
Dollar or no dollar, that is the question

New combinatorial results on the
Burrows-Wheeler-Transform

Zsuzsanna Lipták

University of Verona (Italy)

18e Journées Montoises d’Informatique Théorique
Prague, 9 Sept. 2022

Part I:

Introduction

Zsuzsanna Lipták Dollar or no dollar, that is the question 2 / 65

The Burrows-Wheeler-Transform

Ex.: T = banana. The BWT is a permutation of T : nnbaaa

all rotations (conjugates)

banana

ananab

nanaba

anaban

nabana

abanan

−→
lexicographic

order

all rotations, sorted

abanan

anaban

ananab

banana

nabana

nanaba

Take a string (word) T , list all of its rotations, sort them lexicographically,
concatenate last characters: bwt(T).

Zsuzsanna Lipták Dollar or no dollar, that is the question 3 / 65

BWT history

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

• invented by David Wheeler in the 70s
as a lossless text compression algorithm

• fully developed and written up together with Michael Burrows in 1994

• appeared as a technical report only, never published

• popularized by Julian Seward’s implementation: bzip and bzip2

(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Lipták Dollar or no dollar, that is the question 4 / 65

BWT history

1.2 Genesis of the Burrows-Wheeler Transform 7

1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.

• invented by David Wheeler in the 70s
as a lossless text compression algorithm

• fully developed and written up together with Michael Burrows in 1994

• appeared as a technical report only, never published

• popularized by Julian Seward’s implementation: bzip and bzip2

(1996)

source: Adjeroh, Bell, Mukerjee: The Burrows-Wheeler-Transform, Springer, 2008

Zsuzsanna Lipták Dollar or no dollar, that is the question 4 / 65

Reversing the BWT

input: nnbaaa, 3 bwt(T), i : where 0 ≤ i < n

output: (wanted) banana. T : i ’th rotation lex.ly

Recall: BWT-matrix (F: first column, L: last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 65

Reversing the BWT

input: nnbaaa, 3 bwt(T), i : where 0 ≤ i < n

output: (wanted) banana. T : i ’th rotation lex.ly

Recall: BWT-matrix (F: first column, L: last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 65

Reversing the BWT

input: nnbaaa, 3 bwt(T), i : where 0 ≤ i < n

output: (wanted) banana. T : i ’th rotation lex.ly

Recall: BWT-matrix (F: first column, L: last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 65

Reversing the BWT

input: nnbaaa, 3 bwt(T), i : where 0 ≤ i < n

output: (wanted) banana. T : i ’th rotation lex.ly

Recall: BWT-matrix (F: first column, L: last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 65

Reversing the BWT

input: nnbaaa, 3 bwt(T), i : where 0 ≤ i < n

output: (wanted) banana. T : i ’th rotation lex.ly

Recall: BWT-matrix (F: first column, L: last column)

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

• Obs. 1: F = all characters of T in lex. order:
aaabnn

• Obs. 2: for all i : Li precedes Fi in T :

T = b
0
a
1
n
2
a
3
n
4
a
5

Thm. (LF-property): The j ’th occurrence of character x in L is the j ’th
occurrence of character x in F .

Zsuzsanna Lipták Dollar or no dollar, that is the question 5 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n

a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a

n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n

a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a

n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b

a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Reversing the BWT

• Obs. 1: F = all characters of T in lex. order

• Obs. 2: Li precedes Fi in T

• LF-property: The j ’th x in L is the j ’th x in F .

input: nnbaaa, 3

F L
0 abanan

1 anaban

2 ananab

3 banana

4 nabana

5 nanaba

F L
0 a n

1 a n

2 a b

3 b a

4 n a

5 n a

b a n a n a

Zsuzsanna Lipták Dollar or no dollar, that is the question 6 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2

(2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Why can the BWT be useful in text compression?

• Obs. 2: Li precedes Fi in T

• Obs. 3: all occurrences of a substring appear in consecutive rows

Ex.: T = banana has 2 occurrences of the pattern ana

2 occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of na

preceded by a

abanan

anaban

ananab

banana

nabana

nanaba

2 occ’s of a

preceded by n

abanan

anaban

ananab

banana

nabana

nanaba

So: we get a run of a’s of length 2, and a run of n’s of length 2 (2 = no. occ’s).

Zsuzsanna Lipták Dollar or no dollar, that is the question 7 / 65

Of course, things are a bit more complicated:

rotation BWT

he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
• many the’s, some he, she, The

Zsuzsanna Lipták Dollar or no dollar, that is the question 8 / 65

Of course, things are a bit more complicated:

rotation BWT

he caverns measureless to man, And sank in tumult to a ... t

he caves. It was a miracle of rare device, A sunny pleasure-... t

he dome of pleasure Floated midway on the waves; Where was ... t

he fountain and the caves. It was a miracle of rare device,... t

he green hill athwart a cedarn cover! A savage place! as ... t

he hills, Enfolding sunny spots of greenery. But oh! that ... t

he milk of Paradise. t

he mingled measure From the fountain and the caves. It was a ... t

he on honey-dew hath fed, And drunk the milk of Paradise. ...

he played, Singing of Mount Abora. Could I revive within me ... s

he sacred river ran, Then reached the caverns measureless ... t

he sacred river, ran Through caverns measureless to man ... t

he sacred river. Five miles meandering with a mazy motion ... t

he shadow of the dome of pleasure Floated midway on the waves ... T

he thresher’s flail: And mid these dancing rocks at once and ... t

he waves; Where was heard the mingled measure From the ... t

Kubla Kahn by Samuel Coleridge
• many the’s, some he, she, The

Zsuzsanna Lipták Dollar or no dollar, that is the question 8 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding

• nowadays: using RLE (runlength-encoding) We will soon see why!
• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding) We will soon see why!

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding) We will soon see why!

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding) We will soon see why!

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding) We will soon see why!

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Compression with the BWT

• in original paper: using Move-to-front and Huffman/arithmetic coding
• nowadays: using RLE (runlength-encoding) We will soon see why!

• RLE: replace equal-letter-runs by (character, integer)-pair
• Ex.: bbbbbbbbcaaaaaaaaaaabb 7→ (b, 8), (c, 1), (a, 11), (b, 2)

• good if few runs w.r.t. length of string

• Def.: r(T) = # runs of bwt(T)
Ex.: r(banana) = 3 recall: bwt(banana) = nnbaaa

• for repetitive strings, r is small (more on this later)

Zsuzsanna Lipták Dollar or no dollar, that is the question 9 / 65

Pattern matching with the BWT

Most fundamental algorithmic problem on strings:

Pattern matching:
Given a string T of length n (the text) and a string P of length m (the
pattern), find all occurrences of P in T as a substring.
Typically: m << n.
Variants: decide if P occurs, return the number of occurrences, find one
occurrence, find first occurrence, . . .

Ex.: T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana. Occ(P) = {1, 3}.

