BWT everywhere

Zsuzsanna Liptak
University of Verona (Italy)

CPM 2024
Fukuoka, June 26, 2024

The BWT

Zsuzsanna Liptak BWT everywhere 2/52

The BWT

Zsuzsanna Liptak BWT everywhere 2/52

The BWT

(Here BWT stands for: Best Water Technology)

Zsuzsanna Liptak BWT everywhere 2/52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T: bwt(7T) = kaouufk

Zsuzsanna Liptak BWT everywhere 3/52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T: bwt(7T) = kaouufk

all rotations (conjugates)

fukuoka
ukuokaf
kuokafu
uokafuk
okafuku
kafukuo
afukuok

Zsuzsanna Liptak BWT everywhere 3/52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T: bwt(7T) = kaouufk

all rotations (conjugates)

fukuoka

ukuokaf —

kuokafu lexicographic
order

uokafuk

okafuku

kafukuo

afukuok

Zsuzsanna Liptak BWT everywhere 3/52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T: bwt(7T) = kaouufk

all rotations (conjugates) all rotations, sorted

L
fukuoka afukuok
ukuokaf S fukuoka
kuokafu hﬂﬁﬁ:fhm kafukuo
uokafuk kuokafu
okafuku okafuku
kafukuo ukuokaf

afukuok uokafuk

Zsuzsanna Liptak BWT everywhere 3/52

The Burrows-Wheeler-Transform

T = fukuoka. The BWT is a permutation of T: bwt(7T) = kaouufk

all rotations (conjugates) all rotations, sorted

L
fukuoka afukuok
ukuokaf — fukuoka
kuokafu hﬂﬁﬁ:fhk kafukuo
uokafuk kuokafu
okafuku okafuku
kafukuo ukuokaf
afukuok uokafuk

BWT(T) = concatenation of last characters = L

Zsuzsanna Liptak BWT everywhere 3/52

The Burrows-Wheeler Transform

introduced by Burrows and
Wheeler in 1994

a reversible string transform

basis of a highly effective lossless
text compression algorithm

basis of compressed data structures
(compressed text indexes)

source: Adjeroh, Bell, Mukerjee (2008)

Zsuzsanna Liptak BWT everywhere 4/52

AWARDS & RECOGNITION

Inventors of BW-transform and the
FM-index Receive Kanellakis
Awardez

Michael Burrows @, Google; Paolo

and Giovanni Manzini @, University of Pisa,
receive the ACM Paris Kanellakis Theory
and Practice Award @ for inventing the BW-
transform and the FM-index that opened and
influenced the field of Compressed Data
Structures with fundamental impact on Data
Compression and Computational Biology. In
1994, Burrows and his late coauthor David
Wheeler published their paper describing
revolutionary data compression algorithm
based on a reversible transformation of the
input—the “Burrows-Wheeler Transform”
(BWT). A few years later, Ferragina and
Manzini showed that, by orchestrating the
BWT with a new set of mathematical
techniques and algorithmic tools, it became
possible to build a “compressed index,” later
called the FM-index. The introduction of the
BW Transform and the development of the
FM-index have had a profound impact on the
theory of algorithms and data structures with
fundamental advancements.

Zsuzsanna Liptak BWT everywhere

® 2022 ACM Kanellakis Theory and
Practice Award

o for BWT and FM-index
Ferragina @, University of Pisa; (Ferragina & Manzini 2000, 2005)

5/52

AWARDS & RECOGNITION

Inventors of BW-transform and the
FM-index Receive Kanellakis
Awardez

[}
Michael Burrows @, Google; Paolo
Ferragina @, University of Pisa;
and Giovanni Manzini @, University of Pisa,
receive the ACM Paris Kanellakis Theory []
and Practice Award @ for inventing the BW-
transform and the FM-index that opened and
influenced the field of Compressed Data
Structures with fundamental impact on Data
Compression and Computational Biology. In
1994, Burrows and his late coauthor David
Wheeler published their paper describing
revolutionary data compression algorithm
based on a reversible transformation of the
input—the “Burrows-Wheeler Transform”
(BWT). A few years later, Ferragina and
Manzini showed that, by orchestrating the
BWT with a new set of mathematical
techniques and algorithmic tools, it became
possible to build a “compressed index,” later
called the FM-index. The introduction of the
BW Transform and the development of the
FM-index have had a profound impact on the
theory of algorithms and data structures with
fundamental advancements.

2022 ACM Kanellakis Theory and
Practice Award

for BWT and FM-index
(Ferragina & Manzini 2000, 2005)

“...that opened and influenced the field
of Compressed Data Structures with
fundamental impact on Data Com-
pression and Computational Biology"

Zsuzsanna Liptak BWT everywhere

5/52

AWARDS & RECOGNITION
Inventors of BW-transform and the

® 2022 ACM Kanellakis Theory and
FM-index Receive Kanellakis

Practice Award

Awarde
Michael Burrows @, Google; Paolo ¢ fOI’ BWT and FM-IndEX

’ 7 . ..
Ferragina @, University of Pisa; (Ferraglna & Manzini 2000, 2005)
and Giovanni Manzini @, University of Pisa,
receive the ACM Parls Kanellakls Theory ® “ . .that opened and influenced the field
and Practice Award @ for inventing the BW- .
transform and the FM-index that opened and of Compressed Data Structures with
influenced the field of Compressed Data fundamental impact on Data Com-
Structures with fundamental impact on Data) . j .
Compression and Computational Biology. In pression and Computat/onal BIOIOgy
1994, Burrows and his late coauthor David
Wheeler published their paper describing ® some bioinformatics tOOlSZ

revolutionary data compression algorithm
based on a reversible transformation of the

[] — -
input—the “Burrows-Wheeler Transform” bwa’ bwa sv, bwa-mem

(BWT). A few years later, Ferragina and (Li & Durbin, 2009, 2010, Li 2013)
Manzini showed that, by orchestrating the .

