On the Burrows-Wheeler Transform
of string collections

Zsuzsanna Liptak
University of Verona (Italy)

Primavera dell’Informatica Teorica
11 Jan. 2024

The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T: nnbaaa

Zsuzsanna Liptak On the BWT of string collections 2/46

Ex.:

The Burrows-Wheeler Transform (BWT)

T = banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

banana
ananab
nanaba
anaban
nabana
abanan

Zsuzsanna Liptdk

—
lexicographic
order

On the BWT of string collections

all rotations, sorted

abanan
anaban
ananab
banana
nabana
nanaba

2/46

The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates) all rotations, sorted
banana abanan
ananab — anaban
nanaba lexicographic ananab
order
anaban banana
nabana nabana
abanan nanaba

A (non-efficient) algorithm: List all of rotations of string T, sort them
lexicographically, concatenate last characters: bwt(banana) = nnbaaa

Zsuzsanna Liptak On the BWT of string collections 2/46

Giovanni Manzini

AWARDS & RECOGNITION
Inventors of BW-transform and the

FM-index Receive Kanellakis
Award=

2022

Michael Burrows @, Google; Paolo
Ferragina @, University of Pisa;

and Giovanni Manzini &, University of Pisa,
receive the ACM Paris Kanellakis Theory
and Practice Award for inventing the BW-
transform and the FM-index that opened and
influenced the field of Compressed Data
Structures with fundamental impact on Data
Compression and Computational Biology. In
1994, Burrows and his late coauthor David
Wheeler published their paper describing
revolutionary data compression algorithm
based on a reversible transformation of the
input—the “Burrows-Wheeler Transform”
(BWT). A few years later, Ferragina and
Manzini showed that, by orchestrating the
BWT with a new set of mathematical
techniques and algorithmic tools, it became
possible to build a “compressed index,” later
called the FM-index. The introduction of the
BW Transform and the development of the
FM-index have had a profound impact on the
theory of algorithms and data structures with
fundamental advancements.

source: https://awards.acm.org/kanellakis

Zsuzsanna Liptak On the BWT of string collections 3/46

https://awards.acm.org/kanellakis

The BWT

® introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

: , Bell, Mukerjee?ZOOé)
® P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

® recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Zsuzsanna Liptak On the BWT of string collections 4/46

The BWT

® introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

, Bell, Mukerjee (2008)

source: Adjer:

® P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

® recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Some properties of the BWT:
® computable in linear time O(n) n=|T]|
® reversible in linear time O(n)

® uncompressed: same space as text

if T repetitive, good for compression (see later)

Zsuzsanna Liptak On the BWT of string collections 4/46

GenBank and WGS Statistics

Bases
1,000,000,000,
000,000 — Gen...
— WGS
10,000,000,000,
000
100,000,000,000

1,000,000,000

10,000,000

1990 2000 2010 2020

Zsuzsanna Liptak On the BWT of string collections 5/46

From strings to string collections

® Human Genome Project (first draft: 2000, completion: 2003)

Zsuzsanna Liptak On the BWT of string collections 6/46

From strings to string collections

® Human Genome Project (first draft: 2000, completion: 2003)
® Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)

Zsuzsanna Liptak On the BWT of string collections 6/46

From strings to string collections

® Human Genome Project (first draft: 2000, completion: 2003)
® Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)
® Population-wide:

® Faroe Genome Project: sequence all 50,000 people

® Sequencing Iceland (325,000 people): > 57,000 sequenced

Zsuzsanna Liptak On the BWT of string collections 6/46

From strings to string collections

Human Genome Project (first draft: 2000, completion: 2003)
Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)

Population-wide:

® Faroe Genome Project: sequence all 50,000 people

® Sequencing Iceland (325,000 people): > 57,000 sequenced
Human diversity:

® Genes & Health in East London: 100,000 people of Bangladeshi and
Pakistani origin

® Sequencing African genomes (Nature 2020)

® Sequencing indigenous Australian genomes (Nature 2023)

Zsuzsanna Liptak On the BWT of string collections

6/46

From strings to string collections

Human Genome Project (first draft: 2000, completion: 2003)

Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)
Population-wide:

® Faroe Genome Project: sequence all 50,000 people

® Sequencing Iceland (325,000 people): > 57,000 sequenced
Human diversity:

® Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
® Sequencing African genomes (Nature 2020)
® Sequencing indigenous Australian genomes (Nature 2023)

SARS-CoV-2 viral sequences

Zsuzsanna Liptak On the BWT of string collections

6/46

From strings to string collections

Our data is
® growing rapidly, and
® changing: from individual strings to string collections

® many of these consist of many similar copies of the same string

Zsuzsanna Liptak On the BWT of string collections 7/46

Outline of talk

The Burrows-Wheeler Transform (BWT)

The extended BWT (eBWT)

Other variants of the BWT for string collections
Why does it matter?

