Dollar or no dollar, that is the question

New combinatorial results on the Burrows-Wheeler-Transform

Zsuzsanna Lipták

University of Verona (Italy)

Seminario de Teoria y Datos
PUC Chile, Santiago, Nov. 4, 2022

Part I:

Introduction

The BWT

The BWT

source: group-media.mercedes-benz.com

The BWT

source: group-media.mercedes-benz.com
(BWT here stands for: Best Water Technology)

The Burrows-Wheeler-Transform

Ex.: $T=$ banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)	all rotations, sorted	
banana	\longrightarrow	abanan
ananab	lexicographic	anaban
nanaba	order	ananab
anaban		banana
nabana	nabana	
abanan	nanaba	

Take a string (word) T, list all of its rotations, sort them lexicographically, concatenate last characters: bwt (T).

BWT history

- invented by David Wheeler in the 70s as a lossless text compression algorithm

- fully developed and written up together with Michael Burrows in 1994
- appeared as a technical report only, never published
- popularized by Julian Seward's implementation: bzip and bzip2 (1996)

BWT history

- invented by David Wheeler in the 70s as a lossless text compression algorithm

- fully developed and written up together with Michael Burrows in 1994
- appeared as a technical report only, never published
- popularized by Julian Seward's implementation: bzip and bzip2 (1996)
source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Why can the BWT be useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

	F \quad L
0	abanan
1	anaban
2	ananab
3	banana
4	nabana
5	nanaba

Why can the BWT be useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

	F	L
0	abanan	- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order:
1	anaban	aaabnn
2	ananab	
3	banana	
4	nabana	
5	nanaba	

Why can the BWT be useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

F		
F	Obs. 1: $\mathrm{F}=$ all characters of T in lex. order:	
0	abanan	aaabnn
1	anaban	Obs. 2: for all $i: L_{i}$ precedes F_{i} in $T:$
2	ananab	$T=\underset{\substack{\text { banana } \\ 0 \\ 3 \\ \text { bana }}}{ }$ banana
4	nabana	
5	nanaba	

Why can the BWT be useful in text compression?

BWT-matrix ($\mathrm{F}=$ first column, $\mathrm{L}=$ last column)

	F \quad L
0	abanan
1	anaban
2	ananab
3	banana
4	nabana
5	nanaba

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order: aaabnn
- Obs. 2: for all $i: L_{i}$ precedes F_{i} in T :
$T=\underset{0}{\text { banana }}$
- Obs. 3: all occurrences of a substring appear in consecutive rows

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: $T=$ banana has 2 occurrences of the pattern ana
2 occ's of ana

abanan
anaban
ananab
banana
nabana
nanaba

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: $T=$ banana has 2 occurrences of the pattern ana

2 occ's of ana	2 occ's of na preceded by
abanan	abanan
anaban	anaban
ananab	ananab
banana	banana
nabana	nabana
nanaba	nanaba

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: $T=$ banana has 2 occurrences of the pattern ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: $T=$ banana has 2 occurrences of the pattern ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

So: we get a run of a's of length 2, and a run of n's of length 2

Why can the BWT be useful in text compression?

- Obs. 1: $\mathrm{F}=$ all characters of T in lex. order.
- Obs. 2: L_{i} precedes F_{i} in T
- Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: $T=$ banana has 2 occurrences of the pattern ana

2 occ's of ana	2 occ's of na preceded by a	2 occ's of a preceded by n
abanan	abanan	abanan
anaban	anaban	anaban
ananab	ananab	ananab
banana	banana	banana
nabana	nabana	nabana
nanaba	nanaba	nanaba

So: we get a run of a's of length 2 , and a run of n's of length $2(2=$ no. occ's $)$.