BWT with a new set of mathematical > 551000 cit.

techr.1;<|:|u:s znf:lldalg\t‘urithmic too(ljs., i(tj befalrr;e ® bowtie s bowtie?2

possible to build a “compressed index,” later

called the FM-index. The introduction of the (Langmead et al., 2009, 2012)

BW Transform and the development of the > 70 000 Cit

FM-index have had a profound impact on the
theory of algorithms and data structures with
fundamental advancements.

Zsuzsanna Liptak BWT everywhere 5/52

This talk is about other uses of the BWT.

Zsuzsanna Liptak BWT everywhere 6/52

This talk is about other uses of the BWT.

distance measures based on the BWT
generating random de Bruijn sequences with the BWT

analyzing different BWT variants for string collections

sl

why a common method for BWT of text collections is not a good idea

Zsuzsanna Liptak BWT everywhere 6/52

Our tools for this talk

sanna Liptdk BWT everywhere

7/52

Tool 1: U-intervals

Def. Let U be a substring of T. The U-interval of L = bwt(T) is [/, j], where the
conjugates in positions k € [/, j] are exactly those starting with U:

T

L L
- E N
" 4 To[v) >
A H' %
% jiR 2) "
.—__.) ;

Zsuzsanna Liptdk

BWT everywhere

8/52

Tool 1: U-intervals

Def. Let U be a substring of T. The U-interval of L = bwt(T) is [/, j], where the
conjugates in positions k € [/, j] are exactly those starting with U:

7: [|*ZEA E% Emr_:’@xu - %)
L L
_ /// N
7) /ﬁ__/\v-j zs
" L Tl v S
= m 3
) I . 2 |
J T

N.B.: L[i..j] = left-context of U; [i,] = SA-interval of U (here: CA)

Zsuzsanna Liptak BWT everywhere 8/52

Why is the BWT so good in compression?

T=| r n %:&)
e v —— —
Vv \V4 \" \4
L
/mm?, 0CCUrTentes W
| _J_
o V=xU D :
.o o
mnmy X § _gj,
WU - muherval

Zsuzsanna Liptak BWT everywhere 9/52

Why is the BWT so good in compression?

xU xW xU W <A
T- 1 277, A7, m B2)

DA77
— —— —— ~—
Vv \V4 \" \4 L
zmm? 0CC Ul Tentes W
| "

eeo@®]

of V=xU =
ma gy XS nn

WU - muherval

® T has many repeated substrings = many U-intervals mostly same character

® [= bwt(T) has few runs = runlength encoding (RLE) is good

Zsuzsanna Liptak BWT everywhere 9/52

Why is the BWT so good in compression?

xU xW xU W <A
T- 1 277, A7, m B2)

DA77
— —— —— ~—
Vv \V4 \" \4 L
zmm? 0CC Ul Tentes W
| "

eeo@®]

of V=xU =
ma gy XS nn

WU - muherval

® T has many repeated substrings = many U-intervals mostly same character

® [= bwt(T) has few runs = runlength encoding (RLE) is good
bbbaccccccccceccccccccaaaaa — blatct®a®

Zsuzsanna Liptak BWT everywhere 9/52

Tool 2: The extended BWT

(Mantaci, Restivo, Rosone, Sciortino, TCS, 2007)

Ex. M = {fu,k,uoka}. The eBWT is a permutation of the characters of

M: eBWT(M) =

all rotations (conjugates)

fu
uf

k
uoka
okau
kauo
auok

N.B. kauo <, k:

Zsuzsanna Liptdk

kuokufa.

—
omega order

kauo-kauo--- <jex k-k-k-k---

BWT everywhere

auok
fu
kauo
k
okau
uf
uoka

all rotations, sorted

k

M H e R’ O B

10/52

The extended BWT (cont.)

Def. (omega-order): T <, S if (a) T% <jex S¥, or

M = {fu, k,uoka}

(N.B. With the lex-order, the LF-property would not hold.)

Zsuzsanna Liptdk

(b) T*=5% T=U\S=U"and k<m

lex-order

auok
fu

k
kauo
okau
uf
uoka

BWT everywhere

k
u
k
(¢
u
f
a

omega-order

auok
fu
kauo
k
okau
uf
uoka

k

poH e RO 8

11/52

The extended BWT (cont.)

® omega-order instead of lex-order

® the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

® However, until recently no linear-time algorithm was known.

Zsuzsanna Liptak BWT everywhere 12 /52

The extended BWT (cont.)

® omega-order instead of lex-order

® the eBWT inherits BWT properties: clustering effect, reversibility,
useful for lossless text compression, efficient pattern matching, ...

® However, until recently no linear-time algorithm was known.