Conclusions

Zsuzsanna Liptak On the BWT of string collections

8/46

The Burrows-Wheeler Transform

Zsuzsanna Liptak On the BWT of string collections 9/46

The Burrows-Wheeler Transform (BWT)

Recall: T =banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

banana
ananab
nanaba
anaban
nabana
abanan

Zsuzsanna Liptdk

—
lexicographic
order

On the BWT of string collections

all rotations, sorted

abanan
anaban
ananab
banana
nabana
nanaba

10/ 46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
abanan
anaban
ananab
banana
nabana
nanaba

SOl W

Zsuzsanna Liptak On the BWT of string collections 11/46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex-order:
abanan aaabnn

anaban

ananab

banana

nabana

nanaba

SOl W

Zsuzsanna Liptak On the BWT of string collections 11/46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex-order:
1 abanan aaabnn
2 anaban ® Obs. 2: for all j: L; precedes F; in T (cyclically):
3 ananab
T = banana
4 banana 123456
5 nabana
6 nanaba

Zsuzsanna Liptak On the BWT of string collections 11/46

Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® QObs. 1: F = all characters of T in lex-order:
1 abanan aaabnn
2 anaban ® Obs. 2: for all j: L; precedes F; in T (cyclically):
3 ananab
T = banana
4 banana 123456
5 nabana ® Obs. 3: all occurrences of a substring appear in
6 nanaba consecutive rows as prefix

Zsuzsanna Liptak On the BWT of string collections 11/46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Zsuzsanna Liptak On the BWT of string collections 12 /46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan
anaban
ananab
banana
nabana
nanaba

Zsuzsanna Liptak On the BWT of string collections 12 /46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na

preceded by a

abanan abanan
anaban anaban
ananab ananab
banana banana
nabana nabana
nanaba nanaba

Zsuzsanna Liptak On the BWT of string collections 12 /46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

Zsuzsanna Liptak On the BWT of string collections 12 /46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2

Zsuzsanna Liptak On the BWT of string collections 12 /46

Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2 (2 = no. occ’s).

Zsuzsanna Liptak On the BWT of string collections 12 /46

Of course, things are a bit more complicated in general:

Zsuzsanna Liptak On the BWT of string collections 13 /46

Of course, things are a bit more complicated in general:

rotation

BWT

he

he
he
he
he
he
he
he
he
he
he
he
he
he
he
he

caverns measureless to man, And sank in tumult to a ...

caves. It was a miracle of rare device, A sunny pleasure-...

dome of pleasure Floated midway on the waves; Where was

fountain and the caves. It was a miracle of rare device,...

green hill athwart a cedarn cover! A savage place! as
hills, Enfolding sunny spots of greenery. But oh! that
milk of Paradise.

mingled measure From the fountain and the caves. It was a ...

on honey-dew hath fed, And drunk the milk of Paradise.
played, Singing of Mount Abora. Could I revive within me
sacred river ran, Then reached the caverns measureless
sacred river, ran Through caverns measureless to man ...
sacred river. Five miles meandering with a mazy motion ...
shadow of the dome of pleasure Floated midway on the waves

thresher’s flail: And mid these dancing rocks at once and ...

waves; Where was heard the mingled measure From the

[o c c c o o ct o

&t =t o o n

Kubla Kahn by Samuel Coleridge
(1998 characters)

Zsuzsanna Liptak On the BWT of string collections

13 /46

Of course, things are a bit more complicated in general:

rotation

BWT

he

he
he
he
he
he
he
he
he
he
he
he
he
he
he
he

caverns measureless to man, And sank in tumult to a ...

caves. It was a miracle of rare device, A sunny pleasure-...

dome of pleasure Floated midway on the waves; Where was

fountain and the caves. It was a miracle of rare device,...