Of course, things are a bit more complicated:

Of course, things are a bit more complicated:

rotation	BWT
he caverns measureless to man, And sank in tumult to	t
he caves. It was a miracle of rare device, A sunny pleasure-	t
he dome of pleasure Floated midway on the waves; Where was	t
he fountain and the caves. It was a miracle of rare devic	t
he green hill athwart a cedarn cover! A savage place! as	t
he hills, Enfolding sunny spots of greenery. But oh! that	t
he milk of Paradise.	t
he mingled measure From the fountain and the caves. It was a	t
he on honey-dew hath fed, And drunk the milk of Paradise.	\checkmark
he played, Singing of Mount Abora. Could I revive within me	s
he sacred river ran, Then reached the caverns measureless	t
he sacred river, ran Through caverns measureless to man	t
he sacred river. Five miles meandering with a mazy motion	t
he shadow of the dome of pleasure Floated midway on the waves	T
he thresher's flail: And mid these dancing rocks at once and	t
he waves; Where was heard the mingled measure From the	t

Kubla Kahn by Samuel Coleridge

- many the's, some he, she, The

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding
- nowadays: using RLE (runlength-encoding)

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding
- nowadays: using RLE (runlength-encoding)
- RLE: replace equal-letter-runs by (character, integer)-pair
- Ex.: bbbbbbbbcaaaaaaaaaabb $\mapsto(\mathrm{b}, 8),(\mathrm{c}, 1),(\mathrm{a}, 11),(\mathrm{b}, 2)$

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding
- nowadays: using RLE (runlength-encoding)
- RLE: replace equal-letter-runs by (character, integer)-pair
- Ex.: bbbbbbbbcaaaaaaaaaaabb $\mapsto(\mathrm{b}, 8),(\mathrm{c}, 1),(\mathrm{a}, 11),(\mathrm{b}, 2)$
- good if few runs w.r.t. length of string

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding
- nowadays: using RLE (runlength-encoding)
- RLE: replace equal-letter-runs by (character, integer)-pair
- Ex.: bbbbbbbbcaaaaaaaaaaabb $\mapsto(b, 8),(c, 1),(a, 11),(b, 2)$
- good if few runs w.r.t. length of string
- Def.: $r(T)=\#$ runs of $\operatorname{bwt}(T)$

Ex.: r(banana) $=3$
recall: $\operatorname{bwt}($ banana $)=$ nnbaaa

Compression with the BWT

- in original paper: using Move-to-front and Huffman/arithmetic coding
- nowadays: using RLE (runlength-encoding)
- RLE: replace equal-letter-runs by (character, integer)-pair
- Ex.: bbbbbbbbcaaaaaaaaaaabb $\mapsto(b, 8),(c, 1),(a, 11),(b, 2)$
- good if few runs w.r.t. length of string
- Def.: $r(T)=\#$ runs of $\operatorname{bwt}(T)$

Ex.: r (banana) $=3$
recall: $\operatorname{bwt}($ banana $)=$ nnbaaa

- for repetitive strings, r is small

BWT magic

The BWT ...

- requires same space as T in bits: $n \log \sigma$ bits $\quad \sigma=$ alphabetsize (suffix array: $n \log n$ bits, suffix tree: much more-still $\mathcal{O}(n)$) $n=|T|$
- easier to compress than T, if T repetitive
- very fast (!!!) pattern matching (most basic problem on strings)
- computable in linear time $\mathcal{O}(n)$
- reversible in linear time $\mathcal{O}(n)$
- can replace text (suffix array, suffix tree: no)

Compressed data structures for strings

Data structures based on the BWT:

- FM-index [Ferragina and Manzini, FOCS 2000]
- RLFM-index [Mäkinen and Navarro, CPM 2005]
- r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]
- some recent developments on r-index [Rossi et al. JCB 2022; Giuliani et al. SEA 2022; Cobas et al. CPM 2021; Boucher et al. SPIRE 2021]

Some tools in bioinformatics (aligners):

- bwa [Durbin and Li, 2009]
ca. 41,000 cit.
- bowtie [Langmead and Salzberg, 2010]
ca. 36,000 cit.
- soap2 [Li et al., 2009]

The parameter r

Def. String $T, r=$ number of runs of $\operatorname{bwt}(T)$.