Since 2021: linear-time algorithms and implementations available

® First linear-time algorithm
(Bannai, Karkkainen, Koppl, Piatkowski, CPM 2021)

® \We significantly simplified this algorithm
(Boucher, Cenzato, L., Rossi, Sciortino, SPIRE 2021)

® ...and gave efficient implementations of the eBWT (cais,pfpebwt 2021)
® |ater we gave an r-index based on the eBWT (—, Inf. & Comp., 2024)

Zsuzsanna Liptak BWT everywhere 12 /52

Tool 3: The standard permutation

Def. Given a string V/, its standard permutation my is defined by:

v (i) <my()if (i) Vi< Vj,or(ii) Vi=V,and i <.

In other words, 7y is a stable sort of the characters of V.

Example: V = kaouufk

k a o u u f k

a f k¥ k o u u =(0,2,4,6,3,5,1)

(If Vis a BWT, then 7y is called LF-mapping.)

Zsuzsanna Liptak BWT everywhere

13/52

The standard permutation (cont.)

o |f Visa BWT, then 7y is called LF-mapping.

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

o |f Visa BWT, then 7y is called LF-mapping.

e With my we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1)

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

o |f Visa BWT, then 7y is called LF-mapping.

e With my we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

o |f Visa BWT, then 7y is called LF-mapping.

e With my we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok
(or given pos. 1: fukuoka)

Zsuzsanna Liptak BWT everywhere

14 /52

The standard permutation (cont.)

e With 7\ we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok
(or given pos. 1: fukuoka)

e Similarly, we can recover (conjugates of) M from eBWT(M):
Ex. V = kuokufa, my = (0,2,4,6)(1,5)(3)

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

e With 7\ we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok
(or given pos. 1: fukuoka)

e Similarly, we can recover (conjugates of) M from eBWT(M):
Ex. V = kuokufa, my = (0,2,4,6)(1,5)(3) auok, fu, k

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

e With 7\ we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok
(or given pos. 1: fukuoka)

e Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, my = (0,2,4,6)(1,5)(3) auok, fu, k
(or given the positions: uoka, fu, k)

Zsuzsanna Liptak BWT everywhere 14 /52

The standard permutation (cont.)

e With 7\ we can recover (a conjugate of) T from bwt(T)
back-to-front:

Ex. V = kaouufk, my = (0,2,4,6,3,5,1) afukuok
(or given pos. 1: fukuoka)

e Similarly, we can recover (conjugates of) M from eBWT(M):

Ex. V = kuokufa, my = (0,2,4,6)(1,5)(3) auok, fu, k
(or given the positions: uoka, fu, k)

Thm. (Folklore) A string V is the BWT of a primitive string
if and only if 7y is cyclic.

Zsuzsanna Liptak BWT everywhere

14 /52

Distance / similarity measures

Mantaci, Restivo, Rosone, Sciortino, ToCS 2007

Zsuzsanna Liptak BWT everywhere 15 /52

Idea: Conjugates of similar strings should mix well in the eBWT.

Ex.: S = kyoto, T = tokyo.

Distance/similarity based on eBWT

runlengths of DA: ig, i1, . ..

Def. (delta-distance)
6(5,T) = Y5 o(ij —1)

d(tokyo,kyoto) =0

conjugates L DA (document array)
kyoto o S
kyoto o T
okyot t S
okyot t T
otoky y S
otoky y T
tokyo o S
tokyo o T
yotok k S
yotok k T

Zsuzsanna Liptdk

BWT everywhere

16 /52

S = fukuoka,
T = fujioka.

o
>

conjugates

DA = T'S'T1S1 3527252

L
afujiok k
afukuok k
fujioka a 5(5,T)=24+1+1+1=5
fukuoka a
iokafuj J
jiokafu u
kafujio o
kafukuo o)
kuokafu u
okafuji i
ujiokaf f
ukuokaf f
uokafuk k

DOV O 00

Zsuzsanna Liptak BWT everywhere 17 /52

S = fukuoka,
T = fujioka.

conjugates

o
>

L
afujiok k
afukuok k
fujioka a
fukuoka a
iokafuj J
jiokafu u
kafujio o
kafukuo o)
kuokafu u
okafuji i
ujiokaf f
ukuokaf f
uokafuk k

Zsuzsanna Liptdk

DOV O 00

DA = T1S1T151T352T25?
55, T)=2+1+1+1=5

® § has been used in bioinformatics,
malware analysis, artwork
comparison, ...

® a modification called 'BW similarity
distribution’ uses the expectation
of the j; and the Shannon-entropy
(Yang et al. 2010, Yang et al. 2010,
Louza et al. 2019)

BWT everywhere 17 /52

Let Py - P>--- Py, a parsing P of DA.

S = fukuoka,

T = fujioka. ef. distp(S, T) = 3" ||Pils — |Pil 7|

where | P;| is the multiplicity of x in P;

o
>

conjugates

afujiok
afukuok
fujioka
fukuoka
iokafuj

L
k .
K Ex. Let P be the parsing
a
a
J
jiokafu u
(o]
(o]
u
1
f
f
k

DA = (TS)(TS)(T)(T)(TS)(S)(THT)(S)(S)
then distp(S, T) =T7.

kafujio
kafukuo
kuokafu
okafuji
ujiokaf
ukuokaf
uokafuk

R R R I RV

Zsuzsanna Liptak BWT everywhere 18 /52

Let Py - P>--- Py, a parsing P of DA.

S = fukuoka, .