• without additional data structures, time Ω(n + m) (read the input)

• exist algorithms achieving Θ(n + m) worst-case (Knuth-Morris-Pratt)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 65

Pattern matching with the BWT

Most fundamental algorithmic problem on strings:

Pattern matching:
Given a string T of length n (the text) and a string P of length m (the
pattern), find all occurrences of P in T as a substring.
Typically: m << n.

Variants: decide if P occurs, return the number of occurrences, find one
occurrence, find first occurrence, . . .

Ex.: T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana. Occ(P) = {1, 3}.

• without additional data structures, time Ω(n + m) (read the input)

• exist algorithms achieving Θ(n + m) worst-case (Knuth-Morris-Pratt)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 65

Pattern matching with the BWT

Most fundamental algorithmic problem on strings:

Pattern matching:
Given a string T of length n (the text) and a string P of length m (the
pattern), find all occurrences of P in T as a substring.
Typically: m << n.
Variants: decide if P occurs, return the number of occurrences, find one
occurrence, find first occurrence, . . .

Ex.: T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana. Occ(P) = {1, 3}.

• without additional data structures, time Ω(n + m) (read the input)

• exist algorithms achieving Θ(n + m) worst-case (Knuth-Morris-Pratt)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 65

Pattern matching with the BWT

Most fundamental algorithmic problem on strings:

Pattern matching:
Given a string T of length n (the text) and a string P of length m (the
pattern), find all occurrences of P in T as a substring.
Typically: m << n.
Variants: decide if P occurs, return the number of occurrences, find one
occurrence, find first occurrence, . . .

Ex.: T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana. Occ(P) = {1, 3}.

• without additional data structures, time Ω(n + m) (read the input)

• exist algorithms achieving Θ(n + m) worst-case (Knuth-Morris-Pratt)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 65

Pattern matching with the BWT

Most fundamental algorithmic problem on strings:

Pattern matching:
Given a string T of length n (the text) and a string P of length m (the
pattern), find all occurrences of P in T as a substring.
Typically: m << n.
Variants: decide if P occurs, return the number of occurrences, find one
occurrence, find first occurrence, . . .

Ex.: T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana. Occ(P) = {1, 3}.

• without additional data structures, time Ω(n + m) (read the input)

• exist algorithms achieving Θ(n + m) worst-case (Knuth-Morris-Pratt)

Zsuzsanna Lipták Dollar or no dollar, that is the question 10 / 65

Pattern matching with the BWT
Backward search [Ferragina and Manzini, 2000]

1. process pattern back-to-front

2. Occ(xU) ⊆ Occ(U)− 1 Occ(U) = occurrences of U in T

ex. T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana.

(Occ(a) = {1, 3, 5},Occ(na) = {2, 4},Occ(ana) = {1, 3}).

all occ’s of a

abanan

anaban

ananab

banana

nabana

nanaba

all occ’s of na

abanan

anaban

ananab

banana

nabana

nanaba

all occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

Zsuzsanna Lipták Dollar or no dollar, that is the question 11 / 65

Pattern matching with the BWT
Backward search [Ferragina and Manzini, 2000]

1. process pattern back-to-front

2. Occ(xU) ⊆ Occ(U)− 1 Occ(U) = occurrences of U in T

ex. T = b
0
a
1
n
2
a
3
n
4
a
5

and P = ana.

(Occ(a) = {1, 3, 5},Occ(na) = {2, 4},Occ(ana) = {1, 3}).

all occ’s of a

abanan

anaban

ananab

banana

nabana

nanaba

all occ’s of na

abanan

anaban

ananab

banana

nabana

nanaba

all occ’s of ana

abanan

anaban

ananab

banana

nabana

nanaba

Zsuzsanna Lipták Dollar or no dollar, that is the question 11 / 65

Pattern matching with the BWT
Magic! Backward search can be done on the BWT directly (with some
additional magic. . .):

Ex.: T = banana and P = ana.
bwt(T) = nnbaaa.

all occ’s of a

n

n

b

a

a

a

all occ’s of na

n

n

b

a

a

a

all occ’s of ana

n

n

b

a

a

a

Thm. Pattern matching on bwt(T) (decision and counting) can be
implemented in O(m log σ) time, using only o(n) additional bits.

σ = alphabetsize

Zsuzsanna Lipták Dollar or no dollar, that is the question 12 / 65

Pattern matching with the BWT
Magic! Backward search can be done on the BWT directly (with some
additional magic. . .):

Ex.: T = banana and P = ana.
bwt(T) = nnbaaa.

all occ’s of a

n

n

b

a

a

a

all occ’s of na

n

n

b

a

a

a

all occ’s of ana

n

n

b

a

a

a

Thm. Pattern matching on bwt(T) (decision and counting) can be
implemented in O(m log σ) time, using only o(n) additional bits.

σ = alphabetsize

Zsuzsanna Lipták Dollar or no dollar, that is the question 12 / 65

BWT magic

copyright: Sydney Harris

Zsuzsanna Lipták Dollar or no dollar, that is the question 13 / 65

BWT magic

The BWT . . .

• requires same space as T in bits: n log σ bits σ = alphabetsize

(suffix array: n log n bits, suffix tree: much more — still O(n))

We have seen:

• lossless: BWT is reversible: nnbaaa,3 7→ banana

• easier to compress than T , if T repetitive

• pattern matching in O(m log σ) time m = |P|
(on T : O(n + m) time) n = |T |

We have not seen:

• reversible in linear time O(n) n = |T |
• computable in linear time O(n)

• can replace text (suffix array, suffix tree: no)

Zsuzsanna Lipták Dollar or no dollar, that is the question 14 / 65

BWT magic

The BWT . . .

• requires same space as T in bits: n log σ bits σ = alphabetsize

(suffix array: n log n bits, suffix tree: much more — still O(n))

We have seen:

• lossless: BWT is reversible: nnbaaa,3 7→ banana

• easier to compress than T , if T repetitive

• pattern matching in O(m log σ) time m = |P|
(on T : O(n + m) time) n = |T |

We have not seen:

• reversible in linear time O(n) n = |T |
• computable in linear time O(n)

• can replace text (suffix array, suffix tree: no)

Zsuzsanna Lipták Dollar or no dollar, that is the question 14 / 65

BWT magic

The BWT . . .

• requires same space as T in bits: n log σ bits σ = alphabetsize

(suffix array: n log n bits, suffix tree: much more — still O(n))

We have seen:

• lossless: BWT is reversible: nnbaaa,3 7→ banana

• easier to compress than T , if T repetitive

• pattern matching in O(m log σ) time m = |P|
(on T : O(n + m) time) n = |T |

We have not seen:

• reversible in linear time O(n) n = |T |
• computable in linear time O(n)

• can replace text (suffix array, suffix tree: no)

Zsuzsanna Lipták Dollar or no dollar, that is the question 14 / 65

Compressed data structures for strings

The amount of (just HTML) online text material in the Web
was estimated, in 2002, to exceed by 30-40 times what had been
printed during the whole history of mankind.

from: Navarro & Mäkinen,
Compressed Full Text Indexes,

ACM Computing Surveys, 2007

N.B. And this was in 2002!

