijn graphs and Euler cycles

I (Linear) Feedback shift registers

I Successor-based approaches

I Concatenation approaches

2. Future Directions
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4
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Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

0001
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

00011

Joe Sawada – University of Guelph 10 / 34



Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
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Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)
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I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

00011111
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

00011110
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

000111101
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

0001111011
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

00011110111
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

00011110110
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

000 1111011001010000
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Greedy Approaches - Prefer 1

I 6th century BCE: DB sequence examples appear in early Sanskrit prosody

I 1894: Rivière questioned the existence of a DB sequence for arbitrary n. It was
solved by Fly Sainte-Marie in the same year

Prefer-1 greedy algorithm (Martin 1934, Ford 1957)

1. Seed with 0n−1 (very important!)

2. Repeat: append the largest bit that does not create a duplicate length n
substring

3. Remove the seed

Example n = 4

1111011001010000
Proved to be the lex largest DB sequence (Fredricksen 1970)

Joe Sawada – University of Guelph 10 / 34



Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

1010
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

10100
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101000
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

1010000
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

10100000
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

10100001
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101000011
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

1010000111
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

10100001111
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101000011111
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101000011110
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

1010000111100
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

1010000111100101101
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101 0000111100101101
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Greedy Approaches - Prefer Same

I 1958: Eldert et al. gives an alternative greedy construction (no proof)

I 1982: Fredricksen re-states the algorithm and outlines proof

I 2018: Alhakim, Sala, S. simplified with new seed

Prefer-same greedy algorithm

1. Seed with length n−1 string · · · 10101 (very important!)

2. Append 0

3. Repeat: append the same bit as the last if it does not create a duplicate length
n substring; otherwise try the opposite

4. Remove the seed

Example n = 4

101 0000111100101101
Note: Run length = 44211211 is the lex largest amongst all DB sequences
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

0000
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

00001
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

000010
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

0000101
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

00001010
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

000010101
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

000010100

Joe Sawada – University of Guelph 12 / 34



Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

0000101001

Joe Sawada – University of Guelph 12 / 34



Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

000010100110111
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Greedy Approaches - Prefer Opposite

Prefer-opposite greedy algorithm (Alhakim, 2010)

1. Seed with length n string 0n (very important!)

2. Repeat: append the opposite bit as the last if it does not create a duplicate
length n substring; otherwise try the same until reaching 01n−1

3. Append 1

Example n = 4

0000101001101111

Joe Sawada – University of Guelph 12 / 34



Implementing Greedy Approaches

For each greedy approach we need to either:

I Store the current sequence and search to see if a substring already exists - or -

I Keep track of which substrings have already been visited

7 Either approach requires exponential O(2n) space

4 The latter approach can generate each new bit in O(n)-time

Joe Sawada – University of Guelph 13 / 34
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I Store the current sequence and search to see if a substring already exists - or -

I Keep track of which substrings have already been visited

7 Either approach requires exponential O(2n) space

4 The latter approach can generate each new bit in O(n)-time
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Graph Theoretic Approach

I 1944: Posthumus conjectures the number of DB sequences

I 1946: de Bruijn proves the conjecture using ta graph model

I 1946: Good independently uses graphs to prove existence

A de Bruijn graph of order n is a directed graph

I the vertices are length n−1 binary strings

I each directed edge labeled y goes from
xb1b2 · · · bn−2 to b1b2 · · · bn−2y

Each length n binary string corresponds to an
edge, and is recovered by considering a vertex
together with an outgoing edge label.

000

100 001

110 011

111

010

101

0

0

0

0

0

0

0

0 1

11

1

1 1

1

1
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Euler Cycles in the de Bruijn Graph

An Euler cycle visits every edge exactly once.

A directed graph G = (V,E) has an Euler cycle
if and only if:

I for every vertex the in-degree equals the
out-degree

I the graph is strongly connected (there is
a path between every pair of vertices)

000

100 001

110 011

111

010

101

0

0

0

0

0

0

0

0 1

11

1

1 1

1

1

A DB sequence is in 1-1 correspondence with an Euler cycle in the de Bruijn graph.
It is obtained by outputting the edge labels from tracing the cycle.

0111101011001000
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Euler Cycles in the de Bruijn Graph

An Euler cycle visits every edge exactly once.