T = fujioka. Def. distp(S, T) = 32121 I|Pils — [Pil 7]
conjugates L DA where |P;| is the multiplicity of x in P;

fujiok k T

zfifuluc;k k S Ex. Let P be the parsing
fujioka a T DA = (TS)(TS)(T)(T)(TS)(S)(THT)(S)(S).
fukuoka a S then diStp(S, T) =T.
iokafuj j T) _
jiokafu a T This can be used e.g. to simulate the
kafujio o T k-mer distance
kafukuo o S (aka g-gram distance, Ukkonen 1992):
kuokafu u S
okafuji i T Def. (k-mer distance)
widet f] disti (S, T) =
uKuoxKa
uokafuk k S ZlUlzk |mult(S, U) — mult(T, U)|

Zsuzsanna Liptak BWT everywhere 18 /52

S = fukuoka,
T = fujioka.

conjugates

o
>

afujiok
afukuok

fujioka
fukuoka

iokafuj

jiokafu

kafujio
kafukuo

kuokafu

okafuji

ujiokaf

ukuokaf

W Fh | |E [0 O|F | p|K W[~

uokafuk

Zsuzsanna Liptdk

D1~ [0l » [~ [~

Let Py - P>--- Py, a parsing P of DA.

Def. distp(S, T) =", ||Pils — |Pi| 7]

where | P;| is the multiplicity of x in P;

Ex. Let P be the parsing

DA = (TS)(TS)(T)(T)(TS)(S)(THT)(S)(S)

then distp(S, T) = 7.

This can be used e.g. to simulate the
k-mer distance
(aka g-gram distance, Ukkonen 1992):

Def. (k-mer distance)

distk(S, T) =

2o juj=k |mult(S, U) — mult(T, U)|
dist,(S, T) =7

BWT everywhere

18 /52

S = fukuoka,

T = fujioka.

Let L = eBWT(S,T), and DA =
P;1 - - - P, the parsing of the DA where P;
corresponds to the ith run of L.

o
>

conjugates

afujiok
afukuok
fujioka
fukuoka
iokafuj
jiokafu
kafujio
kafukuo
kuokafu
okafuji
ujiokaf
ukuokaf
uokafuk

Def. (rho: monotonic block parsing)
p(S: T) =izt IPils — |Pil7]

Wk HhHe g O O 8o RN
NI B B I R e e I e IR T |

Zsuzsanna Liptak BWT everywhere 19 /52

S = fukuoka,

T = fujioka.
conjugates L DA Let L = eBWT(S,T), and DA =
afujiok k T P1 - - - P, the parsing of the DA where P;
afukuok k S corresponds to the ith run of L.
fujioka a T
fukuoka a § Def. (rho: monotonic block parsing)
lokafuj j T p(S,T) =3 i—1 |IPils — |Pil7]
jiokafu u T
kafujio o T Ex.
kafukuo o S i
ockafe u S DA = (TS)(TS)(T)(T)(TS)(S)(T)(TS)(S).
okafuji i T .
ujiokat £ T (S, T)=5
ukuokaf)
uokafuk k S

Zsuzsanna Liptak BWT everywhere 19 /52

Generating
random de Bruijn sequences

VS
T

el

L. & Parmigiani, LATIN 2024

Zsuzsanna Liptak BWT everywhere 20/52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet ¥ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

Ex. k = 3 : aaababbb (binary)

Zsuzsanna Liptak BWT everywhere 21/52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet ¥ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

k-mer position
Ex. k = 3 : aaababbb (binary) aaa 0
aab
aba
abb
baa
bab
bba
bbb

OO W~NBEND R

Zsuzsanna Liptak BWT everywhere 21/52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet ¥ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

k-mer position
Ex. k = 3 : aaababbb (binary) aaa 0
aab
aba
k = 3 : aaacaabbabcacccabacbccbbbceb abb
(ternary) baa
bab
bba
bbb

OO WwW~NB~NDBR

Zsuzsanna Liptak BWT everywhere 21/52

de Bruijn sequences

Def. A de Bruijn sequence (dB sequence) of order k over an alphabet ¥ is
a circular string in which every k-mer occurs exactly once as a substring.

k-mer = string of length k

k-mer position

Ex. k = 3 : aaababbb (binary) aaa 0
aab 1
aba 2
k = 3 : aaacaabbabcacccabacbccbbbceb abb 4
(ternary) baa 7
bab 3
Easy: length of a dB sequence is 0% (o = |Z|) bba 6
bbb 5

Zsuzsanna Liptak BWT everywhere 21/52

de Bruijn sequences

® de Bruijn sequences exist for every k and o

Zsuzsanna Liptak BWT everywhere 22/52

de Bruijn sequences
® de Bruijn sequences exist for every k and o

® There are (a!)”kil/ak dB sequences of order k
(Fly Sainte-Marie 1894,
Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

Zsuzsanna Liptak BWT everywhere 22/52

de Bruijn sequences

® de Bruijn sequences exist for every k and o

® There are (a!)“kil/ak dB sequences of order k
(Fly Sainte-Marie 1894,
Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

® dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb

Zsuzsanna Liptak BWT everywhere 22/52

de Bruijn sequences

® de Bruijn sequences exist for every k and o

® There are (a!)akil/ak dB sequences of order k
(Fly Sainte-Marie 1894,
Tatyana van Aardenne-Ehrenfest and Nicolaas de Bruijn 1951: BEST Thm.)

