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The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T: nnbaaa
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Ex.:

The Burrows-Wheeler Transform (BWT)

T = banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

banana
ananab
nanaba
anaban
nabana
abanan
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all rotations, sorted

abanan
anaban
ananab
banana
nabana
nanaba

2/46



The Burrows-Wheeler Transform (BWT)

Ex.: T = banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates) all rotations, sorted
banana abanan
ananab — anaban
nanaba lexicographic ananab
order
anaban banana
nabana nabana
abanan nanaba

A (non-efficient) algorithm: List all of rotations of string T, sort them
lexicographically, concatenate last characters: bwt(banana) = nnbaaa
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Giovanni Manzini

AWARDS & RECOGNITION
Inventors of BW-transform and the

FM-index Receive Kanellakis
Award=

2022

Michael Burrows @, Google; Paolo
Ferragina @, University of Pisa;

and Giovanni Manzini &, University of Pisa,
receive the ACM Paris Kanellakis Theory
and Practice Award  for inventing the BW-
transform and the FM-index that opened and
influenced the field of Compressed Data
Structures with fundamental impact on Data
Compression and Computational Biology. In
1994, Burrows and his late coauthor David
Wheeler published their paper describing
revolutionary data compression algorithm
based on a reversible transformation of the
input—the “Burrows-Wheeler Transform”
(BWT). A few years later, Ferragina and
Manzini showed that, by orchestrating the
BWT with a new set of mathematical
techniques and algorithmic tools, it became
possible to build a “compressed index,” later
called the FM-index. The introduction of the
BW Transform and the development of the
FM-index have had a profound impact on the
theory of algorithms and data structures with
fundamental advancements.

source: https://awards.acm.org/kanellakis
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The BWT

® introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

: , Bell, Mukerjee?ZOOé)
® P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

® recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]
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The BWT

® introduced by M. Burrows and
D. Wheeler in 1994 as a
lossless text compression algorithm

, Bell, Mukerjee (2008)

source: Adjer:

® P. Ferragina and G. Manzini showed later how to use it for pattern
matching, leading to the FM-index [FOCS, 2000; JACM 2005]

® recent: r-index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

Some properties of the BWT:
® computable in linear time O(n) n=|T]|
® reversible in linear time O(n)

® uncompressed: same space as text

if T repetitive, good for compression (see later)
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GenBank and WGS Statistics

Bases
1,000,000,000,
000,000 — Gen...
— WGS
10,000,000,000,
000
100,000,000,000

1,000,000,000

10,000,000

1990 2000 2010 2020
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From strings to string collections

® Human Genome Project (first draft: 2000, completion: 2003)
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From strings to string collections

® Human Genome Project (first draft: 2000, completion: 2003)
® Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)
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From strings to string collections

Human Genome Project (first draft: 2000, completion: 2003)
Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)

Population-wide:

® Faroe Genome Project: sequence all 50,000 people

® Sequencing Iceland (325,000 people): > 57,000 sequenced
Human diversity:

® Genes & Health in East London: 100,000 people of Bangladeshi and
Pakistani origin

® Sequencing African genomes (Nature 2020)

® Sequencing indigenous Australian genomes (Nature 2023)
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From strings to string collections

Human Genome Project (first draft: 2000, completion: 2003)

Studying variation:

® 1,000 Genomes Project (human): 2008-2015

® 1001 Genomes (Arabidopsis thaliana)

® 3,000 Rice Genomes Project

® 100,000 Genomes Project (human, completed 2018)
Population-wide:

® Faroe Genome Project: sequence all 50,000 people

® Sequencing Iceland (325,000 people): > 57,000 sequenced
Human diversity:

® Genes & Health in East London: 100,000 people of Bangladeshi and

Pakistani origin
® Sequencing African genomes (Nature 2020)
® Sequencing indigenous Australian genomes (Nature 2023)

SARS-CoV-2 viral sequences

Zsuzsanna Liptak On the BWT of string collections

6/46



From strings to string collections

Our data is
® growing rapidly, and
® changing: from individual strings to string collections

® many of these consist of many similar copies of the same string
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Outline of talk

The Burrows-Wheeler Transform (BWT)

The extended BWT (eBWT)

Other variants of the BWT for string collections
Why does it matter?