- size of data structures $\mathcal{O}(r)$
- algorithms' running time ideally a function of r (not of $n=|T|$)
- increasingly used as a repetitiveness measure of T
- some papers on r :
- Manzini: "An analysis of the Burrows-Wheeler-Transform" [JACM 2001]
- Kempa and Kociumaka: "Resolution of the Burrows-Wheeler Transform Conjecture" [FOCS 2020]
- Navarro: "Indexing Highly Repetitive String Collections, Part I: Repetitiveness Measures" [ACM Comp. Surv., 2021]
- Mantaci et al.: "Measuring the clustering effect of BWT via RLE" [TCS 2017]

BWT from a combinatorial perspective

- special case of the Gessel-Reutenauer-bijection [Crochemore, Désarménien, Perrin, 2004]
- introduction of the extended BWT (eBWT), a generalization of the BWT to multisets of strings [Mantaci et al. 2007]
- strings T with fully clustering BWTs (e.g. $\operatorname{bwt}(T)=$ bbbbaaccc)
- full characterization for $\sigma=2$ [Mantaci et al., 2003]
- partial characterization for $\sigma>2$ [Puglisi et al., 2008]
- characterization via interval exchanges [Ferenczi et al., 2013]
- fixpoints of the BWT [Mantaci et al., 2017]
- characterization of BWT images [Likhomanov and Shur, 2011]

Good overview: Rosone and Sciortino: "The Burrows-Wheeler Transform between Data Compression and Combinatorics on Words." [CiE 2013]

- two research communities working on the BWT
- (1) data structures and algorithms on strings and (2) combinatorics on words
- little interaction until...

Dagstuhl workshop "25 years of the Burrows-Wheeler-Transform" (2019) organized by T. Gagie, G. Manzini, G. Navarro, J. Stoye

But: The two communities use slightly different definitions of the BWT:

- Data Structures and Algorithms on Strings: It is assumed that each string terminates with an end-of-string character (denoted \$, smaller than all others)
- Combinatorics on Words: no such assumption
$T=$ banana $\$$
$T=$ banana

But: The two communities use slightly different definitions of the BWT:

- Data Structures and Algorithms on Strings: It is assumed that each string terminates with an end-of-string character (denoted \$, smaller than all others)
- Combinatorics on Words: no such assumption
$T=$ banana $\$$
$T=$ banana

Part II:

Dollar or no dollar, that is the question

1. The transform itself

Different transforms

banana	banana\$
abanan	\$banana
anaban	a\$banan
ananab	ana\$ban
banana	anana\$b
nabana	banana\$
nanaba	na\$bana
	nana\$ba
nnbaaa	annb\$aa

Different transforms

	without dollar (banana)	with dollar (banana\$)
the transform	nnbaaa	annb\$aa

Different transforms

	without dollar (banana)	with dollar (banana\$)
the transform	nnbaaa	annb\$aa
remove \$	nnbaaa	annbaa

Different transforms

	without dollar (banana)	with dollar (banana\$)
the transform	nnbaaa	annb\$aa
remove $\$$	nnbaaa	annbaa
$\#$ runs r	3	4

Different transforms

	without dollar (banana)	with dollar (banana\$)
the transform	nnbaaa	annb\$aa
remove \$	nnbaaa	annbaa
$\#$ runs r	3	4

- Thm. There exist strings for which the difference in r is $\Theta(\log n)$.
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

Different transforms

	without dollar (banana)	with dollar (banana\$)
the transform	nnbaaa	annb\$aa
remove \$	nnbaaa	annbaa
$\#$ runs r	3	4

- Thm. There exist strings for which the difference in r is $\Theta(\log n)$.
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]
- This is asymptotically tight: here $r=O(1)$, and upper bound is $\mathcal{O}(\log r \log n)$.
[Akagi, Funakoshi, Inenaga, 2021]

Different transforms

[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]
Thm. There exist strings for which the difference in r is $\Theta(\log n)$.

- $r(T \$)$ increases by $\log n$: Fibonacci words of even order $T=F i b(2 k), r(T)=2, r(T \$)=2 k-1$
ex.:
$r(F i b(8))=2, r(F i b(8) \$)=7$
$r(F i b(12))=2, r(F i b(12) \$)=11$
- $r(T \$)$ decreases by $\log n$: Fibonacci words of odd order without the first character $T=\operatorname{Fib}(2 k+1)[1:], r(T)=2 k, r(T \$)=5$
ex:
$r(\operatorname{Fib}(13)[1:])=12, r(\operatorname{Fib}(13)[1:] \$)=5$
$r(\operatorname{Fib}(15)[1:])=14, r(\operatorname{Fib}(15)[1:] \$)=5$

Different transforms

[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]
Thm. There exist strings for which the difference in r is $\Theta(\log n)$.