® dB sequences correspond to Euler cycles in the dB graph

aaacaabbabcacccabacbccbbbcb
(one of the 373248 dB seqs for 0 = 3, k = 3)

Zsuzsanna Liptak BWT everywhere 22/52

Applications of de Bruijn sequences

pseudo-random bit generators

experimental design: reaction time experiments, imaging studies
(MRI)

computational biology: DNA probe design, DNA microarray, DNA
synthesis

cryptographic protocols

Zsuzsanna Liptak BWT everywhere 23 /52

The BWT of de Bruijn sequences

N
0o P

L

Al
44

k-1
U e Z° occues 8 BAus

U~ mdervel Contamw
a /urmm%fi/v'au o% 2

(in particular, BWT+RLE does not compress well: many runs!)

Zsuzsanna Liptdk

BWT everywhere

24 /52

The BWT of de Bruijn sequences

L
k-1
U U e 2 occues 8 flunts
) . \
ﬁ% A M—M&/V«L; C’ol,dagw
o _lal a. i fah e
e ~ *

(in particular, BWT+RLE does not compress well: many runs!)

N.B. From now on: binary dB sequences (for simplicity).

Zsuzsanna Liptak BWT everywhere 24 /52

Construction algorithms

Many algorithms for constructing dB sequences:
e H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)
® Gabric & Sawada, Discr. Math. 2022

® website debruijnsequence.org run by Joe Sawada and others

Zsuzsanna Liptak BWT everywhere 25 /52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:
e H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)
® Gabric & Sawada, Discr. Math. 2022
® website debruijnsequence.org run by Joe Sawada and others

Most construct:
® one particular dB sequence (e.g. the lex-least dB sequence), or

Zsuzsanna Liptak BWT everywhere 25 /52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:
e H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)
® Gabric & Sawada, Discr. Math. 2022
® website debruijnsequence.org run by Joe Sawada and others

Most construct:
® one particular dB sequence (e.g. the lex-least dB sequence), or

® a small subset of dB sequences (e.g. linear feedback shift registers)

Zsuzsanna Liptak BWT everywhere 25 /52

debruijnsequence.org

Construction algorithms

Many algorithms for constructing dB sequences:
e H. Fredricksen: A survey of full length nonlinear shift register cycle
algorithms, 1982 (classic survey)
® Gabric & Sawada, Discr. Math. 2022
® website debruijnsequence.org run by Joe Sawada and others

Most construct:
® one particular dB sequence (e.g. the lex-least dB sequence), or
® a small subset of dB sequences (e.g. linear feedback shift registers)

K| 4] 5| 6 | 7 | 10 | 15 | 20 |
#LFSRs 2 6 6 18 60 1800 24000
#dBseqs 16 | 2048 | 67108864 | 1.44-10% | 1.3-10% | 3.63-10%% | 2.47.101°78%0

e number of binary dB sequences = 22 '~k

Zsuzsanna Liptak BWT everywhere 25 /52

debruijnsequence.org

Construction of random dB sequences

® The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

Zsuzsanna Liptak BWT everywhere 26 /52

Construction of random dB sequences

® The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

® Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

Zsuzsanna Liptak BWT everywhere 26 /52

Construction of random dB sequences

® The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

® Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

® Qur algorithm does just that!

Zsuzsanna Liptak BWT everywhere 26 /52

Construction of random dB sequences

The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

Our algorithm does just that!

...in near-linear time O(na(n)), n = length of dB sequence
o = inverse Ackermann function

Zsuzsanna Liptak BWT everywhere 26 /52

Construction of random dB sequences

The only algorithms able to construct any dB sequence are based on
finding Eulerian cycles in de Bruijn graphs (Hierholzer, Fleury)

Surprisingly, no practical algorithms for random dB sequence
construction that can output any dB sequence with positive
probability.

Our algorithm does just that!

...in near-linear time O(na(n)), n = length of dB sequence
o = inverse Ackermann function

...and it is beautifully simple at that!

Zsuzsanna Liptak BWT everywhere 26 /52

The BWT of a dB sequence

T = aaababbb, k = 3

aaababbhb
aababbba
ababbbaa
abbbaaahb
baaababhb
babbbaaa
bbaaabahb
bbbaaaba

bwt(aaababbb) = baabbaba

Zsuzsanna Liptak BWT everywhere 27 /52

The BWT of a dB sequence

T = aaababbb, k =3

0 V| OOV | oT|v T
0 O oO|w T|T L
O Ol Y v o|T T
ol Tl o|TOT
O Ol T|IOCow|w T

ool v OO|v L
oL V| O TW

OO0 |Y v w

bwt(aaababbb) = baabbaba bwt(T) € {ab,ba}2 "

Zsuzsanna Liptak BWT everywhere 27 /52

The BWT of a dB sequence

Q. Is every string V € {ab,ba}?"" the BWT of a dB sequence?

Zsuzsanna Liptak BWT everywhere 28 /52

The BWT of a dB sequence

Q. Is every string V € {ab,ba}?"" the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

WV:U&%%%%%) = (0)(174767773)(275)

Indeed, V = eBWT({a, aabbb, ab}).

Zsuzsanna Liptak BWT everywhere 28 /52

The BWT of a dB sequence

Q. Is every string V € {ab,ba}?"" the BWT of a dB sequence?

A. No! e.g. V = abbababa, its standard permutation is

WV:U&%%%%%) = (0)(174767773)(275)

Indeed, V = eBWT({a, aabbb, ab}).

Def. (Higgins, 2012) A binary de Bruijn set of order k is a multiset of
total length 2% such that every k-mer is the prefix of some rotation of
some power of some string in M.

Ex. M = {a,ab,aabbb} k-mers: aaa,aab,bab,...