green hill athwart a cedarn cover! A savage place! as
hills, Enfolding sunny spots of greenery. But oh! that
milk of Paradise.

mingled measure From the fountain and the caves. It was a ...

on honey-dew hath fed, And drunk the milk of Paradise.
played, Singing of Mount Abora. Could I revive within me
sacred river ran, Then reached the caverns measureless
sacred river, ran Through caverns measureless to man ...
sacred river. Five miles meandering with a mazy motion ...
shadow of the dome of pleasure Floated midway on the waves

thresher’s flail: And mid these dancing rocks at once and ...

waves; Where was heard the mingled measure From the

many the's, some he, she, The

Zsuzsanna Liptak On the BWT of string collections

[o c c c o o ct o

&t =t o o n

Kubla Kahn by Samuel Coleridge
(1998 characters)

13 /46

Compression with the BWT

® takes advantage of this 'clustering effect’

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

® compression with BWT:
uses runlength-encoding (RLE)

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

® compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

® compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

takes advantage of this 'clustering effect’

Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)

good if r is much smaller than n = |T|
(i.e. if few runs)

Zsuzsanna Liptak On the BWT of string collections 14 /46

Compression with the BWT

takes advantage of this 'clustering effect’

Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)

good if r is much smaller than n = |T|
(i.e. if few runs)

for repetitive strings, r is small
(repetitive: many repeated substrings)

Zsuzsanna Liptak On the BWT of string collections 14 /46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly

Zsuzsanna Liptak On the BWT of string collections 15 /46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly

Thm. (LF-property): The j'th occurrence of character x in L is the j'th
occurrence of character x in F.

F L
abanan T = banana
anaban
ananab
banana
nabana
nanaba

SOl W

Zsuzsanna Liptak On the BWT of string collections 15 /46

Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly

Thm. (LF-property): The j'th occurrence of character x in L is the j'th
occurrence of character x in F.

F L
1 abanan T = banana
123456

2 anaban Recall

ecall:
3 ananab
4 banana Obs. 1: F = all characters of T in lex-order:
5 nabana Obs. 2: for all i: L; precedes F; in T.
6 nanaba

Zsuzsanna Liptak On the BWT of string collections 15 /46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

Zsuzsanna Liptak On the BWT of string collections 16 /46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

Zsuzsanna Liptak On the BWT of string collections 16 /46

Reversing the BWT

e Obs. 1: F = all characters of T in lex-order
® Obs. 2: L; precedes F; in T
® LF-property: The j'th xin L is the j'th x in F.

input: nnbaaa, 4

oA WN
M MM T B BT

Zsuzsanna Liptak On the BWT of string collections 16 /46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W
BB oo
PP o BB

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W

BB oo

PP o BB
o

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W
BB oo
PP o BB
[=]
o

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO WN =
BB oo g
p P o BB

o

[=]

o

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

nana

SO W
BB oo
PP o BB

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

anana

SO W
BB oo
PP o BB

Zsuzsanna Liptak On the BWT of string collections 16 / 46

Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

banana

SO W
BB oo
PP o BB

Zsuzsanna Liptak On the BWT of string collections 16 /46

The BWT of string collections

e The BWT is good on repetitive strings.

e Qur string collections are highly repetitive:
many similar copies of the same string

® But: how do we compute the BWT of a multiset?

Zsuzsanna Liptak On the BWT of string collections 17 /46

The BWT of string collections

e The BWT is good on repetitive strings.

e Qur string collections are highly repetitive:
many similar copies of the same string

® But: how do we compute the BWT of a multiset?

Generalization of the BWT to multisets:
the extended BWT (eBWT) (next)

Zsuzsanna Liptak On the BWT of string collections 17 /46

The extended BWT

Zsuzsanna Liptak On the BWT of string collections 18 /46

The extended BWT

[Mantaci, Restivo, Rosone, Sciortino, TCS, 2007]

Ex. M = {bana,an}. The eBWT is a permutation of the characters of

M: eBWT(M) = nbnaaa

all rotations (conjugates)

bana
anab
naba
aban
an
na

N.B. anab <, an, since anab-anab:--- <, an-an-an-an---

Zsuzsanna Liptdk

—
omega order

On the BWT of string collections

aban
anab
an
bana
naba
na

all rotations, sorted

p P P B o B

19/46

The extended BWT

Def.(omega-order): T <, S if (a) T <jex S, or
(b) T =5 T=UXS=U"and k <m

M = {bana, an} omega-order lex-order
aban n aban n
anab b an n
an n anab b
bana a bana a
naba a na a
na a naba a

N.B. With the lex-order, the LF-property would not hold!