Conclusions
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The Burrows-Wheeler Transform
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The Burrows-Wheeler Transform (BWT)

Recall: T =banana. The BWT is a permutation of T: nnbaaa

all rotations (conjugates)

banana
ananab
nanaba
anaban
nabana
abanan

Zsuzsanna Liptdk

—
lexicographic
order

On the BWT of string collections

all rotations, sorted

abanan
anaban
ananab
banana
nabana
nanaba
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Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L
abanan
anaban
ananab
banana
nabana
nanaba

SOl W
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Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex-order:
abanan aaabnn

anaban

ananab

banana

nabana

nanaba

SOl W
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Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® Obs. 1: F = all characters of T in lex-order:
1 abanan aaabnn
2 anaban ® Obs. 2: for all j: L; precedes F; in T (cyclically):
3 ananab
T = banana
4 banana 123456
5 nabana
6 nanaba
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Why is the BWT useful in text compression?

BWT-matrix (F = first column, L = last column)

F L ® QObs. 1: F = all characters of T in lex-order:
1 abanan aaabnn
2 anaban ® Obs. 2: for all j: L; precedes F; in T (cyclically):
3 ananab
T = banana
4 banana 123456
5 nabana ® Obs. 3: all occurrences of a substring appear in
6 nanaba consecutive rows as prefix
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana

abanan
anaban
ananab
banana
nabana
nanaba
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na

preceded by a

abanan abanan
anaban anaban
ananab ananab
banana banana
nabana nabana
nanaba nanaba
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2
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Why is the BWT useful in text compression?

® QObs. 1: F = characters of T in lexicographic order
® QObs. 2: L; precedes F; in T
® Obs. 3: all occurrences of a substring appear in consecutive rows as prefix

Ex.: T = banana has 2 occurrences of the substring ana

2 occ’s of ana 2 occ’s of na 2 occ’s of a

preceded by a preceded by n
abanan abanan abanan
anaban anaban anaban
ananab ananab ananab
banana banana banana
nabana nabana nabana
nanaba nanaba nanaba

So: we get a run of a's of length 2, and a run of n's of length 2 (2 = no. occ’s).
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Of course, things are a bit more complicated in general:
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Of course, things are a bit more complicated in general:

rotation

BWT

he

he
he
he
he
he
he
he
he
he
he
he
he
he
he
he

caverns measureless to man, And sank in tumult to a ...

caves. It was a miracle of rare device, A sunny pleasure-...

dome of pleasure Floated midway on the waves; Where was

fountain and the caves. It was a miracle of rare device,...

green hill athwart a cedarn cover! A savage place! as
hills, Enfolding sunny spots of greenery. But oh! that
milk of Paradise.

mingled measure From the fountain and the caves. It was a ...

on honey-dew hath fed, And drunk the milk of Paradise.
played, Singing of Mount Abora. Could I revive within me
sacred river ran, Then reached the caverns measureless
sacred river, ran Through caverns measureless to man ...
sacred river. Five miles meandering with a mazy motion ...
shadow of the dome of pleasure Floated midway on the waves

thresher’s flail: And mid these dancing rocks at once and ...

waves; Where was heard the mingled measure From the

[ o c c c o o ct o

&t =t o o n

Kubla Kahn by Samuel Coleridge
(1998 characters)
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Of course, things are a bit more complicated in general:

rotation

BWT

he

he
he
he
he
he
he
he
he
he
he
he
he
he
he
he

caverns measureless to man, And sank in tumult to a ...

caves. It was a miracle of rare device, A sunny pleasure-...