A directed graph G = (V,E) has an Euler cycle
if and only if:

I for every vertex the in-degree equals the
out-degree

I the graph is strongly connected (there is
a path between every pair of vertices)
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How to Find Euler Cycles

Method 1: Hierholzer algorithm

(1) Start at random vertex v and traverse
edges until returning to v, thus creating
a cycle

(2) Start from a vertex already on the cycle
to find a new disjoint cycle and then
merge the 2 cycles together

(3) Repeat (2) until no edges are left

A cycle joining approach that we will see again.
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How to Find Euler Cycles

Method 2: Fleury’s Algo (don’t burn bridges)

(1) Pick a root vertex and compute a
spanning in-tree

(2) Make edges of spanning tree (the
bridges) the last edge on the adjacency
list of each vertex

(3) Traverse edges starting from root
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# of spanning in-trees = # of DB sequences =
22

n−1

2n
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Implementing Euler Cycle Algorithms

Each Euler cycle algorithm requires that the graph be stored in memory

7 Either algorithm requires exponential O(2n) space

7 Difficult to analyze the properties of any specific DB sequence

4 Euler cycle approaches can generate all 22
n−1

2n
DB sequences

Open question: Is there a direct counting argument for the number of
spanning trees and DB sequences? The initial enumeration proof uses matrix
analysis techniques.
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Application: Pseudorandom Bit Generation

DB sequences have the following nice properties:

I Balanced: they contain the same number of 0s as 1s

I Run property: there are an equal number of runs of 0s and 1s of same length

I Span property: they contain every distinct length n binary string as a substring

The discrepancy of a sequence is the maximum difference in the number of 0s as 1s
over all substrings.

0111000101010011 has discrepancy |7− 3| = 4

Some DB sequences have discrepancy ≤ 2n or up to Θ(2n logn/n). What is best for
a pseudo-random number generator?
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Feedback Shift Registers

The construction methods up to this point have significant limitations

I 1967: Golomb publishes Shift Register Sequences focusing on a
feedback shift register construction

I 1982: Fredricksen publishes A survey of full length nonlinear shift register cycle
algorithms

I 2012-2016: Dubrova and Li et al. present non-linear feedback shift register
constructions

A feedback shift register (FSR) is a shift register whose input bit is a function of its
previous state (string of length n)

f(b1b2 · · · bn) = b2b3 · · · bn g(b1 · · · bn)

where g(b1 · · · bn) is the feedback function.

Each primitive polynomial for a given n corresponds to a unique linear FSR that
outputs a DB sequence less the 0n string - called m-sequences

Joe Sawada – University of Guelph 20 / 34
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Feedback Shift Registers

A feedback function for a LFSR based on a primitive polynomial of degree n = 12

g(b1b2 · · · b12) = b1 + b2 + b3 + b9 (mod 2)

n 3 4 5 6 7
primitive polynomials 2 2 6 6 18

DB sequences 2 16 2048 67108864 144115188075855872

7 Need a different primitive polynomial for each n

4 Efficient implementation - O(n) per bit using O(n) space

4 Suitable for implementing in hardware

7 Not ideal for psuedorandom bit generation – the LFSR can be determined after 2n
bits using the Berlekamp-Massey algorithm
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Successor-based constructions

I 1972: Fredricksen gives an efficient successor rule for the prefer-1 (which is the
complement of the prefer-0) greedy construction

Quote by Fredericksen (1982)

When the mathematician on the street is presented with the problem of generating a
full cycle [DB sequence], one of the three things happens: he gives up, or produces a
sequence based on a primitive polynomial, or produces the prefer-one sequence. Only
rarely is a new algorithm proposed.

I 1984, 1987: Etzion and Lempel present successor rules based on simple FSRs

I 1990: Huang presents a new successor rule construction using the CCR

I 1991: Jansen, Franx and Boekee present a generic FSR-based successor rule
approach

I 2013, 2017: Dragon, Hernandez, S., Williams, Wong, present a simple successors for
k-ary alphabet

Joe Sawada – University of Guelph 22 / 34
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Successor Rules

A DB successor for a given DB sequence is a (feedback) function

NEXT (b1b2 · · · bn) =

{
0 if conditions
1 otherwise

that returns the bit following the substring b1b2 · · · bn

Feedback functions based on primitive polynomials are “almost” DB successors

Most published successors are based on simple feedback functions

I PCR(b1b2 · · · bn) = b1 induces necklace equivalence classes

I CCR(b1b2 · · · bn) = b1

I PSR(b1b2 · · · bn) = b1 + b2 + · · ·+ bn (mod 2)

I CSR(b1b2 · · · bn) = 1 + b1 + b2 + · · ·+ bn (mod 2)
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Necklaces

A necklace is the lexicographically least representative in an equivalence class of
strings under rotation.