Zsuzsanna Liptak BWT everywhere 28 /52

The basic theorem

Thm (Higgins, 2012) The set {ab,ba}2 " is the set of eBWTs of binary
de Bruijn sets of order k.

Corollary A string V € {abba}?""" is the BWT of a dB sequence if and
only if my is cyclic.

Our idea: Take a random V € {ab,ba}2k71 and turn it into the BWT of
a dB sequence.

Zsuzsanna Liptak BWT everywhere 29 /52

Lemma (Swap Lemma) Let V be a binary string, V; # V11, and V' the
result of swapping V; and Vj;.

e [f i and i 4 1 belong to distinct cycles in of 7y, then the number of
cycles decreases by one,

® otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Zsuzsanna Liptak BWT everywhere 30/52

Lemma (Swap Lemma) Let V be a binary string, V; # V11, and V' the
result of swapping V; and Vj;.
e [f i and i 4 1 belong to distinct cycles in of 7y, then the number of
cycles decreases by one,

® otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = abbababa, then 7y = (0)(1,4,6,7,3)(2,5).

Zsuzsanna Liptak BWT everywhere 30/52

Lemma (Swap Lemma) Let V be a binary string, V; # V11, and V' the
result of swapping V; and Vj;.

e [f i and i 4 1 belong to distinct cycles in of 7y, then the number of
cycles decreases by one,

® otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = abbababa, then 7y = (0)(1,4,6,7,3)(2,5).

® swap Vp and Vi : babababa, st. perm. (0,4,6,7,3,1)(2,5)

Zsuzsanna Liptak BWT everywhere 30/52

Lemma (Swap Lemma) Let V be a binary string, V; # V11, and V' the
result of swapping V; and Vj;.

e [f i and i 4 1 belong to distinct cycles in of 7y, then the number of
cycles decreases by one,

® otherwise it increases by one.

N.B.: a generalization of a technique from (Giuliani, L., Masillo, Rizzi, 2021)

Ex. V = abbababa, then 7y = (0)(1,4,6,7,3)(2,5).

® swap Vp and Vi : babababa, st. perm. (0,4,6,7,3,1)(2,5)
e swap V, and V3 : baabbaba, st. perm. (0,4,6,7,3,5,2,1)

Invert baabbaba and output the dB seq T = aaababbb.

Zsuzsanna Liptak BWT everywhere 30/52

How to choose the blocks to swap

S
p—\J

¢ 4
b\ b
<N

bbb
A

D

B‘-

)A
b
e

A X O
o 1 1

'

Xi

o P

+~ S

(0) (1%, 6‘})3)(2,5’)

¢, C.
unhappy block: elements 27,2/ + 1 are in different cycles
cycle graph I'y: vertices = cycles, edges = unhappy blocks
Spanning Trees of 'y = (BWTs of) dB sequences closest to V
here 2 STs: BWTs of aaabbbab, aaababbb

Zsuzsanna Liptak BWT everywhere

31/52

BWT-based algorithm for generating random dB sequences

® first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability

® time O(na(n))
® space O(n)

Zsuzsanna Liptak BWT everywhere 32/52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

e first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq

® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

Zsuzsanna Liptak BWT everywhere 32/52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

e first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq
® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

® try it: debruijnsequence.org/db/random

Zsuzsanna Liptak BWT everywhere 32/52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

BWT-based algorithm for generating random dB sequences

first practical algorithm for constructing a random dB sequence which
produces any dB sequence with positive probability

® time O(na(n))
® space O(n)
® implementation: github.com/lucaparmigiani/rnd_dbseq

® simple (less than 120 lines of C++ code)
® fast (less than one second on a laptop for k up to 23)

try it: debruijnsequence.org/db/random

® can be straighforwardly extended to any constant-size alphabet
(present on github)

Zsuzsanna Liptak BWT everywhere 32/52

github.com/lucaparmigiani/rnd_dbseq
debruijnsequence.org/db/random

On text indexes
for string collections

/—J({—”ﬁ
T

} 7
5 Al

Cenzato & L., CPM 2022, Bioinformatics 2024
Cenzato, Guerrini, L., Rosone, DCC 2023

Zsuzsanna Liptak BWT everywhere 33/52

BWT of string collections

All that glisters is not gold. (W. Shakespeare, The Merchant of Venice)

All that is referred to as extended BWT is not extended BWT.

Zsuzsanna Liptak BWT everywhere 34 /52

BWT of string collections

e Often, any BWT of a string collection is called extended BWT.
® Many tools exist for BWT of string collections, but until 2021 none
computed the original eBWT.

Q. So what do these tools compute?

Zsuzsanna Liptak BWT everywhere 35/52

The different BWT variants

(Cenzato & L., CPM 2022, Bioinformatics 2024)

We surveyed 18 different tools and the resulting BWT variants
We identified 5 distinct BWT variants for string collections, ...

...and later added a 6th variant, the optimalBWT, which minimizes
r (see later)

All but the original eBWT use end-of-string symbols ($).
The BWT variants differ also in the number of runs r.

Zsuzsanna Liptak BWT everywhere 36 /52

size of data structures is O(r)

Yow b5 ﬁow COMLF&'[\%‘D(’S
/ DS
k \) A

\)

Zsuzsanna Liptak BWT everywhere 37/52

&

BWT of text collections with dollars

® Most commonly, the strings are concatenated and then treated like
one string.
® Two methods: multidollarBWT (and variations) and concatBWT

v U g s BT (difpent dotocs : $i < $ix,)

4 4 & ¢ 4
&0 %2 P i =¥
Coucat BWT (oane dollas plus #<1;)
¢ ¢ ¢ 4 43
] P T ? ?