Zsuzsanna Lipták Dollar or no dollar, that is the question 15 / 65

Compressed data structures for strings

The amount of (just HTML) online text material in the Web
was estimated, in 2002, to exceed by 30-40 times what had been
printed during the whole history of mankind.

from: Navarro & Mäkinen,
Compressed Full Text Indexes,

ACM Computing Surveys, 2007

N.B. And this was in 2002!

Zsuzsanna Lipták Dollar or no dollar, that is the question 15 / 65

Let’s look at biological sequences . . .

source: NCBI website
Zsuzsanna Lipták Dollar or no dollar, that is the question 16 / 65

Compressed data structures for strings

So we need efficient ways of . . .

• storing,

• querying,

• mining,

• searching,

• . . .

. . . very large amounts of textual data.

Zsuzsanna Lipták Dollar or no dollar, that is the question 17 / 65

Compressed data structures for strings

Some data structures based on the BWT:

• FM-index [Ferragina and Manzini, FOCS 2000]

• RLFM-index [Mäkinen and Navarro, CPM 2005]

• r -index [Gagie et al, JACM 2020; Bannai et al. TCS 2020]

• some recent developments on r -index [Rossi et al. JCB 2022; Giuliani
et al. SEA 2022; Cobas et al. CPM 2021; Boucher et al. SPIRE 2021]

Some tools in bioinformatics (aligners):

• bwa [Durbin and Li, 2009] ca. 41,000 cit.

• bowtie [Langmead and Salzberg, 2010] ca. 36,000 cit.

• soap2 [Li et al., 2009]

• . . .

Zsuzsanna Lipták Dollar or no dollar, that is the question 18 / 65

The parameter r

Def. String T , r = number of runs of bwt(T).

• size of data structures O(r)

• algorithms’ running time ideally a function of r (not of n = |T |)
• increasingly used as a repetitiveness measure of T
• some papers on r :

• Manzini: “An analysis of the Burrows-Wheeler-Transform” [JACM
2001]

• Kempa and Kociumaka: ”Resolution of the Burrows-Wheeler
Transform Conjecture” [FOCS 2020]

• Navarro: “Indexing Highly Repetitive String Collections, Part I:
Repetitiveness Measures” [ACM Comp. Surv., 2021]

• Mantaci et al.: “Measuring the clustering effect of BWT via RLE”
[TCS 2017]

Zsuzsanna Lipták Dollar or no dollar, that is the question 19 / 65

BWT from a combinatorial perspective

• special case of the Gessel-Reutenauer-bijection [Crochemore,
Désarménien, Perrin, 2004]

• introduction of the extended BWT (eBWT), a generalization of the
BWT to multisets of strings [Mantaci et al. 2007]
• strings T with fully clustering BWTs (e.g. bwt(T) = bbbbaaccc)

• full characterization for σ = 2 [Mantaci et al., 2003]
• partial characterization for σ > 2 [Puglisi et al., 2008]
• characterization via interval exchanges [Ferenczi et al., 2013]

• fixpoints of the BWT [Mantaci et al., 2017]

• characterization of BWT images [Likhomanov and Shur, 2011]

Good overview: Rosone and Sciortino: “The Burrows-Wheeler Transform
between Data Compression and Combinatorics on Words.” [CiE 2013]

Zsuzsanna Lipták Dollar or no dollar, that is the question 20 / 65

• two research communities working on the BWT

• (1) data structures and algorithms on strings and
(2) combinatorics on words

• little interaction until . . .

Zsuzsanna Lipták Dollar or no dollar, that is the question 21 / 65

Dagstuhl workshop “25 years of the Burrows-Wheeler-Transform” (2019)
organized by T. Gagie, G. Manzini, G. Navarro, J. Stoye

Zsuzsanna Lipták Dollar or no dollar, that is the question 22 / 65

The schedule:
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

07:30 BREAKFAST BREAKFAST BREAKFAST BREAKFAST
09:00 INTRO ALG TALK 1 CoW TALK 1

WORK...
09:45 BIO TALK 1 ALG TALK 2 CoW TALK 2
10:30 BIO TALK 2 ALG TALK 3 CoW TALK 3
11:15 BIO TALK 3 ALG TALK 4 CoW TALK 4
12:15 LUNCH

LUNCH LUNCH LUNCH
13:45

BIO TALK 4
14:00

ALG PANEL CoW PANEL
14:30

BIO PANEL
15:00 WORK! CLOSING
15:30 CAKE CAKE CAKE CAKE
16:00 WORK? WORK WORK!! WORK!!!
18:00 DINNER (buffet) DINNER DINNER DINNER
20:00 CHEESE? CHEESE CHEESE CHEESE

INTRO Giovanni BIO PANEL ALG PANEL CoW PANEL
BIO TALK 1 Veli (Pan-genomic) alignment Ben Ian Gabriele
BIO TALK 2 Richard PBWT Gene Inge (chair) Hideo
BIO TALK 3 Jouni GBWT Knut Johannes Jackie
BIO TALK 4 Christina de Bruijn graphs Kunsoo Rahul Pawel
ALG TALK 1 Gonzalo r-index Paola Roberto Sabrina (chair)
ALG TALK 2 Sandip Local decodability Richard Simon G Tomasz
ALG TALK 3 Dominik BWT construction Tony (chair) Zsuzsa
ALG TALK 4 Sharma Wheeler graphs
CoW TALK 1 Nicola String attractors Jens chairs BIO talks
CoW TALK 2 Marinella Combinatorial properties Giovanni chairs ALG talks
CoW TALK 3 Giovanna eBWT / BWT similarity Travis chairs CoW talks
CoW TALK 4 Dominik Bijective BWT
CLOSING Jens

At the workshop, the communities were called

ALG, BIO, and CoW (sic!)

Zsuzsanna Lipták Dollar or no dollar, that is the question 23 / 65

The schedule:
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

07:30 BREAKFAST BREAKFAST BREAKFAST BREAKFAST
09:00 INTRO ALG TALK 1 CoW TALK 1

WORK...
09:45 BIO TALK 1 ALG TALK 2 CoW TALK 2
10:30 BIO TALK 2 ALG TALK 3 CoW TALK 3
11:15 BIO TALK 3 ALG TALK 4 CoW TALK 4
12:15 LUNCH

LUNCH LUNCH LUNCH
13:45

BIO TALK 4
14:00

ALG PANEL CoW PANEL
14:30

BIO PANEL
15:00 WORK! CLOSING
15:30 CAKE CAKE CAKE CAKE
16:00 WORK? WORK WORK!! WORK!!!
18:00 DINNER (buffet) DINNER DINNER DINNER
20:00 CHEESE? CHEESE CHEESE CHEESE

INTRO Giovanni BIO PANEL ALG PANEL CoW PANEL
BIO TALK 1 Veli (Pan-genomic) alignment Ben Ian Gabriele
BIO TALK 2 Richard PBWT Gene Inge (chair) Hideo
BIO TALK 3 Jouni GBWT Knut Johannes Jackie
BIO TALK 4 Christina de Bruijn graphs Kunsoo Rahul Pawel
ALG TALK 1 Gonzalo r-index Paola Roberto Sabrina (chair)
ALG TALK 2 Sandip Local decodability Richard Simon G Tomasz
ALG TALK 3 Dominik BWT construction Tony (chair) Zsuzsa
ALG TALK 4 Sharma Wheeler graphs
CoW TALK 1 Nicola String attractors Jens chairs BIO talks
CoW TALK 2 Marinella Combinatorial properties Giovanni chairs ALG talks
CoW TALK 3 Giovanna eBWT / BWT similarity Travis chairs CoW talks
CoW TALK 4 Dominik Bijective BWT
CLOSING Jens

At the workshop, the communities were called ALG, BIO, and CoW (sic!)