Testing whether or not a string is a necklace can be done in O(n) time (Booth, 1980)
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Simple DB Successors

Successor for the prefer-0 greedy construction (Fredricksen, 1972)

Let j be the smallest index of b1b2 · · · bn such that bj = 0 and j > 1, or j = n+ 1 if
no such index exists. Let γ = bjbj+1 · · · bn01j−2.

NEXT (b1b2 · · · bn) =

{
b1 if γ is a necklace
b1 otherwise

(Jansen, Franx, Boekee, 1991) and later by (Wong 2013)

NEXT (b1b2 · · · bn) =

{
b1 if b2b3 · · · bn1 is a necklace
b1 otherwise

(Gabric, S., Williams, Wong, 2018)

NEXT (b1b2 · · · bn) =

{
b1 if 0b2b3 · · · bn is a necklace
b1 otherwise

Joe Sawada – University of Guelph 25 / 34
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JFB and Wong successor rule (necklace spanning tree n = 5)
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Very Simple DB Successors

One based on the CCR (Gabric, S., Williams, Wong, 2018 )

NEXT (b1b2 · · · bn) =

{
b1 if b2b3 · · · bn0 6= 0n is a co-necklace
b1 otherwise

Note: α is a co-necklace if αα is a necklace.

4 Each bit can be generated in O(n)-time using O(n)-space for any n

Can we do better?
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Concatenation Approaches

1977-1978: Fredricksen, Kessler, and Maiorana (FKM) present the first concatenation
construction

FKM Algorithm

1. List the necklaces of length n in lexicographic order

2. Concatenate together their periodic reductions

Example for n = 6
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2. Concatenate together their periodic reductions

Example for n = 6

000000, 000001, 000011, 000101, 000111, 001001, 001011,

001101, 001111, 010101, 010111, 011011, 011111, 111111

DB seq: 0000001000011000101000111001001011001101001111010101110110111111
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Concatenation Approaches

Amazingly, the FKM algorithm produces the lexicographically smallest DB sequence and it
is equivalent to the prefer-0 greedy construction

44 Each bit can be generated in O(1)-amortized time using O(n)-space for any n
(Ruskey, Savage, Wang, 1992)

Equivalent construction

1. List the Lyndon words of length that divide n in lexicographic order

2. Concatenate them together

While equivalent for lexicographic ordering, the two constructions are not the same
when we consider other necklace orderings! Try it with colex ordering.
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Concatenation Approaches

I 2012: Ruskey, S., and Williams apply cool-lex ordering on
necklaces

I 2013, 2017: Dragon, Hernandez, S., Williams, Wong use colex
order on necklaces

I 2017: Gabric and S. find a co-necklace concatenation construction

Joe Sawada – University of Guelph 30 / 34



Summary of Concatenation Approaches

1. Greedy approaches - exponential space

2. Graph theoretic, Euler cycles - exponential space

3. Linear feedback shift registers - require primitive polynomial for each n

4. Successor rules - very simple and efficient

5. Concatenation approaches very efficient, but only several known approaches

Joe Sawada – University of Guelph 31 / 34



Generalization: Universal Cycles
Universal cycles are generalizations of DB sequences to other sets S of objects.

A universal cycle for a set S is a circular sequence of length |S| such that each
element s ∈ S is represented as a length n substring exactly once.

The notion of de Bruijn graphs can be generalized as well. Such a set S will have a
universal cycle if and only if its corresponding de Bruijn graph has an Euler cycle.

I The set of permutations of order n in one line notation does not have a universal
cycle. However, they do exist for a shorthand representation.

I Combinations C(n, k) do not have a universal cycle. The following de Bruijn graph
for C(4, 2) is not connected.
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debruijnsequence.org

A new resource with information on these constructions and more:

http://debruijnsequence.org

Contributors: JS, Aaron Williams, Dennis Wong, Daniel Gabric, Torsten Mütze

Joe Sawada – University of Guelph 33 / 34
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Future Directions

1. Find efficient successor rules for the prefer-same and prefer-opposite greedy
approaches (recently solved!)

2. Find constructions for a 2-dimensional de Bruijn torus (existence questions)

3. Find universal cycles for other combinatorial objects (unlabeled necklaces)

4. Efficiently construct the lexicographically smallest shorthand permutation UC

5. Construct a DB sequence with discrepancy close to what is expected from a random
sequence

– Grazie –
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