® \We showed that all variants can be reduced to multidollarBWT.

Zsuzsanna Liptak BWT everywhere 38/52

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals

Zsuzsanna Liptak BWT everywhere 39/52

Interesting intervals

Q. Where exactly do these BWT variants differ? A. in interesting intervals
Ex. M = {ATATG, TGA, ACG, ATCA, GGA}

BWT variant ‘ example
non-sep.based
eBWT(M) CGGGATGTACCTTAAAAA

separator-based

dollarEBWT(M) | GGAAACGG$$STTACTCTSAAAS
multidolBWT (M) | GAGAAGCG$$STTATCTGSAAAS
colexBWT(M) AAAGGCGG$$STTACTCTSAAAS
concatBWT(M) | AAGAGGGCS$$STTACTGTSAAAS
optimalBWT AAAGGGGC$$STTACTTCSAAAS

in color: interesting intervals

Zsuzsanna Liptdk

BWT everywhere

colex a.k.a. 'rlo’

39/52

Def. An interval [/,] is interesting if it is the U$-interval of a
left-maximal shared suffix U.

Zsuzsanna Liptak BWT everywhere 40/52

Def. An interval [/,] is interesting if it is the U$-interval of a
left-maximal shared suffix U.

Ex. U=A W
M = {ATATG, TGA, ,ATCA, GGA} Yy _%_
| 2
A%, G A$,--- C % _J ’
A$,--- C AS,--- G 416 T
A$s--- G A$3--- G
(input) (colex)

U € X% is called a left-maximal shared suffix if there exist two strings S1, S, € M such
that U is a suffix of S1 and S; and is preceded by different characters in S; and S,.

Zsuzsanna Liptak BWT everywhere 40/52

The colexBWT

colexBWT: sort input strings colexicographically, then multidollarBWT

Ao A
)
oo
|
e
t

In the colexBWT, each interesting interval has at most ¢ runs.

Zsuzsanna Liptak BWT everywhere 41/52

The optimalBWT

(Cenzato, Guerrini, L., Rosone, DCC 2023)

e~
§ %
? -
l
|

PR A P

Zsuzsanna Liptak BWT everywhere 42 /52

P Aoy AP

The optimalBWT

(Cenzato, Guerrini, L., Rosone, DCC 2023)

2' :

|

—ArtAra—or O

complication due to successive interesting intervals

based on algorithm by Bentley, Gibney, Thankachan (ESA, 2020)

we implemented it, combining it with SAIS and BCR

negligible computational overhead

Zsuzsanna Liptdk

BWT everywhere

1

42 /52

joux DS Couyc‘ﬁbfls
s) N
k S 0l

\—t Ji

Improvement by optimalBWT on real biological data:
® in Cenzato & L. (2022, 2024): multipl. factor of up to 4.2
® in Guerrini, Cenzato, L., Rosone (2023): —"—of up to 31.5

Zsuzsanna Liptak BWT everywhere 43 /52

What is the output order of the
concatBWT?

W

A~

e

A A
P
e~

Cenzato, L., Masillo, Rossi, forthcoming

BWT everywhere 44 /52

oA -]

Observation
® Let U =e. Then the U-interval is [1, k], where k = | M.
o [-prefix of the DA = output order.

® The order in all other interesting intervals is induced by this.

Zsuzsanna Liptak BWT everywhere 45 /52

What is the output order of the concatBWT?

Coucat BWT (04w dollas plus #<$)

$ 4 - —b¥

&
h)
M = {ATATG, TGA, ACG, ATCA, GGA}

concatBWT(M) = BWT(ATATGSTGASACGSATCASGGASH)

rotation | concatBWT | DA

$# GGA A 5
$ACGSATCASGGASHATATGSTGA A 2
$ATCASGGAS# 3
$GGASH# ATCA A 4
$TCGASACCSATCASGGASHATATG G 1

Zsuzsanna Liptak BWT everywhere

46 /52

Map the strings to their lexicographic rank:

ACG — a
ATATG — b
ATCA +— ¢
GGA — d
ATATG S TGA ATCA$ GGA — beacd#.
$ $ $ $ $4 eac TGA — e
b e a C d

input: b e a c d # output: d e a ¢ b (DA :5,2,3,4,1)

Zsuzsanna Liptak BWT everywhere 47 /52

Map the strings to their lexicographic rank:

ACG — a
ATATG — b
ATCA +— ¢
GGA — d
ATATG S TGA ATCA$ GGA — beacd#.
$ $ $ $ $4 eac TGA — e
b e a C d

input: b e a c d # output: d e a ¢ b (DA :5,2,3,4,1)

We realized that this is the BWT of the metacharacter-string! (almost)

Zsuzsanna Liptak BWT everywhere 47 /52

Map the strings to their lexicographic rank:

ATATGS TGA $
N
b e

input: b e a c 4 #

We realized that this is the BWT of the metacharacter-string! (almost)

o
o

o T H Qo

M O T #H Qo0

o p o T H*

Qa0 p o O

Zsuzsanna Liptdk

a

d

#

V$ATCA$QG,5$# —

[

d

output: d e a c b

—
lexicographic
order

BWT everywhere

beacd#.