- $r(T \$)$ increases by $\log n$: Fibonacci words of even order $T=F i b(2 k), r(T)=2, r(T \$)=2 k-1$
ex.:
$r(F i b(8))=2, r(F i b(8) \$)=7$
$r(F i b(12))=2, r(F i b(12) \$)=11$
- $r(T \$)$ decreases by $\log n$: Fibonacci words of odd order without the first character $T=\operatorname{Fib}(2 k+1)[1:], r(T)=2 k, r(T \$)=5$
ex:
$r(\operatorname{Fib}(13)[1:])=12, r(\operatorname{Fib}(13)[1:] \$)=5$
$r(\operatorname{Fib}(15)[1:])=14, r(F i b(15)[1:] \$)=5$
- both additive and multiplicative difference

2. BWT construction

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA), then construct the BWT from the SA, using: $L_{i}=T_{S A[i]-1}($ recall Obs. 2).

```
ex. T= banana$.
SA
    $
    a$
    3 ana$
    1 anana$
    0 banana$
    na$
    2 nana$
```


BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA), then construct the BWT from the SA, using: $L_{i}=T_{S A[i]-1}($ recall Obs. 2).

$$
\text { ex. } T=\underset{0123456}{\operatorname{banana}} .
$$

SA		SA	L
6	\$	6	\$banana
5	a\$	5	a\$banan
3	ana\$	3	ana\$ban
1	anana\$	1	anana\$b
0	banana\$	0	banana\$
4	na\$	4	na\$bana
2	nana\$	2	nana\$ba

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA), then construct the BWT from the SA, using: $L_{i}=T_{S A[i]-1}$ (recall Obs. 2).
ex. $T=\underset{0123456}{\text { banana }} \$$.

SA		SA	L
6	$\$$	6	\$banana
5	a\$	5	a\$banan
3	ana\$	3	ana\$ban
1	anana\$	1	anana\$b
0	banana\$	0	banana\$
4	na\$	4	na\$bana
2	nana\$	2	nana\$ba

Thus: SA-construction in $\mathcal{O}(n)$ time \Rightarrow BWT-construction in $\mathcal{O}(n)$ time.

BWT construction without dollar

- This works fine if there is a $\$$.
- What if there is no dollar?

BWT construction without dollar

Problem 1:
 banana
 012345
 SA
 5 a
 3 ana
 1 anana
 0 banana
 4 na
 2 nana
 nnbaaa \checkmark

BWT construction without dollar

Problem 1:

$\substack{\text { banana } \\ 012345}$			
SA	SA	L	
5	a	5	abanan
3	ana	3	anaban
1	anana	1	ananab
0	banana	0	banana
4	na	4	nabana
2	nana	2	nanaba
nnbaaa	\checkmark		

BWT construction without dollar

Problem 1:

banana 012345	SA	L	anaban 012345
SA		5	abanan

BWT construction without dollar

Problem 1:

			$\begin{aligned} & \text { anaban } \\ & 012345 \end{aligned}$	
	SA	L	SA	
5 a	5	abanan	2	aban
3 ana	3	anaban	4	an
1 anana	1	ananab	0	anaban
0 banana	0	banana	3	ban
4 na	4	nabana	5	n
2 nana	2	nanaba	1	naban
nnbaaa \checkmark				naaa

BWT construction without dollar

Problem 1:

$\begin{aligned} & \text { banana } \\ & 012345 \end{aligned}$	$\begin{aligned} & \text { anaban } \\ & 012345 \end{aligned}$					
SA	SA	L	SA		SA	L
5 a	5	abanan	2	aban	2	abanan
3 ana	3	anaban	4	an	4	ananab
1 anana	1	ananab	0	anaban	0	anaban
0 banana	0	banana	3	ban	3	banana
4 na	4	nabana	5	n	5	nabana
2 nana	2	nanaba	1	naban	1	nabana
nnbaaa				naaa		