Zsuzsanna Lipták Dollar or no dollar, that is the question 23 / 65

But: The two communities use slightly different definitions of the BWT:

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $, smaller than all others)

T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

Zsuzsanna Lipták Dollar or no dollar, that is the question 24 / 65

But: The two communities use slightly different definitions of the BWT:

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $, smaller than all others)

T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

Zsuzsanna Lipták Dollar or no dollar, that is the question 24 / 65

Part II:

Dollar or no dollar,

that is the question

Zsuzsanna Lipták Dollar or no dollar, that is the question 25 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

• ALG (incl. BIO): It is assumed that each string terminates
with an end-of-string character (denoted $) T = banana$

• CoW: no such assumption T = banana

This talk is about the implications of this difference.

In particular:

1. the transform itself

2. BWT construction

3. BWT images

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 26 / 65

1. The transform itself

Zsuzsanna Lipták Dollar or no dollar, that is the question 27 / 65

Different transforms

banana

abanan

anaban

ananab

banana

nabana

nanaba

nnbaaa

banana$

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

annb$aa

Zsuzsanna Lipták Dollar or no dollar, that is the question 28 / 65

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 65

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 65

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 65

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 65

Different transforms

without dollar with dollar
(banana) (banana$)

the transform nnbaaa annb$aa

remove $ nnbaaa annbaa

runs r 3 4

• Thm. There exist strings for which the difference in r is Θ(log n).
[Giuliani, Inenaga, L., Sciortino, 2022, forthcoming]

• This is asymptotically tight: here r = O(1), and upper bound is
O(log r log n). [Akagi, Funakoshi, Inenaga, 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 29 / 65

Different transforms

Thm. There exist strings for which the difference in r is Θ(log n).

• r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k), r(T) = 2, r(T$) = 2k − 1

ex.:
r(Fib(8)) = 2, r(Fib(8)$) = 7
r(Fib(12)) = 2, r(Fib(12)$) = 11

• r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1 :], r(T) = 2k, r(T$) = 5

ex:
r(Fib(13)[1 :]) = 12, r(Fib(13)[1 :]$) = 5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) = 5

• both additive and multiplicative difference

Zsuzsanna Lipták Dollar or no dollar, that is the question 30 / 65

Different transforms

Thm. There exist strings for which the difference in r is Θ(log n).

• r(T$) increases by log n: Fibonacci words of even order
T = Fib(2k), r(T) = 2, r(T$) = 2k − 1

ex.:
r(Fib(8)) = 2, r(Fib(8)$) = 7
r(Fib(12)) = 2, r(Fib(12)$) = 11

• r(T$) decreases by log n: Fibonacci words of odd order without the
first character T = Fib(2k + 1)[1 :], r(T) = 2k, r(T$) = 5

ex:
r(Fib(13)[1 :]) = 12, r(Fib(13)[1 :]$) = 5
r(Fib(15)[1 :]) = 14, r(Fib(15)[1 :]$) = 5

• both additive and multiplicative difference

Zsuzsanna Lipták Dollar or no dollar, that is the question 30 / 65

2. BWT construction

Zsuzsanna Lipták Dollar or no dollar, that is the question 31 / 65

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 65

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 65

BWT construction

Most BWT construction algorithms first construct the Suffix Array (SA),
then construct the BWT from the SA, using: Li = TSA[i]−1 (recall Obs. 2).

ex. T = b
0
a
1
n
2
a
3
n
4
a
5
$
6
.

SA
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

SA L
6 $banana
5 a$banan
3 ana$ban
1 anana$b
0 banana$
4 na$bana
2 nana$ba

Thus: SA-construction in O(n) time ⇒ BWT-construction in O(n) time.

Zsuzsanna Lipták Dollar or no dollar, that is the question 32 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

• This works well if there is a $.

• What if there is no dollar?

b
0
a
1
n
2
a
3
n
4
a
5

SA
5 a

3 ana

1 anana

0 banana

4 na

2 nana

SA L
5 abanan

3 anaban

1 ananab

0 banana

4 nabana

2 nanaba

nnbaaa X

a
0
n
1
a
2
b
3
a
4
n
5

SA
2 aban

4 an

0 anaban

3 ban

5 n

1 naban

SA L
2 abanan

4 ananab

0 anaban

3 banana

5 nabana

1 nabana

nbnaaa 7

Problem 1: sufi < sufj ⇔ conji < conjj does not hold in general!

Thus: We need the CA (conjugate array), not the SA!

Zsuzsanna Lipták Dollar or no dollar, that is the question 33 / 65

BWT construction without dollar

Problem 2: If T not primitive, then CA not defined (several identical
rotations):

n
0
a
1
n
2
a
3
n
4
a
5

= (na)3

CA
1 ananan

3 ananan

5 ananan

0 nanana

2 nanana

4 nanana

Zsuzsanna Lipták Dollar or no dollar, that is the question 34 / 65

Linear-time BWT construction without dollar

• For $-terminated strings, neither problem exists.

• Same for Lyndon words (primitive and < all their rotations).

• All previous BWT-construction algorithms either use $ or Lyndon rotations.

Our algorithm [Boucher, Cenzato, L., Rossi, Sciortino, SPIRE, 2021]:

• first linear-time BWT-construction algorithm which uses neither $ nor
Lyndon rotations

• adaptation of the SAIS-algorithm for SA-construction [Nong et al., 2011]

• previously, SAIS had been adapted for T$ [Okanohara and Sadakane 2009],
and to the bijective BWT [Bannai et al., 2021]

Zsuzsanna Lipták Dollar or no dollar, that is the question 35 / 65

Our algorithm for BWT construction

1. assign circular types to positions

2. sort LMS-substrings

3. assign new names to LMS-substrings

4. construct new string, solve recursively

5. induce CA from relative order of LMS-positions

0 1 2 3 4 5
b a n a n a
L S L S L S

* * *

Step 1

a b n
S∗ 1 3 5
L 0 2 4
S 5 1 3

5 1 3 0 2 4

Step 2

5 a b a A
1 a n a B
3 a n a B

Step 3

0 1 2
A B B
S L L
*

A B
0

2 1
0 2 1

Step 4

a b n
5 3 1

0 4 2
CA 5 3 1 0 4 2
BWT n n b a a a

Step 5

Zsuzsanna Lipták Dollar or no dollar, that is the question 36 / 65

3. BWT images

Zsuzsanna Lipták Dollar or no dollar, that is the question 37 / 65

BWT images

The BWT-mapping bwt : Σn → Σn,T 7→ bwt(T) is not bijective:

• bwt(T) = bwt(T ′) ⇐⇒ T and T ′ are conjugates.