Zsuzsanna Liptak On the BWT of string collections 20 /46

The extended BWT

omega-order instead of lex-order
same as lex-order if neither string is prefix of the other
omega-order necessary for the LF-property

the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

However, until recently no linear-time algorithm known.

Zsuzsanna Liptak On the BWT of string collections 21 /46

The extended BWT

® omega-order instead of lex-order
® same as lex-order if neither string is prefix of the other
® omega-order necessary for the LF-property

® the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

® However, until recently no linear-time algorithm known.

2021:
® linear-time algorithm [Bannai, Karkkainen, Képpl, Piatkowski, CPM 2021]
® We simplified this algorithm, and
® gave first efficient implementations of the eBWT: tools pfpebwt,cais

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

Zsuzsanna Liptak On the BWT of string collections 21 /46

Other BWT variants for string
collections

Zsuzsanna Liptak On the BWT of string collections 22 /46

The BWT of string collections

[Cenzato and L., CPM 2022, Arxiv 2023]

Question: How do dedicated tools compute the BWT of a string
collection? (string collection: multiset of strings)

We studied 18 publicly available tools.
Only ours compute the eBWT (pfpebwt,cais).

We identified 4 more non-equivalent approaches:
the resulting BWTs are all different.

Often the method is not explicitly stated.

Underlying assumption: they are all the same.

But they differ a lot (Hamming distance, number of runs).
N.B.: all BWT variants are correct (LF-property, ...)

Zsuzsanna Liptak On the BWT of string collections 23 /46

The other BWT variants for string collections

The different approaches are:
1. extended BWT of strings with terminator symbol $ (dollarEBWT)

2. concatenate strings, separating them with different dollars
(multidoIBWT)

3. first sort colexicographically, then do 2. (colexBWT)
4. concatenate strings, separating them with same dollar (concatBWT)

All use terminator / separator symbols ('dollars’). So we call them
separator-based BWT variants.

Zsuzsanna Liptak On the BWT of string collections 24 / 46

The BWT variants for string collections

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

variant (our
terminology)

result on example

tools

eBWT CGGGATGTACGTTAAAAA pfpebwt,cais

dollarEBWT GGAAACGGSSSTTACTGTSAAAS G2BWT, msbwt

multidoIBWT | GAGAAGCG$$$TTATCTGSAAAS gsufsort, ropebwt2, eGSA,
Merge-BWT, eGAP, nvSetBWT,
BCR-LCP-GSA, grlBWT,
BEETL, bwt-lcp-parallel

colexBWT AAAGGCGG$$STTACTGTSAAAS | ropebwt2, BCR-LCP-GSA

concatBWT $AAGAGGGCS#STTACTGTSAAAS | BigBWT, r-pfbwt, CMS-BWT

Zsuzsanna Liptdk

On the BWT of string collections

tools for single strings

25 /46

The dollar-eBWT
1. dollarEBWT(M) = e BWT({T;$: Tj € M}), $<cforallchar'sc

Now no string is prefix of another = omega-order same as lex-order.

M = {bana$, an$} dollarEBWT
$an n
$bana a
a$ban n
an$ $
ana$b b
bana$ %
n$a a
na$ba a
nanbaa

Zsuzsanna Liptak On the BWT of string collections 26 / 46

The dollar-eBWT
1. dollarEBWT(M) = e BWT({T;$: Tj € M}), $<cforallchar'sc

Now no string is prefix of another = omega-order same as lex-order.

M = {bana$, an$} dollarEBWT eBWT of {bana,an}

$an n aban n
$bana a anab b
a$ban n an n
an$ $ bana a
ana$b b naba a
bana$ 9 na a
n$a a

na$ba a nbnaaa
nanbaa

Zsuzsanna Liptak On the BWT of string collections 26 /46

The different BWT variants

The other 3 methods concatenate the input strings, and then apply the
classical BWT.