dome of pleasure Floated midway on the waves; Where was

fountain and the caves. It was a miracle of rare device,...

green hill athwart a cedarn cover! A savage place! as
hills, Enfolding sunny spots of greenery. But oh! that
milk of Paradise.

mingled measure From the fountain and the caves. It was a ...

on honey-dew hath fed, And drunk the milk of Paradise.
played, Singing of Mount Abora. Could I revive within me
sacred river ran, Then reached the caverns measureless
sacred river, ran Through caverns measureless to man ...
sacred river. Five miles meandering with a mazy motion ...
shadow of the dome of pleasure Floated midway on the waves

thresher’s flail: And mid these dancing rocks at once and ...

waves; Where was heard the mingled measure From the

many the's, some he, she, The

Zsuzsanna Liptak On the BWT of string collections

[ o c c c o o ct o

&t =t o o n

Kubla Kahn by Samuel Coleridge
(1998 characters)

13 /46



Compression with the BWT

® takes advantage of this 'clustering effect’
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Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

® compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2
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Compression with the BWT

® takes advantage of this 'clustering effect’

® Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

® compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)
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Compression with the BWT

takes advantage of this 'clustering effect’

Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)

good if r is much smaller than n = |T|
(i.e. if few runs)
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Compression with the BWT

takes advantage of this 'clustering effect’

Def.: r(T) = number of runs of bwt(T) Ex.: r(banana) =3
(run: maximal equal-letter run) bwt(banana) = nnbaaa

compression with BWT:
uses runlength-encoding (RLE)

replace each run by (char,int)-pair
RLE(bbbbbbbbcaaaaaaaaaaabb) = b8clallb2

Compression: T +— RLE(bwt(T)) Ex.: banana — n2bla3
—_————

storage space: O(r)

good if r is much smaller than n = |T|
(i.e. if few runs)

for repetitive strings, r is small
(repetitive: many repeated substrings)
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Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly
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Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly

Thm. (LF-property): The j'th occurrence of character x in L is the j'th
occurrence of character x in F.

F L
abanan T = banana
anaban
ananab
banana
nabana
nanaba

SOl W
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Reversing the BWT (lossless compression)

input: nnbaaa, 4 bwt(T), i: where 1 <i<n
output: (wanted) banana. T: i'th rotation lex.ly

Thm. (LF-property): The j'th occurrence of character x in L is the j'th
occurrence of character x in F.

F L
1 abanan T = banana
123456

2 anaban Recall

ecall:
3 ananab
4 banana Obs. 1: F = all characters of T in lex-order:
5 nabana Obs. 2: for all i: L; precedes F; in T.
6 nanaba
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4
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Reversing the BWT

e Obs. 1: F = all characters of T in lex-order
® Obs. 2: L; precedes F; in T
® LF-property: The j'th xin L is the j'th x in F.

input: nnbaaa, 4

oA WN
M MM T B BT
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W
BB oo
PP o BB
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W

BB oo

PP o BB
o

Zsuzsanna Liptak On the BWT of string collections 16 / 46



Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO W
BB oo
PP o BB
[=]
o
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

SO WN =
BB oo g
p P o BB

o

[=]

o
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

nana

SO W
BB oo
PP o BB
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

anana

SO W
BB oo
PP o BB
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Reversing the BWT

® Obs. 1: F = all characters of T in lex-order
® Obs. 2: [; precedes F; in T
® LF-property: The j'th x in L is the j'th x in F.

input: nnbaaa, 4

banana

SO W
BB oo
PP o BB
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The BWT of string collections

e The BWT is good on repetitive strings.

e Qur string collections are highly repetitive:
many similar copies of the same string

® But: how do we compute the BWT of a multiset?
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The BWT of string collections

e The BWT is good on repetitive strings.

e Qur string collections are highly repetitive:
many similar copies of the same string

® But: how do we compute the BWT of a multiset?