• Thus, not every word W is a BWT-image.

• Characterization of BWT-images exists (next)

Zsuzsanna Lipták Dollar or no dollar, that is the question 38 / 65

BWT images

Idea: If a word W is a BWT-image, then it can be reversed:

F L
0 a b

1 a a

2 a n

3 b a

4 n n

5 n a

0 1 2 3 4 5
L b a n a n a

F a a a b n n

We get: aab, of length < n = 6. 7

In other words, the permutation defined by the LF-mapping1 has more
than one cycle: (0 1 2 3 4 5

3 0 4 1 5 2) = (0, 3, 1)(2, 4, 5).

1a.k.a. standard permutation
Zsuzsanna Lipták Dollar or no dollar, that is the question 39 / 65

BWT images

Idea: If a word W is a BWT-image, then it can be reversed:

F L
0 a b

1 a a

2 a n

3 b a

4 n n

5 n a

0 1 2 3 4 5
L b a n a n a

F a a a b n n

We get: aab, of length < n = 6. 7

In other words, the permutation defined by the LF-mapping1 has more
than one cycle: (0 1 2 3 4 5

3 0 4 1 5 2) = (0, 3, 1)(2, 4, 5).

1a.k.a. standard permutation
Zsuzsanna Lipták Dollar or no dollar, that is the question 39 / 65

BWT images

Idea: If a word W is a BWT-image, then it can be reversed:

F L
0 a b

1 a a

2 a n

3 b a

4 n n

5 n a

0 1 2 3 4 5
L b a n a n a

F a a a b n n

We get: aab, of length < n = 6. 7

In other words, the permutation defined by the LF-mapping1 has more
than one cycle: (0 1 2 3 4 5

3 0 4 1 5 2) = (0, 3, 1)(2, 4, 5).

1a.k.a. standard permutation
Zsuzsanna Lipták Dollar or no dollar, that is the question 39 / 65

BWT images

Idea: If a word W is a BWT-image, then it can be reversed:

F L
0 a b

1 a a

2 a n

3 b a

4 n n

5 n a

0 1 2 3 4 5
L b a n a n a

F a a a b n n

We get: aab, of length < n = 6. 7

In other words, the permutation defined by the LF-mapping1 has more
than one cycle: (0 1 2 3 4 5

3 0 4 1 5 2) = (0, 3, 1)(2, 4, 5).

1a.k.a. standard permutation
Zsuzsanna Lipták Dollar or no dollar, that is the question 39 / 65

BWT images

Def. Given a word W , its standard permutation π is defined by:
π(i) < π(j) iff (a) W [i] <W [j] or (b) W [i] = W [j] and i < j .

Thm. [Likhomanov and Shur, 2011] A word W is the BWT of some word
iff the number of cycles of its standard permutation π equals the gcd of its
runlengths.

Ex. banana, runlengths: 1,1,1,1,1,1, gcd = 1, π has 2 cycles: 7

Ex. nnbaaa, runlengths: 2,1,3, gcd = 1,
π = (0 1 2 3 4 5

4 5 3 0 1 2) = (0, 4, 1, 5, 2, 3) has 1 cycle: X bwt(banana)

Ex. nnnaaa, runlengths: 3,3, gcd = 3,
π = (0 1 2 3 4 5

3 4 5 0 1 2) = (0, 3)(1, 4)(3, 5) 3 cycles: X bwt(ananan)

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 65

BWT images

Def. Given a word W , its standard permutation π is defined by:
π(i) < π(j) iff (a) W [i] <W [j] or (b) W [i] = W [j] and i < j .

Thm. [Likhomanov and Shur, 2011] A word W is the BWT of some word
iff the number of cycles of its standard permutation π equals the gcd of its
runlengths.

Ex. banana, runlengths: 1,1,1,1,1,1, gcd = 1, π has 2 cycles: 7

Ex. nnbaaa, runlengths: 2,1,3, gcd = 1,
π = (0 1 2 3 4 5

4 5 3 0 1 2) = (0, 4, 1, 5, 2, 3) has 1 cycle: X bwt(banana)

Ex. nnnaaa, runlengths: 3,3, gcd = 3,
π = (0 1 2 3 4 5

3 4 5 0 1 2) = (0, 3)(1, 4)(3, 5) 3 cycles: X bwt(ananan)

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 65

BWT images

Def. Given a word W , its standard permutation π is defined by:
π(i) < π(j) iff (a) W [i] <W [j] or (b) W [i] = W [j] and i < j .

Thm. [Likhomanov and Shur, 2011] A word W is the BWT of some word
iff the number of cycles of its standard permutation π equals the gcd of its
runlengths.

Ex. banana, runlengths: 1,1,1,1,1,1, gcd = 1, π has 2 cycles: 7

Ex. nnbaaa, runlengths: 2,1,3, gcd = 1,
π = (0 1 2 3 4 5

4 5 3 0 1 2) = (0, 4, 1, 5, 2, 3) has 1 cycle: X bwt(banana)

Ex. nnnaaa, runlengths: 3,3, gcd = 3,
π = (0 1 2 3 4 5

3 4 5 0 1 2) = (0, 3)(1, 4)(3, 5) 3 cycles: X bwt(ananan)

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 65

BWT images

Def. Given a word W , its standard permutation π is defined by:
π(i) < π(j) iff (a) W [i] <W [j] or (b) W [i] = W [j] and i < j .

Thm. [Likhomanov and Shur, 2011] A word W is the BWT of some word
iff the number of cycles of its standard permutation π equals the gcd of its
runlengths.

Ex. banana, runlengths: 1,1,1,1,1,1, gcd = 1, π has 2 cycles: 7

Ex. nnbaaa, runlengths: 2,1,3, gcd = 1,
π = (0 1 2 3 4 5

4 5 3 0 1 2) = (0, 4, 1, 5, 2, 3) has 1 cycle: X bwt(banana)

Ex. nnnaaa, runlengths: 3,3, gcd = 3,
π = (0 1 2 3 4 5

3 4 5 0 1 2) = (0, 3)(1, 4)(3, 5) 3 cycles: X bwt(ananan)

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 65

BWT images

Def. Given a word W , its standard permutation π is defined by:
π(i) < π(j) iff (a) W [i] <W [j] or (b) W [i] = W [j] and i < j .

Thm. [Likhomanov and Shur, 2011] A word W is the BWT of some word
iff the number of cycles of its standard permutation π equals the gcd of its
runlengths.