BWT construction without dollar

Problem 1:

$$
\begin{aligned}
& \text { banana } \\
& 012345
\end{aligned}
$$

anaban
012345

SA		SA	L	SA		SA	L
5	a	5	abanan	2	aban	2	abanan
3	ana	3	anaban	4	an	4	ananab
1	anana	1	ananab	0	anaban	0	anaban
0	banana	0	banana	3	ban	3	banana
4	na	4	nabana	5	n	5	nabana
2	nana	2	nanaba	1	naban	1	nabana
	baaa				naaa		

N.B. $\operatorname{suf}_{i}<\operatorname{suf}_{j} \Leftrightarrow \operatorname{conj}_{i}<\operatorname{conj}_{j}$ does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

BWT construction without dollar

Problem 2: If T not primitive, then CA not defined (several identical rotations):
$\operatorname{nanana}_{012345}=(n a)^{3}$
CA
1? ananan
3? ananan
5? ananan
0? nanana
2? nanana
4? nanana

Linear-time BWT construction without dollar

- For \$-terminated strings, neither problem exists.
- For Lyndon words (primitive and $<$ all their rotations), neither problem exists.
- All previous BWT-construction algorithms either use \$ or Lyndon rotations.

Our algorithm [Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]:

- first linear-time BWT-construction algorithm which uses neither \$ nor Lyndon rotations
- adaptation of the SAIS-algorithm for SA-construction [Nong et al., 2011]
- previously, SAIS had been adapted for $T \$$ [Okanohara and Sadakane 2009], and to the bijective BWT [Bannai et al., 2021]

Our algorithm for BWT construction

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]

1. assign circular types to positions
2. sort LMS-substrings
3. assign new names to LMS-substrings
4. construct new string, solve recursively
5. induce CA from relative order of LMS-positions

Step 1	Step 2	
012345	$a \quad b$	b\|n
banana	S* 135	
LSLSLS	L	024
* * *	S 513	
	5130	024

Step 3

5	a b	a	A
1	a	n	a
3	a	n a	B

Step 4

$\begin{array}{\|llll\|} \hline & \hline & 1 & 2 \end{array} \frac{A}{1}$		
		21
		21

Step 5

a	$b \mid n$
531	042
CA 531	042
BWT n n b	a a a

BWT without dollar

Implementations of SAIS for conjugate array (cais) for

- BWT without \$
- eBWT (extended BWT) (see later)
- BBWT (bijective BWT)
- option for including dollar(s)

See https://github.com/davidecenzato/cais

3. BWT of string collections

How to compute the BWT of a multiset of strings?

[Cenzato and L., CPM 2022]
ex. $\mathcal{M}=\{A T A T G, T G A, A C G, A T C A, G G A\}$
It turns out that there are several non-equivalent methods in use:

variant (our terminology)	result on example	tools
eBWT	CGGGATGTACGTTAAAAA	pfpebwt
dollarEBWT	GGAAACGG\$\$\$TTACTGT\$AAA\$	G2BWT, pfpebwt, msbwt
multidoIBWT	GAGAAGCG\$\$\$TTATCTG\$AAA\$	BCR, ropebwt2, nvSetBWT, Merge-BWT, eGSA, eGAP,
bwt-lcp-parallel, gsufsort concatBWT colexBWT	\$AAGAGGGC\$\#\$TTACTGT\$AAA\$	
BigBWT, tools for single strings		
ropebwt2		

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega} \mathrm{ab}$

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega} \mathrm{ab}$ $T<_{\omega} S$ if (a) $T^{\omega}<S^{\omega}$, or (b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega} \mathrm{ab}$ $T<{ }_{\omega} S$ if (a) $T^{\omega}<S^{\omega}$, or (b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$
2. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right)$

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega}$ ab $T<{ }_{\omega} S$ if (a) $T^{\omega}<S^{\omega}$, or (b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$
2. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right)$
3. multidolBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$, where dollars are smaller than characters from Σ, and $\$_{1}<\$_{2}<\ldots<\$_{k}$

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega}$ ab $T<_{\omega} S$ if (a) $T^{\omega}<S^{\omega}$, or (b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$
2. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right)$
3. multidolBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$, where dollars are smaller than characters from Σ, and $\$_{1}<\$_{2}<\ldots<\$_{k}$
4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$