The main issue here is to avoid spurious substrings:

t

*(
LA
-

27 /46

Zsuzsanna Liptak On the BWT of string collections

The multidollar BWT

2. multidoIBWT(M) = bwt(T1$1 T2%2 - - - Tk$«), where dollars are smaller
than characters from ¥, and $1 < $> < ... < $4«

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~

bwt(ATATG$; TGAS, ATCA$,GGASs) = GAGAAGCGSSSTTATCTGSAAAS

Zsuzsanna Liptak On the BWT of string collections 28 /46

The multidollar BWT

2. multidoIBWT(M) = bwt(T1$1 T2%2 - - - Tk$«), where dollars are smaller
than characters from ¥, and $1 < $> < ... < $4«

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~

bwt(ATATG$; TGAS, ATCA$,GGASs) = GAGAAGCGSSSTTATCTGSAAAS

® most commonly used method
® analogous to Generalized Suffix Tree and Generalized Suffix Array
® dollars are different only conceptually (break ties by index)

® equivalent: concatenate without separators, use bitstring marking
string beginnings

Zsuzsanna Liptak On the BWT of string collections 28 /46

The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Zsuzsanna Liptak On the BWT of string collections 29 /46

The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}
colex order: ATCA,GGA,TGA, ,ATATG ~~

bwt(ATCA$,GGAS,TGAS, ATATGSs) = AAAGGCGGSSSTTACTGTSAAAS

Zsuzsanna Liptak On the BWT of string collections 29 /46

The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}
colex order: ATCA,GGA,TGA, ,ATATG ~~

bwt(ATCA$,GGAS,TGAS, ATATGSs) = AAAGGCGGSSSTTACTGTSAAAS

® reduces number of runs (see later)

® implemented as an option in ropebwt2,BCR-LCP-GSA

Zsuzsanna Liptak On the BWT of string collections 29 /46

The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Zsuzsanna Liptak On the BWT of string collections 30/ 46

The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS

Zsuzsanna Liptak On the BWT of string collections 30/ 46

The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS

(for easier comparison, we simplify to AAGAGGGC$$STTACTGTSAAAS)

Zsuzsanna Liptak On the BWT of string collections 30/ 46

The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS

(for easier comparison, we simplify to AAGAGGGC$$STTACTGTSAAAS)

® very easy to implement
® used e.g. in BigBWT,CMS-BWT.

Zsuzsanna Liptak On the BWT of string collections 30/ 46

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Zsuzsanna Liptak On the BWT of string collections 31/46

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant \ example
non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT (M)
multidolBWT (M)
colexBWT(M)
concatBWT (M)

in color: interesting intervals

GGAAACGGSSTTACTCTSAAAS
GAGAAGCG$$STTATCTCSAAAS
AAAGGCGG$SSTTACTCTSAAAS
AAGAGGGC$$STTACTCTSAAAS

Zsuzsanna Liptak On the BWT of string collections

31/46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Zsuzsanna Liptak On the BWT of string collections 32 /46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings
51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

Zsuzsanna Liptak On the BWT of string collections 32 /46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings
51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C
A$GG G
A$TG G
dollarEBWT

Zsuzsanna Liptak On the BWT of string collections 32 /46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G
A$GG G A$,--- C
A$TG ¢ A%s--- G

dollarEBWT multidolBWT

Zsuzsanna Liptak On the BWT of string collections 32 /46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G A$,--- C
A$GG G A$,--- C AS,--- G
A$TG G A%s--- G A$5--- G

dollarEBWT multidolBWT colexBWT

Zsuzsanna Liptak On the BWT of string collections 32 /46

Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G A$;--- C ASH# G
A$GG G A$,--- C A% G A% G
A$TG G A%s--- G A$5--- G ASG--- C
dollarEBWT multidolBWT colexBWT concatBWT

Zsuzsanna Liptak On the BWT of string collections 32 /46

Hamming distance between separator-based BWTs

1.0 . —
. Simons Diversity reads avg. norm. Hamming dist.
® 002
@ 004
oe @ 006
0.08
06 0.10
b 8
E o Candida auris reads
g
04 @ Influenza Areads
0.2 SARS-CoV-2 genomes SARS-CoV-2 short ‘
T 4 16SRNAlong
e SARS-CoV-2 long 16S rRNA short .
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of positions in interesting intervals

Variability
2_[b,e] interesting int. var([b; €])
var(M) = [6,e] interesting int. , where var([b, €]) = max no. runs in [b, €]
Z[b,e] interesting int,(e —b+ 1)
(depends on Parikh vector)
Zsuzsanna Liptak On the BWT of string collections

33/46

Why does it matter?

tak On the BWT of string collections

34 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Zsuzsanna Liptak On the BWT of string collections 35 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.