Generalization of the BWT to multisets:
the extended BWT (eBWT) (next)
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The extended BWT
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The extended BWT

[Mantaci, Restivo, Rosone, Sciortino, TCS, 2007]

Ex. M = {bana,an}. The eBWT is a permutation of the characters of

M: eBWT(M) = nbnaaa

all rotations (conjugates)

bana
anab
naba
aban
an
na

N.B. anab <, an, since anab-anab:--- <, an-an-an-an---

Zsuzsanna Liptdk

—
omega order

On the BWT of string collections

aban
anab
an
bana
naba
na

all rotations, sorted

p P P B o B
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The extended BWT

Def.(omega-order): T <, S if (a) T <jex S, or
(b) T =5 T=UXS=U"and k <m

M = {bana, an} omega-order lex-order
aban n aban n
anab b an n
an n anab b
bana a bana a
naba a na a
na a naba a

N.B. With the lex-order, the LF-property would not hold!
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The extended BWT

omega-order instead of lex-order
same as lex-order if neither string is prefix of the other
omega-order necessary for the LF-property

the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

However, until recently no linear-time algorithm known.
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The extended BWT

® omega-order instead of lex-order
® same as lex-order if neither string is prefix of the other
® omega-order necessary for the LF-property

® the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

® However, until recently no linear-time algorithm known.

2021:
® linear-time algorithm [Bannai, Karkkainen, Képpl, Piatkowski, CPM 2021]
® We simplified this algorithm, and
® gave first efficient implementations of the eBWT: tools pfpebwt,cais

[Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021]

Zsuzsanna Liptak On the BWT of string collections 21 /46



Other BWT variants for string
collections
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The BWT of string collections

[Cenzato and L., CPM 2022, Arxiv 2023]

Question: How do dedicated tools compute the BWT of a string
collection? (string collection: multiset of strings)

We studied 18 publicly available tools.
Only ours compute the eBWT (pfpebwt,cais).

We identified 4 more non-equivalent approaches:
the resulting BWTs are all different.

Often the method is not explicitly stated.

Underlying assumption: they are all the same.

But they differ a lot (Hamming distance, number of runs).
N.B.: all BWT variants are correct (LF-property, ...)
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The other BWT variants for string collections

The different approaches are:
1. extended BWT of strings with terminator symbol $  (dollarEBWT)

2. concatenate strings, separating them with different dollars
(multidoIBWT)

3. first sort colexicographically, then do 2. (colexBWT)
4. concatenate strings, separating them with same dollar (concatBWT)

All use terminator / separator symbols ('dollars’). So we call them
separator-based BWT variants.
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The BWT variants for string collections

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

variant (our
terminology)

result on example

tools

eBWT CGGGATGTACGTTAAAAA pfpebwt,cais

dollarEBWT GGAAACGGSSSTTACTGTSAAAS G2BWT, msbwt

multidoIBWT | GAGAAGCG$$$TTATCTGSAAAS gsufsort, ropebwt2, eGSA,
Merge-BWT, eGAP, nvSetBWT,
BCR-LCP-GSA, grlBWT,
BEETL, bwt-lcp-parallel

colexBWT AAAGGCGG$$STTACTGTSAAAS | ropebwt2, BCR-LCP-GSA

concatBWT $AAGAGGGCS#STTACTGTSAAAS | BigBWT, r-pfbwt, CMS-BWT

Zsuzsanna Liptdk

On the BWT of string collections

tools for single strings
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The dollar-eBWT
1. dollarEBWT(M) = e BWT({T;$ : Tj € M}), $<cforallchar'sc

Now no string is prefix of another = omega-order same as lex-order.

M = {bana$, an$} dollarEBWT
$an n
$bana a
a$ban n
an$ $
ana$b b
bana$ %
n$a a
na$ba a
nan$b$aa
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The dollar-eBWT
1. dollarEBWT(M) = e BWT({T;$ : Tj € M}), $<cforallchar'sc

Now no string is prefix of another = omega-order same as lex-order.