The different BWT variants

1. eBWT (\mathcal{M}) : the extended BWT of Mantaci et al. (2007) uses omega-order instead of lexicographical order: e.g. aba $<_{\omega}$ ab $T<{ }_{\omega} S$ if (a) $T^{\omega}<S^{\omega}$, or (b) $T^{\omega}=S^{\omega}, T=U^{k}, S=U^{m}$ and $k<m$
2. dollarEBWT $(\mathcal{M})=\operatorname{eBWT}\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right)$
3. multidolBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$, where dollars are smaller than characters from Σ, and $\$_{1}<\$_{2}<\ldots<\$_{k}$
4. concatBWT $(\mathcal{M})=\operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$, where $\#<\$$
5. colexBWT $(\mathcal{M})=\operatorname{multidol}(\mathcal{M}, \gamma)$, where γ is the permutation corresponding to the colexicographic ('reverse lexicographic').

Interesting intervals

ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

BWT variant	example	
non-sep.based eBWT (\mathcal{M})	CGGGATGTACGTTAAAAA	
separator-based dollarEBWT (\mathcal{M})	GGAAACGG\$\$\$TTACTGT\$AAA\$	
multidoIBWT (\mathcal{M})	GAGAAGCG\$\$\$TTATCTG\$AAA\$	
concatBWT (\mathcal{M}) colexBWT (\mathcal{M})	AAGAGGGC\$\$\$TTACTGT\$AAA\$	

Interesting intervals

ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

BWT variant	example	
non-sep.based eBWT (\mathcal{M})	CGGGATGTACGTTAAAAA	
separator-based dollarEBWT (\mathcal{M})	GGAAACGG\$\$\$TTACTGT\$AAA\$	
multidoIBWT (\mathcal{M})	GAGAAGCG\$\$\$TTATCTG\$AAA\$	
concatBWT (\mathcal{M}) colexBWT (\mathcal{M})	AAGAGGGC\$\$\$TTACTGT\$AAA\$	

in color: interesting intervals

Interesting intervals

An interval $[i, j]$ is interesting if it is the SA-interval of a left-maximal shared suffix U. Then and only then can two separator-based BWTs differ in $[i, j]$.

$$
\text { ex. } \mathcal{M}=\{\text { ATATG, TGA, ACG, ATCA, GGA }\}
$$

concBWT

mdolBWT

dolEBWT

Order of shared suffixes

 ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$| BWT variant | example | order of shared suffixes |
| :--- | :--- | :--- |
| eBWT (\mathcal{M}) | the extended BWT
 CGGGATGTACGTTAAAAA | omega-order of strings
 (mixed in with substrings) |
| dollarEBWT (\mathcal{M}) | eBWT $\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right.$
 GGAAACGG\$\$\$TTACTGT\$AAA\$ | lexicographic order of strings |
| multidoIBWT (\mathcal{M}) | bwt $\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \${ }_{k}\right)$
 GAGAAGCG\$\$\$TTATCTG $\$$ AAAS | input order of strings |
| concatBWT (\mathcal{M}) | bwt $\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right)$
 AAGAGGGC\$\$\$TTACTGT\$AAA\$ | lexicographic order of
 subsequent strings in input |
| colexBWT (\mathcal{M}) | multidol $(\mathcal{M}, \gamma), \gamma=$ colex
 AAAGGCG $\$ \$ \$ T T A C T G T \$ A A A \$ ~$ | colexicographic order |

Order of shared suffixes

ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\}$

BWT variant	example	order of shared suffixes
eBWT(M)	the extended BWT CGGGATGTACGTTAAAAA	omega-order of strings (mixed in with substrings)
dollarEBWT (\mathcal{M})	eBWT $\left(\left\{T_{i} \$: T_{i} \in \mathcal{M}\right\}\right.$ GGAAACGG\$\$\$TTACTGT\$AAA\$	lexicographic order of strings
multidolBWT (\mathcal{M})	$\operatorname{bwt}\left(T_{1} \$_{1} T_{2} \$_{2} \cdots T_{k} \$_{k}\right)$ GAGAAGCG\$\$\$TTATCTG\$AAA\$	input order of strings
concatBWT (\mathcal{M})	$\begin{aligned} & \operatorname{bwt}\left(T_{1} \$ T_{2} \$ \cdots T_{k} \$ \#\right) \\ & \text { AAGAGGGC\$\$\$TTACTGT\$AAA\$ } \end{aligned}$	lexicographic order of subsequent strings in input
colexBWT (\mathcal{M})	multidol $(\mathcal{M}, \gamma), \gamma=$ colex AAAGGCGG\$\$\$TTACTGT\$AAA\$	colexicographic order