Zsuzsanna Liptak On the BWT of string collections 35 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.

Theoretician: ...and correct?

Zsuzsanna Liptak On the BWT of string collections 35 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?

Programmer: Ok, but you said yourself that it was all correct!

Zsuzsanna Liptak On the BWT of string collections 35 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?
Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing
from your competitor’s.

Zsuzsanna Liptak On the BWT of string collections 35 /46

Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?
Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing
from your competitor’s.

Programmer: | am never going to use her tool anyway!

Zsuzsanna Liptak On the BWT of string collections 35 /46

Why you should care

1. number of runs
2. the parameter r is not well-defined

3. input order dependence

Zsuzsanna Liptak On the BWT of string collections 36 /46

1. Number of runs

r = number of runs of the BWT.

Zsuzsanna Liptak On the BWT of string collections 37 /46

1. Number of runs

r = number of runs of the BWT.

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example \ r \ rw/o$'s
non-sep.based

eBWT(M) CGGGATGTACGTTAAAAA 11 11
separator-based

dollarEBWT (M) | GGAAACGG$$$STTACTCTSAAAS | 14 11
multidolBWT (M) | GAGAAGCG$$STTATCTGSAAAS | 17 14
colexBWT (M) AAAGGCGG$$STTACTCTSAAAS | 14 11
concatBWT(M) | AAGAGGGC$$$TTACTCTSAAAS | 15 12

Zsuzsanna Liptdk

On the BWT of string collections

37/46

Average runlength (n/r) on four short sequence datasets, of all BWT variants.
(500,000 sequences each, of length between 50 and 301.)

Zsuzsanna Liptak

average runlength (n/r)

50

40

30

20

1. Number of runs

BWT variant
eBWT
dolEBWT
mdolBWT
concBWT
colexBWT

SARS-CoV-2 short Simons Diversity reads ~ 16S rRNA short Influenza A reads
dataset

On the BWT of string collections

38/46

1. Number of runs

50 BWT variant

eBWT
dolEBWT
mdolBWT
concBWT
colexBWT

40

30

20

average runlength (n/r)

SARS-CoV-2 short Simons Diversity reads ~ 16S rRNA short Influenza A reads
dataset

Average runlength (n/r) on four short sequence datasets, of all BWT variants.
(500,000 sequences each, of length between 50 and 301.)

® On these datasets, difference of a factor of up to 4.2.

® |n a separate work, difference of a factor of up to 31.
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Liptak On the BWT of string collections 38 /46

size of data structures O(r)

Yow b5 ﬁow Coure’[\%b(ls
j DS
k \) A

&

J

So maybe you should care. ..

Zsuzsanna Liptak On the BWT of string collections 39 /46

2. The parameter r

® size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

Zsuzsanna Liptak On the BWT of string collections 40 /46

2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n =|T])

Zsuzsanna Liptak On the BWT of string collections 40 /46

2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n = |T]|)
® increasingly used as a repetitiveness measure of T, similar to z

(number of Lempel-Ziv phrases)

® as a property of the dataset Bannai et al. [TCS 2020],
Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

Zsuzsanna Liptak On the BWT of string collections 40 / 46

2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n =|T])

® increasingly used as a repetitiveness measure of T, similar to z
(number of Lempel-Ziv phrases)

® as a property of the dataset Bannai et al. [TCS 2020],
Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

® in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],
Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]

Zsuzsanna Liptak On the BWT of string collections 40 / 46

3. Input order dependence

Zsuzsanna Liptak On the BWT of string collections 41 /46

3. Input order dependence

N.B. multidoIBWT and concatBWT depend on the input order!