M = {bana$, an$} dollarEBWT eBWT of {bana,an}

$an n aban n
$bana a anab b
a$ban n an n
an$ $ bana a
ana$b b naba a
bana$ 9 na a
n$a a

na$ba a nbnaaa
nan$b$aa
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The different BWT variants

The other 3 methods concatenate the input strings, and then apply the
classical BWT.

The main issue here is to avoid spurious substrings:

t

*(
LA
-
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The multidollar BWT

2. multidoIBWT(M) = bwt(T1$1 T2%2 - - - Tk$«), where dollars are smaller
than characters from ¥, and $1 < $> < ... < $4«

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~

bwt(ATATG$; TGAS, ATCA$,GGASs) = GAGAAGCGSSSTTATCTGSAAAS
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The multidollar BWT

2. multidoIBWT(M) = bwt(T1$1 T2%2 - - - Tk$«), where dollars are smaller
than characters from ¥, and $1 < $> < ... < $4«

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~

bwt(ATATG$; TGAS, ATCA$,GGASs) = GAGAAGCGSSSTTATCTGSAAAS

® most commonly used method
® analogous to Generalized Suffix Tree and Generalized Suffix Array
® dollars are different only conceptually (break ties by index)

® equivalent: concatenate without separators, use bitstring marking
string beginnings
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The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings
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The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}
colex order: ATCA,GGA,TGA, ,ATATG ~~

bwt(ATCA$,GGAS,TGAS, ATATGSs) = AAAGGCGGSSSTTACTGTSAAAS
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The colex BWT

3. colexBWT(M): multidoIBWT of the strings in colexicographic order

colex order = lexicographic order of the reverse strings

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}
colex order: ATCA,GGA,TGA, ,ATATG ~~

bwt(ATCA$,GGAS,TGAS, ATATGSs) = AAAGGCGGSSSTTACTGTSAAAS

® reduces number of runs (see later)

® implemented as an option in ropebwt2,BCR-LCP-GSA
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The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $
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The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS
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The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS

(for easier comparison, we simplify to AAGAGGGC$$STTACTGTSAAAS)
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The concat BWT

4. concatBWT(M) = bwt(T1$T28$ - - T, $#), where # < $

Ex. M = {ATATG, TGA, ACG, ATCA, GGA} ~~
bwt(ATATG$TGAS ATCA$GGAS#) = SAAGAGGGCS#STTACTGTSAAAS

(for easier comparison, we simplify to AAGAGGGC$$STTACTGTSAAAS)

® very easy to implement
® used e.g. in BigBWT,CMS-BWT.
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Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals
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Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant \ example
non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA

separator-based
dollarEBWT (M)
multidolBWT (M)
colexBWT(M)
concatBWT (M)

in color: interesting intervals

GGAAACGG$S$STTACTCTSAAAS
GAGAAGCG$$STTATCTCSAAAS
AAAGGCGG$SSTTACTCTSAAAS
AAGAGGGC$$STTACTCTSAAAS

Zsuzsanna Liptak On the BWT of string collections
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Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].
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Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings
51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.
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Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings
51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C
A$GG G
A$TG G
dollarEBWT

Zsuzsanna Liptak On the BWT of string collections 32 /46



Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G
A$GG G A$,--- C
A$TG ¢ A%s--- G

dollarEBWT multidolBWT
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Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G A$,--- C
A$GG G A$,--- C AS,--- G
A$TG G A%s--- G A$5--- G

dollarEBWT multidolBWT colexBWT
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Interesting intervals

Lemma: If two separator-based BWTs differ in position i then i € [b, €] for some
interesting interval [b, €].

Def. U is called a left-maximal shared suffix if there exist two strings

51,5, € M such that U is a suffix of 5;$ and 5,$ and is preceded by different
characters in S; and S,. An interval [b, €] is interesting if it corresponds to all
occurrences of some left-maximal shared suffix U (i.e., its SA-interval).