Ex. banana, runlengths: 1,1,1,1,1,1, gcd = 1, π has 2 cycles: 7

Ex. nnbaaa, runlengths: 2,1,3, gcd = 1,
π = (0 1 2 3 4 5

4 5 3 0 1 2) = (0, 4, 1, 5, 2, 3) has 1 cycle: X bwt(banana)

Ex. nnnaaa, runlengths: 3,3, gcd = 3,
π = (0 1 2 3 4 5

3 4 5 0 1 2) = (0, 3)(1, 4)(3, 5) 3 cycles: X bwt(ananan)

Zsuzsanna Lipták Dollar or no dollar, that is the question 40 / 65

BWT images with dollar

And with dollar?

• W has exactly one occurrence of $ =⇒ gcd = 1.

• Thm. of Likhomanov and Shur: W is a BWT-image iff π is cyclic.

• Note that W has at most one pre-image ($ is at the end).

Zsuzsanna Lipták Dollar or no dollar, that is the question 41 / 65

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

But we can ask a more complex question now:

Let bwt$: Σn → Σn,T 7→ bwt(T$) without the dollar.

ex. banana 7→ annbaa, since bwt(banana$) = annb$aa.

Questions:

• Is bwt$ bijective? (no)

• Can we characterize bwt$-images?

• If W is a bwt$-image, how many distinct T ’s map to it?

• How can we find these T ’s?

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 65

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

But we can ask a more complex question now:

Let bwt$: Σn → Σn,T 7→ bwt(T$) without the dollar.

ex. banana 7→ annbaa, since bwt(banana$) = annb$aa.

Questions:

• Is bwt$ bijective? (no)

• Can we characterize bwt$-images?

• If W is a bwt$-image, how many distinct T ’s map to it?

• How can we find these T ’s?

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 65

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

But we can ask a more complex question now:

Let bwt$: Σn → Σn,T 7→ bwt(T$) without the dollar.

ex. banana 7→ annbaa, since bwt(banana$) = annb$aa.

Questions:

• Is bwt$ bijective? (no)

• Can we characterize bwt$-images?

• If W is a bwt$-image, how many distinct T ’s map to it?

• How can we find these T ’s?

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 65

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

But we can ask a more complex question now:

Let bwt$: Σn → Σn,T 7→ bwt(T$) without the dollar.

ex. banana 7→ annbaa, since bwt(banana$) = annb$aa.

Questions:

• Is bwt$ bijective? (no)

• Can we characterize bwt$-images?

• If W is a bwt$-image, how many distinct T ’s map to it?

• How can we find these T ’s?

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 65

When a dollar makes a BWT

[Giuliani, L., Masillo, Rizzi, TCS, 2021]

But we can ask a more complex question now:

Let bwt$: Σn → Σn,T 7→ bwt(T$) without the dollar.

ex. banana 7→ annbaa, since bwt(banana$) = annb$aa.

Questions:

• Is bwt$ bijective? (no)

• Can we characterize bwt$-images?

• If W is a bwt$-image, how many distinct T ’s map to it?

• How can we find these T ’s?

Zsuzsanna Lipták Dollar or no dollar, that is the question 42 / 65

When a dollar makes a BWT

Question: Is W a bwt$-image? In other words, can we insert $
somewhere to make it a BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

We call 4 and 6 nice positions.

annbaa is a bwt$-image X
with 2 nice positions.

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana is no bwt$-image. 7

Zsuzsanna Lipták Dollar or no dollar, that is the question 43 / 65

When a dollar makes a BWT

Question: Is W a bwt$-image? In other words, can we insert $
somewhere to make it a BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

We call 4 and 6 nice positions.

annbaa is a bwt$-image X
with 2 nice positions.

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana is no bwt$-image. 7

Zsuzsanna Lipták Dollar or no dollar, that is the question 43 / 65

When a dollar makes a BWT

Question: Is W a bwt$-image? In other words, can we insert $
somewhere to make it a BWT?

Ex.: W = annbaa.

0 $annbaa -
1 a$nnbaa -
2 an$nbaa -
3 ann$baa -
4 annb$aa bwt(banana$)
5 annba$a -
6 annbaa$ bwt(nabana$)

We call 4 and 6 nice positions.

annbaa is a bwt$-image X
with 2 nice positions.

Ex.: W = banana.

0 $banana -
1 b$anana -
2 ba$nana -
3 ban$ana -
4 bana$na -
5 banan$a -
6 banana$ -

banana is no bwt$-image. 7

Zsuzsanna Lipták Dollar or no dollar, that is the question 43 / 65

Computing nice positions

• Simple algorithm: for every i , 0 ≤ i < n, try reversing: O(n2) time

• Our algorithm: O(n log n) time

• def.: πi standard permutation of W with $ in position i

• idea: compute πi+1 directly from πi in O(log n) time

• smart data structure for maintaining permutations

Zsuzsanna Lipták Dollar or no dollar, that is the question 44 / 65

Our algorithm

Lemma: We can get πi+1 from πi with one transposition:

πi+1 = (πi (i), πi (i + 1)) ◦ πi =
$ is in position i

(0, πi (i + 1)) ◦ πi .

Lemma

1. Transposition of elements in distinct cycles merges the two cycles

2. Transposition of elements in the same cycle splits the cycle

Zsuzsanna Lipták Dollar or no dollar, that is the question 45 / 65

Our algorithm

Lemma: We can get πi+1 from πi with one transposition:

πi+1 = (πi (i), πi (i + 1)) ◦ πi =
$ is in position i

(0, πi (i + 1)) ◦ πi .

Lemma

1. Transposition of elements in distinct cycles merges the two cycles

2. Transposition of elements in the same cycle splits the cycle

Zsuzsanna Lipták Dollar or no dollar, that is the question 45 / 65

Our algorithm

1. Transposition of elements in distinct cycles merges the two cycles(
0 1 2 3 4 5 6
0 5 6 4 1 2 3

)
= (0)(1, 5, 2, 6, 3, 4)

(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

2. Transposition of elements in the same cycle splits the cycle(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)(

0 1 2 3 4 5 6
5 6 0 4 1 2 3

)
= (0, 5, 2)(6, 3, 4, 1)

Zsuzsanna Lipták Dollar or no dollar, that is the question 46 / 65

Our algorithm

1. Transposition of elements in distinct cycles merges the two cycles(
0 1 2 3 4 5 6
0 5 6 4 1 2 3

)
= (0)(1, 5, 2, 6, 3, 4)(

0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

2. Transposition of elements in the same cycle splits the cycle(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)(

0 1 2 3 4 5 6
5 6 0 4 1 2 3

)
= (0, 5, 2)(6, 3, 4, 1)