ACG

’_>

ATATG —
ATCA +—

GGA
TGA

—
—

(DA :5,2,3,4,1)

O T # P Qao0

Q0 T o0 H®HE

M 0 Q& T O
T o0 H O Q

o Q&0 T W

47 /52

Map the strings to their lexicographic rank:

ATATG$ TGA
GS TGA S

——
b

input: b e a c 4 #

We realized that this is the BWT of the metacharacter-string! (almost)

b

Qo0 o

output order: bwt

Zsuzsanna Liptdk

e

Qo0 o0 p o0
O o #H Qa0 p

b

M O T #H Q0
O 0 o #®
a0 0o O

a

d

#

—~~

V$ATCA$QG,§$# —

d

output: d e a c b

—
lexicographic
order

BWT everywhere

o Q0 o
M H Q0 0

beacd#.

(DA :5,2,3,4,1)

b

beacd#) = de#acb ~- deacb

O T # P Qao0

Q0 T o0 H®HE

M 0 Q& T O
T o0 H O Q

ACG
ATATG —
ATCA +—
GGA
TGA

o Q&0 T W

47 /52

® the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

Zsuzsanna Liptak BWT everywhere 48 /52

® the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

® on most datasets, the concatBWT and the multidoIBWT will differ

Zsuzsanna Liptak BWT everywhere 48 /52

® the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

® on most datasets, the concatBWT and the multidoIBWT will differ
® the concatBWT cannot produce all BWT variants:

(k] 3 [4 [5 [6 [7 [8 [o [10 [11|

‘ ‘ 83.33% | 75.0% | 68.33% | 63.89% | 60.12%, | 57.29% | 54.8% | 52.81% | 51.0%

Zsuzsanna Liptak BWT everywhere 48 /52

the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

on most datasets, the concatBWT and the multidoIBWT will differ
the concatBWT cannot produce all BWT variants:

(k] 3 [4 [5 [6 [7 [8 [o [10 [11|

‘ ‘ 83.33% | 75.0% | 68.33% | 63.89% | 60.12%, | 57.29% | 54.8% | 52.81% | 51.0%

only those which, inserting # somewhere, can become the BWT of
some meta-string

Zsuzsanna Liptak BWT everywhere 48 /52

the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

on most datasets, the concatBWT and the multidoIBWT will differ
the concatBWT cannot produce all BWT variants:

(k] 3 [4 [5 [6 [7 [8 [o [10 [11|

‘ ‘ 83.33% | 75.0% | 68.33% | 63.89% | 60.12%, | 57.29% | 54.8% | 52.81% | 51.0%

only those which, inserting # somewhere, can become the BWT of
some meta-string

examples already on 3 strings where it cannot produce the
optimalBWT

Zsuzsanna Liptak BWT everywhere 48 /52

the output order of the concatBWT is the BWT of the meta-string of
the input (almost)

on most datasets, the concatBWT and the multidoIBWT will differ
the concatBWT cannot produce all BWT variants:

(k] 3 [4 [5 [6 [7 [8 [o [10 [11|
| [83.33% | 75.0% [68.33% [63.89% | 60.12% | 57.29% | 54.8% | 52.81% | 51.0% |

only those which, inserting # somewhere, can become the BWT of
some meta-string

examples already on 3 strings where it cannot produce the
optimalBWT

a first study of strings which are the bwt* of some string in
(Giuliani, L., Masillo, Rizzi: When a dollar makes a BWT, TCS 2021)

Zsuzsanna Liptak BWT everywhere 48 /52

Summary (BWT everywhere)

L DA
S W
] 1] P
(1
L U= L DA
w i]
| I
; :
s .
Z _i J Ll
Zsuzsanna Liptak BWT everywhere

49 /52

Conclusions

1. There is more to the BWT than just compression.

Zsuzsanna Liptak BWT everywhere 50/52

Conclusions

1. There is more to the BWT than just compression.
— For instance, it can be used to generate
random de Bruijn sequences.

Zsuzsanna Liptak BWT everywhere 50/52

Conclusions

1. There is more to the BWT than just compression.
— For instance, it can be used to generate
random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.

Zsuzsanna Liptak BWT everywhere 50/52

Conclusions

1. There is more to the BWT than just compression.
— For instance, it can be used to generate
random de Bruijn sequences.

2. It makes a difference how the BWT of a string collection is computed.
— do not use the concatBWT.
— use the multidollarBWT or the original eBWT.
— even better: use the optimalBWT.

Zsuzsanna Liptak BWT everywhere 50/52

Conclusions

. There is more to the BWT than just compression.
— For instance, it can be used to generate
random de Bruijn sequences.

. It makes a difference how the BWT of a string collection is computed.
— do not use the concatBWT.

— use the multidollarBWT or the original eBWT.

— even better: use the optimalBWT.

. Definition of the number of runs r for string collections should be
standardized (optBWT or colexBWT).

Zsuzsanna Liptak BWT everywhere 50/52

Acknowledgements

[

Massimiliano Rossi Sara Giuliani Davide Cenzato Francesco Masillo

Luca Parmigiani Veronica Guerrini Giovanna Rosone

Zsuzsanna Liptak BWT everywhere 51/52

rukrn'h t Ttnoaeifyyuotnaoo

Zsuzsanna Liptak BWT everywhere 52/52

rukrn'h t Ttnoaeifyyuotnaoo

s?utoinesQ

Zsuzsanna Liptak BWT everywhere 52/52