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}, U = AS$.

A$ATC C A$,--- G A$;--- C ASH# G
A$GG G A$,--- C A% G A% G
A$TG G A%s--- G A$5--- G ASG--- C
dollarEBWT multidolBWT colexBWT concatBWT
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Hamming distance between separator-based BWTs

1.0 . —
. Simons Diversity reads avg. norm. Hamming dist.
® 002
@ 004
oe @ 006
0.08
06 0.10
b 8
E o Candida auris reads
g
04 @ Influenza Areads
0.2 SARS-CoV-2 genomes SARS-CoV-2 short ‘
T 4 16SRNAlong
e SARS-CoV-2 long 16S rRNA short .
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of positions in interesting intervals

Variability
2_[b,e] interesting int. var([b; €])
var(M) = [6,e] interesting int. , where var([b, €]) = max no. runs in [b, €]
Z[b,e] interesting int,(e —b+ 1)
(depends on Parikh vector)
Zsuzsanna Liptak On the BWT of string collections
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Why does it matter?

tak On the BWT of string collections
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.

Theoretician: ...and correct?
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?

Programmer: Ok, but you said yourself that it was all correct!
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?
Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing
from your competitor’s.
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Theoretician: You are all using different methods to compute the BWT
of string collections, and the results are pretty different!

Programmer: It doesn’'t matter, all | care about is that it's efficient.
Theoretician: ...and correct?
Programmer: Ok, but you said yourself that it was all correct!

Theoretician: But it's not nice that your tool computes a different thing
from your competitor’s.

Programmer: | am never going to use her tool anyway!
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Why you should care

1. number of runs
2. the parameter r is not well-defined

3. input order dependence

Zsuzsanna Liptak On the BWT of string collections 36 /46



1. Number of runs

r = number of runs of the BWT.

Zsuzsanna Liptak On the BWT of string collections 37 /46



1. Number of runs

r = number of runs of the BWT.

Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant example \ r \ rw/o$'s
non-sep.based

eBWT(M) CGGGATGTACGTTAAAAA 11 11
separator-based

dollarEBWT (M) | GGAAACGG$$$STTACTCTSAAAS | 14 11
multidolBWT (M) | GAGAAGCG$$STTATCTGSAAAS | 17 14
colexBWT (M) AAAGGCGG$$STTACTCTSAAAS | 14 11
concatBWT(M) | AAGAGGGC$$$TTACTCTSAAAS | 15 12

Zsuzsanna Liptdk

On the BWT of string collections
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Average runlength (n/r) on four short sequence datasets, of all BWT variants.
(500,000 sequences each, of length between 50 and 301.)

Zsuzsanna Liptak

average runlength (n/r)

50

40

30

20

1. Number of runs

BWT variant
eBWT
dolEBWT
mdolBWT
concBWT
colexBWT

SARS-CoV-2 short Simons Diversity reads ~ 16S rRNA short Influenza A reads
dataset
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1. Number of runs

50 BWT variant

eBWT
dolEBWT
mdolBWT
concBWT
colexBWT

40

30

20

average runlength (n/r)

SARS-CoV-2 short Simons Diversity reads ~ 16S rRNA short Influenza A reads
dataset

Average runlength (n/r) on four short sequence datasets, of all BWT variants.
(500,000 sequences each, of length between 50 and 301.)

® On these datasets, difference of a factor of up to 4.2.