Zsuzsanna Lipták Dollar or no dollar, that is the question 46 / 65

Our algorithm

1. Transposition of elements in distinct cycles merges the two cycles(
0 1 2 3 4 5 6
0 5 6 4 1 2 3

)
= (0)(1, 5, 2, 6, 3, 4)(

0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

2. Transposition of elements in the same cycle splits the cycle(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

(
0 1 2 3 4 5 6
5 6 0 4 1 2 3

)
= (0, 5, 2)(6, 3, 4, 1)

Zsuzsanna Lipták Dollar or no dollar, that is the question 46 / 65

Our algorithm

1. Transposition of elements in distinct cycles merges the two cycles(
0 1 2 3 4 5 6
0 5 6 4 1 2 3

)
= (0)(1, 5, 2, 6, 3, 4)(

0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)

2. Transposition of elements in the same cycle splits the cycle(
0 1 2 3 4 5 6
5 0 6 4 1 2 3

)
= (0, 5, 2, 6, 3, 4, 1)(

0 1 2 3 4 5 6
5 6 0 4 1 2 3

)
= (0, 5, 2)(6, 3, 4, 1)

Zsuzsanna Lipták Dollar or no dollar, that is the question 46 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Ex.: Algorithm findNicePositions(W) on W = annbaa:

0 $annbaa s π0 =
(

0 1 2 3 4 5 6
0 1 5 6 4 2 3

)
= (0)(1)(2, 5)(3, 6)(4) merge

1 a$nnbaa s π1 =
(

0 1 2 3 4 5 6
1 2 5 6 4 2 3

)
= (0, 1)(2, 5)(3, 6)(4) merge

2 an$nbaa s π2 =
(

0 1 2 3 4 5 6
1 5 0 6 4 2 3

)
= (0, 1, 5, 2)(3, 6)(4) merge

3 ann$baa s π3 =
(

0 1 2 3 4 5 6
1 5 6 0 4 2 3

)
= (0, 1, 5, 2, 6, 3)(4) merge

4 annb$aa s π4 =
(

0 1 2 3 4 5 6
1 5 6 4 0 2 3

)
= (0, 1, 5, 2, 6, 3, 4) split

5 annba$a s π5 =
(

0 1 2 3 4 5 6
1 5 6 4 2 0 3

)
= (0, 1, 5)(2, 6, 3, 4) merge

6 annbaa$ s π6 =
(

0 1 2 3 4 5 6
1 5 6 4 2 3 0

)
= (0, 1, 5, 3, 4, 2, 6)

Zsuzsanna Lipták Dollar or no dollar, that is the question 47 / 65

Our algorithm

Algorithm findNicePositions(W):
1 π0 ← standard permutation of $W
2 c ← number of cycles of π0

3 I ← ∅
4 For each position i , 0 ≤ i < n:
5 spaceif i + 1 and i in the same cycle then
6 spacespacec ← c + 1 // split
7 spaceotherwise
8 spacespacec ← c − 1 // merge
9 spaceupdate πi to πi+1

10 spaceif c = 1: add i + 1 to I
11 return I

Zsuzsanna Lipták Dollar or no dollar, that is the question 48 / 65

Our algorithm

Algorithm findNicePositions(W):
12 π0 ← standard permutation of $W
13 c ← number of cycles of π0

14 I ← ∅
15 For each position i , 0 ≤ i < n:
16 spaceif i + 1 and i in the same cycle then
17 spacespacec ← c + 1 // split
18 spaceotherwise
19 spacespacec ← c − 1 // merge
20 spaceupdate πi to πi+1

21 spaceif c = 1: add i + 1 to I
22 return I

Zsuzsanna Lipták Dollar or no dollar, that is the question 48 / 65

Analysis

• Using splay trees [Sleator and Tarjan, 1985]:
• decide whether i and i + 1 in the same cycle in amortized O(log n) time
• update πi in amortized O(log n) time

• Altogether O(n log n) time

Zsuzsanna Lipták Dollar or no dollar, that is the question 49 / 65

Characterizing nice positions

Def.
P = Pleft

.
∪ Pright is called pseudo-cycle if Pleft < Pright

and π(P) = (Pleft − 1) ∪ Pright .

ex.: W = cedcbbabb, then π =
(

0 1 2 3 4 5 6 7 8
5 8 7 6 1 2 0 3 4

)
.

P = {2, 4, 7}, π(P) = {1, 3, 7}, Pleft = {2, 4}, Pright = {7}

c

0

e

1

d

2

c

3

b

4

b

5

a

6

b

7

b

8

a

0

b

1

b

2

b

3

b

4

c

5

c

6

d

7

e

8

Zsuzsanna Lipták Dollar or no dollar, that is the question 50 / 65

Characterizing nice positions

Why are pseudo-cycles bad?

cedcbbabb

Pleft = {2, 4}, Pright = {7}

c

0

e

1

d

2

c

3

b

4

b

5

a

6

b

7

b

8

a

0

b
1

b
2

b
3

b
4

c

5

c

6

d
7

e

8

critical interval = {5, 6, 7}.

cedcbb$abb

blankline

c

0

e

1

d

2

c

3

b

4

b

5

$

6

a

7

b

8

b

9

$
0

a

1

b
2

b
3

b
4

b
5

c

6

c

7

d
8

e

9

Red edges become cyles in π6

Zsuzsanna Lipták Dollar or no dollar, that is the question 51 / 65

Characterizing nice positions

Why are pseudo-cycles bad?

cedcbbabb

Pleft = {2, 4}, Pright = {7}

c

0

e

1

d

2

c

3

b

4

b

5

a

6

b

7

b

8

a

0

b
1

b
2

b
3

b
4

c

5

c

6

d
7

e

8

critical interval = {5, 6, 7}.

cedcbb$abb

blankline

c

0

e

1

d

2

c

3

b

4

b

5

$

6

a

7

b

8

b

9

$
0

a

1

b
2

b
3

b
4

b
5

c

6

c

7

d
8

e

9

Red edges become cyles in π6

Zsuzsanna Lipták Dollar or no dollar, that is the question 51 / 65

Characterizing nice positions

Thm. Position i is nice iff there is no pseudo-cycle in π whose critical
interval contains i .

Zsuzsanna Lipták Dollar or no dollar, that is the question 52 / 65

4. BWT of string collections

Zsuzsanna Lipták Dollar or no dollar, that is the question 53 / 65

How to compute the BWT of a set of strings?

[Cenzato and L., CPM 2022]

ex. M = {ATATG, TGA, ACG, ATCA, GGA}

It turns out that there are many non-equivalent methods in use:

variant (our result on example tools
terminology)

eBWT CGGGATGTACGTTAAAAA pfpebwt

dollarEBWT GGAAACGG$$$TTACTGTAAA G2BWT, pfpebwt, msbwt
multidolBWT GAGAAGCG$$$TTATCTGAAA BCR, ropebwt2, nvSetBWT,

Merge-BWT, eGSA, eGAP,
bwt-lcp-parallel, gsufsort

concatBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT, tools for single strings
colexBWT AAAGGCGG$$$TTACTGTAAA ropebwt2

Zsuzsanna Lipták Dollar or no dollar, that is the question 54 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})

3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

1. eBWT(M): the extended BWT of M of Mantaci et al. (2007)
uses omega-order instead of lexicographical order: e.g. aba <ω ab

T <ω S if (a) Tω < Sω, or (b) Tω = Sω, T = Uk ,S = Um and k < m

2. dollarEBWT(M) = eBWT({Ti$: Ti ∈M})
3. multidolBWT(M) = bwt(T1$1T2$2 · · ·Tk$k), where dollars are smaller

than characters from Σ, and $1 < $2 < . . . < $k

4. concatBWT(M) = bwt(T1$T2$ · · ·Tk$#), where # < $

5. colexBWT(M) = multidol(M, γ), where γ is the permutation

corresponding to the colexicographic (’reverse lexicographic’).