In the k-prefix (shared suffix: $\mathbb{\$}$) of the BWT we see the output order.

Input order dependence

N.B. multidolBWT and concatBWT depend on the input order!

```
\mathcal{M}
\mp@subsup{\mathcal{M}}{2}{}=[ACG,ATATG,GGA,TGA,ATCA] mdolBWT}(\mp@subsup{\mathcal{M}}{2}{})=\overparen{GGAAAGGC$$$TTACTGT$AAA$
\(\mathcal{M}_{1}=\) [ATATG, TGA , ACG , ATCA, GGA] \(\operatorname{concBWT}\left(\mathcal{M}_{1}\right)=\) AAGAGGGC\$\$\$TTACTGT\$AAA\$ \(\mathcal{M}_{2}=[\) ACG, ATATG, GGA, TGA, ATCA \(] \quad \operatorname{concBWT}\left(\mathcal{M}_{2}\right)=\) AGAGACGG\$\$\$TTACTTG\$AAA\$
```


The parameter r

Results regarding r on four short sequence datasets, of all BWT variants.

Left: average runlength (n / r). Right: number of runs r (percentage increase with respect to the optimal BWT of [Bentley et al., ESA 2020]). (In each experiment: 500,000 seq.s of length between 50 and 301.)

The different BWT variants

- BWT variants differ significantly among each other ($>11 \%$ Hamming distance on some data sets)
- we theoretically explained these differences ("interesting intervals")
- differences especially high on large sets of short sequences
- multidoIBWT and concatBWT depend on the input order
- differences extend to parameter r (number of runs of the BWT) (up to a factor of 4.2 in our experiments)

The different BWT variants

- BWT variants differ significantly among each other ($>11 \%$ Hamming distance on some data sets)
- we theoretically explained these differences ("interesting intervals")
- differences especially high on large sets of short sequences
- multidoIBWT and concatBWT depend on the input order
- differences extend to parameter r (number of runs of the BWT) (up to a factor of 4.2 in our experiments)

We suggest

- to standardize the definition of r (colexBWT or optBWT)
- optBWT now implemented (see Cenzato and L., WCTA 2022; Cenzato, Guerrini, L., Rosone, forthcoming)

4. A side question

What is the output order of the concatBWT?

ex. $\mathcal{M}=\{$ ATATG, TGA, ACG, ATCA, GGA $\} \mathcal{M}=[$ ATATG, TGA, ACG, ATCA, GGA $]$
concatBWT $(\mathcal{M})=\operatorname{BWT}(\operatorname{ATATG\$ TGA\$ ACG\$ ATCA\$ GGA\$ \#)~}$
Map strings to their lexicographic rank:

ACG	\mapsto	a
ATATG	\mapsto	b
ATCA	\mapsto	c
GGA	\mapsto	d
TGA	\mapsto	e

$\mathcal{M}=\underbrace{\text { ATATG }} \$ \underbrace{\text { TGA }} \$ \underbrace{\text { ACG }} \$ \underbrace{\text { ATCA }} \$ \underbrace{\text { GGA }} \$ \# \mapsto$ beacd $\#$.

What is the output order of the concatBWT?

$$
\mathcal{M}=[\mathrm{ATATG}, \mathrm{TGA}, \mathrm{ACG}, \mathrm{ATCA}, \mathrm{GGA}]
$$

index	concatBWT	rotation
23	A	\$\#ATATG\$TGA\$ACG\$ATCA\$GGA
10	A	\$ACG\$ATCA\$GGA\$\#ATATG\$TGA
14	G	\$ATCA\$GGA\$\#ATATG\$TGA\$ACG
19	A	\$GGA\$\#ATATG\$TGA\$ACG\$ATCA
6	G	\$TGA\$ACG\$ATCA\$GGA\$\#ATATG

input: b e a c d \# output: deach

What is the output order of the concatBWT?