® |n a separate work, difference of a factor of up to 31.
[Cenzato, Guerrini, L., Rosone, DCC 2023]
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size of data structures O(r)

Yow b5 ﬁow Coure’[\%b(ls
j DS
k \) A

&

J

So maybe you should care. ..
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2. The parameter r

® size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]
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2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n =|T])
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2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n = |T]|)
® increasingly used as a repetitiveness measure of T, similar to z

(number of Lempel-Ziv phrases)

® as a property of the dataset Bannai et al. [TCS 2020],
Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]
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2. The parameter r

e size of data structures O(r) (r-index) Gagie et al. [JACM 2020],
Bannai et al. [TCS 2020]

e algorithms’ running time ideally a function of r (not of n =|T])

® increasingly used as a repetitiveness measure of T, similar to z
(number of Lempel-Ziv phrases)

® as a property of the dataset Bannai et al. [TCS 2020],
Boucher et al. [ALENEX 2021],
Cobas et al. [CPM 2021]

® in theoretical work on repetitiveness measures
Kempa and Kociumaka [FOCS 2020],
Navarro [ACM Comp. Surv., 2021],
Akagi et al. [Inf. Comp. 2023]
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3. Input order dependence
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3. Input order dependence

N.B. multidoIBWT and concatBWT depend on the input order!

( Sy
M; = [ATATG, TGA,ACG,ATCA,GGA] mdolBWT(M;)= GAGAAGCG$$STTATCTGSAAAS
M, = [ACG,ATATG,GGA, TGA,ATCA] mdolBWT(M;) = GGAAAGGC$$STTACTGT$AAAS
g J
(~ )
M, = [ATATG, TGA,ACG,ATCA,GGA]  concBWT(M;)= AAGAGGGC$$STTACTGTSAAAS

M, = [ACG,ATATG,GGA, TGA,ATCA]  concBWT(M;) = AGAGACGG$$STTACTTGHAAAS
J
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3. Input order dependence

N.B. multidoIBWT and concatBWT depend on the input order!

(~ Sy
M; = [ATATG, TGA,ACG,ATCA,GGA] mdolBWT(M;)= GAGAAGCG$$STTATCTGSAAAS
M, = [ACG,ATATG,GGA, TGA,ATCA] mdolBWT(M;) = GGAAAGGC$$STTACTGT$AAAS
g J
(~ )
M, = [ATATG, TGA,ACG,ATCA,GGA]  concBWT(M;)= AAGAGGGC$$STTACTGTSAAAS

M, = [ACG,ATATG,GGA, TGA,ATCA]  concBWT(M;) = AGAGACGG$$STTACTTGHAAAS
J

Thus, giving the same dataset to the same tool but in different order can
produce very different results! (incl. the number of runs)
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The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.
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The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings
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The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method
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The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method

e Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r
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The multidollar BWT can simulate all others

Prop. Let M be given, and L some separator-based BWT on M. Then
there exists an input permutation 7 such that multidol(7(M)) = L.

Proof sketch: colexBWT: colex order, dollarEBWT: lex order,
concatBWT: lex order of subseq strings

® Prop. = any separator-based BWT variant can be computed using
the multidollar method

e Bentley, Gibney, and Thankachan [ESA 2020] gave a linear-time
algorithm for the input order of multidollar BWT with minimum r

® We implemented this algorithm in our tool optimalBWT
[Cenzato, Guerrini, L., Rosone, DCC 2023]
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Conclusions
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Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent
the most commonly used ones are input-order dependent

the number of runs r varies significantly
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Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

— the same tool on the same dataset can produce different size
data structures

optBWT minimizes r, and has been implemented
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Conclusions

there are different ways of computing the BWT of a string collection
these are non-equivalent

the most commonly used ones are input-order dependent

the number of runs r varies significantly

— different tools on the same dataset can produce different size
data structures

— the same tool on the same dataset can produce different size
data structures

optBWT minimizes r, and has been implemented
definition of r should be standardized (optBWT or colexBWT)
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Open Problems

® upper bound on differences between separator-based BWT variants
® characterize string collections for which differences highest

® analyze differences between eBWT and separator-based BWTs
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Open Problems

® upper bound on differences between separator-based BWT variants
® characterize string collections for which differences highest

® analyze differences between eBWT and separator-based BWTs

My personal conclusion:

Definitions matter!
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Thank you for your attention!
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