Zsuzsanna Lipták Dollar or no dollar, that is the question 55 / 65

The different BWT variants

BWT variant example order of shared suffixes independent
of input order?

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA omega-order of strings yes
separator-based
dollarEBWT(M) GGAAACGG$$$TTACTGTAAA lexicographic order of strings yes
multidolBWT(M) GAGAAGCG$$$TTATCTGAAA input order of strings no
concatBWT(M) AAGAGGGC$$$TTACTGTAAA lexicographic order of no

subsequent strings in input
colexBWT(M) AAAGGCGG$$$TTACTGTAAA colexicographic order yes

Zsuzsanna Lipták Dollar or no dollar, that is the question 56 / 65

The different BWT variants

Results regarding r on short sequence datasets, of all BWT variants.

Left: average runlength (n/r). Right: number of runs r (percentage increase with

respect to the optimal BWT of [Bentley et al., ESA 2020]).

Zsuzsanna Lipták Dollar or no dollar, that is the question 57 / 65

The different BWT variants

• BWT variants differ significantly among each other
(> 11% Hamming distance on some data sets)

• we theoretically explained these differences (”interesting intervals”)

• differences especially high on large sets of short sequences

• multidolBWT and concatBWT depend on the input order

• differences extend to parameter r (number of runs of the BWT)
(up to a factor of 4.2 in our experiments)

Zsuzsanna Lipták Dollar or no dollar, that is the question 58 / 65

Part III:

Conclusion

Zsuzsanna Lipták Dollar or no dollar, that is the question 59 / 65

Dollar or no dollar, that is the question.

Zsuzsanna Lipták Dollar or no dollar, that is the question 60 / 65

Dollar or no dollar, that is the question.

Zsuzsanna Lipták Dollar or no dollar, that is the question 60 / 65

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar

3. BWT images: bwt$ vs. bwt

4. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 61 / 65

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar

3. BWT images: bwt$ vs. bwt

4. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 61 / 65

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar

3. BWT images: bwt$ vs. bwt

4. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 61 / 65

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar

3. BWT images: bwt$ vs. bwt

4. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 61 / 65

Conclusion

The two definitions of the BWT (with and without dollar) are
non-equivalent. In particular,

1. differences in the transform itself: r(T) vs. r(T$)

2. BWT construction: cannot use SA when no dollar

3. BWT images: bwt$ vs. bwt

4. BWT of string collections: several non-equivalent methods in use

Zsuzsanna Lipták Dollar or no dollar, that is the question 61 / 65

Some open problems

• Is the factor between r(T) and r(T$) additive or multiplicative?

• Characterize bwt$-images (for bwt: Thm. of Likhomanov & Shur)

• Find combinatorial characterization of strings with same bwt$

(for bwt: conjugates) e.g. bwt$(abbba) = bwt$(babba) = abbba

• Use pseudo-cycles for computing nice positions
(first steps in [Giuliani, L., Masillo, ICTCS 2022])

Zsuzsanna Lipták Dollar or no dollar, that is the question 62 / 65

Some open problems

• Is the factor between r(T) and r(T$) additive or multiplicative?

• Characterize bwt$-images (for bwt: Thm. of Likhomanov & Shur)

• Find combinatorial characterization of strings with same bwt$

(for bwt: conjugates) e.g. bwt$(abbba) = bwt$(babba) = abbba

• Use pseudo-cycles for computing nice positions
(first steps in [Giuliani, L., Masillo, ICTCS 2022])

Zsuzsanna Lipták Dollar or no dollar, that is the question 62 / 65

Some open problems

• Is the factor between r(T) and r(T$) additive or multiplicative?

• Characterize bwt$-images (for bwt: Thm. of Likhomanov & Shur)

• Find combinatorial characterization of strings with same bwt$

(for bwt: conjugates) e.g. bwt$(abbba) = bwt$(babba) = abbba

• Use pseudo-cycles for computing nice positions
(first steps in [Giuliani, L., Masillo, ICTCS 2022])

Zsuzsanna Lipták Dollar or no dollar, that is the question 62 / 65

Some open problems

• Is the factor between r(T) and r(T$) additive or multiplicative?

• Characterize bwt$-images (for bwt: Thm. of Likhomanov & Shur)

• Find combinatorial characterization of strings with same bwt$

(for bwt: conjugates) e.g. bwt$(abbba) = bwt$(babba) = abbba

• Use pseudo-cycles for computing nice positions
(first steps in [Giuliani, L., Masillo, ICTCS 2022])

Zsuzsanna Lipták Dollar or no dollar, that is the question 62 / 65

Acknowledgements (co-authors of the work presented)

Marinella Sciortino

(Univ. of Palermo)

Romeo Rizzi

(Univ. of Verona)

Shunsuke Inenanaga

(Kyushu Univ.)

Christina Boucher

(Univ. of Florida)

Massimiliano Rossi

(Illumina Inc.)

Sara Giuliani

(Univ. of Verona)

Davide Cenzato

(Univ. of Verona)

Francesco Masillo

(Univ. of Verona)

Zsuzsanna Lipták Dollar or no dollar, that is the question 63 / 65

Literature

• S. Giuliani, Zs. Lipták, F. Masillo, R. Rizzi: When a dollar makes a BWT.
Theor. Comput. Sci. 857: 123-146 (2021).

• S. Giuliani, Zs. Lipták, F. Masillo: When a Dollar in a Fully Clustered Word
Makes a BWT, ICTCS 2022.

• S. Giuliani, S. Inenaga, Zs. Lipták, M. Sciortino: On bit catastrophes for the
Burrows-Wheeler-Transform, forthcoming.

• C. Boucher, D. Cenzato, Zs. Lipták, M. Rossi, M. Sciortino, Computing the
original eBWT faster, simpler, and with less memory. SPIRE 2021.

• D. Cenzato and Zs. Lipták: A theoretical and experimental analysis of BWT
variants for string collections, CPM 2022.

• D. Cenzato and Zs. Lipták: Computing the optimal BWT using SAIS,
WCTA 2022.

Zsuzsanna Lipták Dollar or no dollar, that is the question 64 / 65

Thank you for your attention!

email: zsuzsanna.liptak@univr.it

Zsuzsanna Lipták Dollar or no dollar, that is the question 65 / 65