(Sy
M; = [ATATG, TGA,ACG,ATCA,GGA] mdolBWT(M;)= GAGAAGCG$$STTATCTGSAAAS
M, = [ACG,ATATG,GGA, TGA,ATCA] mdolBWT(M;) = GGAAAGGC$$STTACTGT$AAAS
g J
(~)
M, = [ATATG, TGA,ACG,ATCA,GGA] concBWT(M;)= AAGAGGGC$$STTACTGTSAAAS

M, = [ACG,ATATG,GGA, TGA,ATCA] concBWT(M;) = AGAGACGG$$STTACTTGHAAAS
J

Zsuzsanna Liptak On the BWT of string collections 41 /46

3. Input order dependence

N.B. multidoIBWT and concatBWT depend on the input order!

(~ Sy
M; = [ATATG, TGA,ACG,ATCA,GGA] mdolBWT(M;)= GAGAAGCG$$STTATCTGSAAAS
M, = [ACG,ATATG,GGA, TGA,ATCA] mdolBWT(M;) = GGAAAGGC$$STTACTGT$AAAS
g J
(~)
M, = [ATATG, TGA,ACG,ATCA,GGA] concBWT(M;)= AAGAGGGC$$STTACTGTSAAAS

M, = [ACG,ATATG,GGA, TGA,ATCA] concBWT(M;) = AGAGACGG$$STTACTTGHAAAS
J

Thus, giving the same dataset to the same tool but in different order can
produce very different results! (incl. the number of runs)

Zsuzsanna Liptak On the BWT of string collections 41 /46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Zsuzsanna Liptak On the BWT of string collections 42 /46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

Zsuzsanna Liptak On the BWT of string collections

42 /46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method

Zsuzsanna Liptak On the BWT of string collections 42 /46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method

e Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

Zsuzsanna Liptak On the BWT of string collections 42 /46

The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method

e Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

® We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]

Zsuzsanna Liptak On the BWT of string collections 42 /46

Conclusions

Zsuzsanna Liptak On the BWT of string collections 43 /46

Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent
the most commonly used ones are input-order dependent

the number of runs r varies significantly

Zsuzsanna Liptak On the BWT of string collections 44 / 46

Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

Zsuzsanna Liptak On the BWT of string collections 44 / 46

Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

— the same tool on the same dataset can produce different size
data structures

Zsuzsanna Liptak On the BWT of string collections 44 / 46

Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

— the same tool on the same dataset can produce different size
data structures

optBWT minimizes r, and has been implemented

Zsuzsanna Liptak On the BWT of string collections 44 / 46

Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

— the same tool on the same dataset can produce different size
data structures

optBWT minimizes r, and has been implemented
definition of r should be standardized (optBWT or colexBWT)

Zsuzsanna Liptak On the BWT of string collections 44 / 46

Open Problems

® upper bound on differences between separator-based BWT variants
® characterize string collections for which differences highest

® analyze differences between eBWT and separator-based BWTs

Zsuzsanna Liptak On the BWT of string collections 45 / 46

Open Problems

® upper bound on differences between separator-based BWT variants
® characterize string collections for which differences highest

® analyze differences between eBWT and separator-based BWTs

My personal conclusion:

Definitions matter!

Zsuzsanna Liptak On the BWT of string collections 45 / 46

Acknowledgements

® Davide Cenzato and Zsuzsanna Liptak: A survey of BWT variants for string
collections, arXiv:2202.13235 (conf. version: CPM 2022)
github.com/davidecenzato/BWT-variants-for-string-collections

® Davide Cenzato, Veronica Guerrini, Zsuzsanna Liptdk, and Giovanna Rosone:
Computing the optimal BWT for very large string collections, DCC 2023.
github.com/davidecenzato/optimalBWT

Zsuzsanna Liptak On the BWT of string collections 46 / 46

github.com/davidecenzato/BWT-variants-for-string-collections
github.com/davidecenzato/optimalBWT

Acknowledgements

® Davide Cenzato and Zsuzsanna Liptak: A survey of BWT variants for string
collections, arXiv:2202.13235 (conf. version: CPM 2022)
github.com/davidecenzato/BWT-variants-for-string-collections

® Davide Cenzato, Veronica Guerrini, Zsuzsanna Liptdk, and Giovanna Rosone:
Computing the optimal BWT for very large string collections, DCC 2023.
github.com/davidecenzato/optimalBWT

Thank you for your attention!

Zsuzsanna Liptak On the BWT of string collections 46 / 46

github.com/davidecenzato/BWT-variants-for-string-collections
github.com/davidecenzato/optimalBWT