$\mathcal{M}=[$ ATATG, TGA, ACG, ATCA, GGA $]$

index	concatBWT	rotation
23	A	\$\#ATATG\$TGA\$ACG\$ATCA\$GGA
10	A	\$ACG\$ATCA\$GGA\$\#ATATG\$TGA
14	G	\$ATCA\$GGA\$\#ATATG\$TGA\$ACG
19	A	\$GGA\$\#ATATG\$TGA\$ACG\$ATCA
6	G	\$TGA\$ACG\$ATCA\$GGA\$\#ATATG

input: b e a c d \# output: d e a c b
BWT $($ beacd\# $)=$ de\#acb \rightsquigarrow deacb

What is the output order of the concatBWT?

$\mathcal{M}=[$ ATATG, TGA, ACG, ATCA, GGA $]$

index	concatBWT	rotation
23	A	\$\#ATATG\$TGA\$ACG\$ATCA\$GGA
10	A	\$ACG\$ATCA\$GGA\$\#ATATG\$TGA
14	G	\$ATCA\$GGA\$\#ATATG\$TGA\$ACG
19	A	\$GGA\$\#ATATG\$TGA\$ACG\$ATCA
6	G	\$TGA\$ACG\$ATCA\$GGA\$\#ATATG

input: b e a c d \# output: d e a c b
BWT $($ beacd\# $)=$ de\#acb \rightsquigarrow deacb
output $=$ BWT(input\#)

What is the output order of the concatBWT?

$\mathcal{M}=[$ ATATG, TGA, ACG, ATCA, GGA $]$

index	concatBWT	rotation
23	A	\$\#ATATG\$TGA\$ACG\$ATCA\$GGA
10	A	\$ACG\$ATCA\$GGA\$\#ATATG\$TGA
14	G	\$ATCA\$GGA\$\#ATATG\$TGA\$ACG
19	A	\$GGA\$\#ATATG\$TGA\$ACG\$ATCA
6	G	\$TGA\$ACG\$ATCA\$GGA\$\#ATATG

input: b e a c d \# output: d e a c b
BWT $($ beacd\# $)=$ de\#acb \rightsquigarrow deacb
output $=$ BWT(input\#) \quad (remove the $\#$ from the output)

Part III:

Conclusion

Dollar or no dollar, that is the question.

Conclusion

The two definitions of the BWT (with and without dollar) are non-equivalent. In particular,

Conclusion

The two definitions of the BWT (with and without dollar) are non-equivalent. In particular,

1. differences in the transform itself: $r(T)$ vs. $r(T \$)$

Conclusion

The two definitions of the BWT (with and without dollar) are non-equivalent. In particular,

1. differences in the transform itself: $r(T)$ vs. $r(T \$)$
2. BWT construction: cannot use SA when no dollar is present

Conclusion

The two definitions of the BWT (with and without dollar) are non-equivalent. In particular,

1. differences in the transform itself: $r(T)$ vs. $r(T \$)$
2. BWT construction: cannot use SA when no dollar is present
3. BWT of string collections: several non-equivalent methods in use

Acknowledgements (co-authors)

Literature

- C. Boucher, D. Cenzato, Zs. Lipták, M. Rossi, M. Sciortino: Computing the original eBWT faster, simpler, and with less memory. SPIRE 2021.
- S. Giuliani, S. Inenaga, Zs. Lipták, M. Sciortino: On bit catastrophes for the Burrows-Wheeler-Transform, forthcoming.
- D. Cenzato and Zs. Lipták: A theoretical and experimental analysis of BWT variants for string collections, CPM 2022.
- D. Cenzato and Zs. Lipták: Computing the optimal BWT using SAIS, WCTA 2022.
- D. Cenzato, V. Guerrini, Zs. Lipták, and G. Rosone: Computing the optimal BWT for very large string collections, submitted.

Thank you for your attention!

email: zsuzsanna.liptak@univr.it

