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Coping with NP -hardness

There are several approaches on how to deal with (the
intractability of) NP -hard problems:

polynomial algorithms for particular input instances

approximation algorithms

heuristics, local optimization

“efficient” exponential algorithms

randomized algorithms

parameterized complexity
(fixed-parameter tractable (FPT) algorithms)
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What we’ll do

1 Basic Definitions.
2 2-Approximation Algorithm for Vertex Cover.
3 Approximation Algorithms for the Metric TSP.
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BASICS OF APPROXIMATION ALGORITHMS.
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Coping with NP -hardness

Heuristics:

intuitive algorithms;

guaranteed to run in polynomial time;

no guarantee on quality of solution.

Approximation algorithms:

guaranteed to run in polynomial time;

guaranteed to find “high quality” solution, say within 1% of
optimum;

Obstacle:
need to prove a solution’s value is close to optimum,
without even knowing what the optimum value is!
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Approximation Algorithms and Schemes

ρ-approximation algorithm :

An algorithm A for an optimization problem Π that runs in
polynomial time.
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Approximation Algorithms and Schemes

ρ-approximation algorithm :

An algorithm A for an optimization problem Π that runs in
polynomial time.

For every instance of Π, A outputs a feasible solution with
objective function value within ratio ρ of true optimum for
that instance.

More specifically:

for minimization problems:
for every instance I, we have fA(I) ≤ ρ · OPT(I) , where
fA(I) is the value of the solution returned by the algorithm,
and
OPT(I) is the optimal solution value.

for maximization problems: fA(I) ≥ OPT(I)/ρ .
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Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

combinatorial algorithms,
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Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

combinatorial algorithms,

algorithms based on linear programming,

randomized algorithms,

etc.
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2-APPROXIMATION ALGORITHM
FOR THE VERTEX COVER PROBLEM
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The Vertex Cover Problem

Recall:
vertex cover in a graph G = (V ,E):
a subset C ⊆ V such that for all e ∈ E , e ∩C 6= ∅

točka v pokritju

G
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The Vertex Cover Problem

Recall:
vertex cover in a graph G = (V ,E):
a subset C ⊆ V such that for all e ∈ E , e ∩C 6= ∅

a vertex in the cover

G
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The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER

problem:

MINIMUM VERTEX COVER

Input: Graph G = (V ,E).
Task: Find a minimum vertex cover in G.
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The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER

problem:

MINIMUM VERTEX COVER

Input: Graph G = (V ,E).
Task: Find a minimum vertex cover in G.

In bipartite graphs, the problem can be solved optimally in
polynomial time.
For general graphs, the problem is NP-hard.
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2-Approximation Algorithm for Vertex Cover

Approx-Cover :
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2-Approximation Algorithm for Vertex Cover

Approx-Cover :
C := ∅;
while (∃e = uv ∈ E)(u, v ∈ V \C) do

C := C ∪ {u, v}
end while
return C.

The algorithm computes an inclusion-wise maximal matching
M and returns the union of all edges in the matching.
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2-Approximation Algorithm for Vertex Cover

Claim
Approx-Cover is a 2-approximation algorithm for the MINIMUM

VERTEX COVER problem.
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2-Approximation Algorithm for Vertex Cover

Claim
Approx-Cover is a 2-approximation algorithm for the MINIMUM

VERTEX COVER problem.

Proof:
The stopping criterion of the while loop guarantees that C is a
cover.
Clearly, the algorithm can be implemented to run in polynomial
time.
Let M be the maximal matching consisting of all edges chosen
by the algorithm.
Every vertex cover must contain at least one vertex of each
edge of M,
hence OPT ≥ |M|
and consequently

|C| = 2|M| ≤ 2 · OPT .
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Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
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Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
If G = Kn,n, then the algorithm returns C = V (Kn,n), while
an optimal solution is of size n (either part of the
bipartition).

Remark:
It can be shown that a natural greedy algorithm is not a
ρ-approximation, for any ρ.
[Greedy: start with C = ∅. Until C is not a vertex cover,
peel off and add to C a vertex of maximum degree in the
current graph.]

Inapproximability of vertex cover:
If there exists a polynomial 1.36-approximation algorithm
for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).
No ρ-approximation algorithm for MINIMUM VERTEX

COVER is known with ρ < 2.
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APPROXIMATION ALGORITHMS
FOR THE TRAVELING SALESMAN PROBLEM
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The Traveling Salesman Problem

TRAVELING SALESMAN (TSP)

Input: Graph G = (V ,E), a cost function c : E → R+.
Task: Find a Hamiltonian cycle in G of smallest total cost.
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The Traveling Salesman Problem

Proposition

If there exists a ρ-approximation algorithm for TSP for some
ρ ≥ 1, then P = NP.
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The Traveling Salesman Problem

Proposition

If there exists a ρ-approximation algorithm for TSP for some
ρ ≥ 1, then P = NP.

Proof:
Suppose that A is a ρ-approximation algorithm for TSP.
We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
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Let G′ = KV (complete graph), c :

(V
2

)

→ R+, where

c(e) =
{

1, if e ∈ E ;
ρ|V |+ 1, otherwise.

Notice: G is Hamiltonian if and only if G′ has a Hamiltonian cycle of total cost
|V |.
Let Γ be the solution to the TSP given (KV , c), computed by our algorithm A.

(a) If c(Γ) ≤ ρ|V |, then Γ ⊆ E , hence G is Hamiltonian.

(b) If c(Γ) > ρ|V |, then OPT > |V |, hence G is not Hamiltonian.
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A Heuristic for TSP

Approx-TSP (G, c)

Find a minimum spanning tree T = (V ,ET ) for (G, c).
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Find a minimum spanning tree T = (V ,ET ) for (G, c).

1

2

3 4 5

6 7

8 9

1

2

3 4 5

6 7

8 9

input instance

(The cost of an egde connecting two vertices is equal to the Euclidean distance between them.)

minimum spanning tree T
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A Heuristic for TSP

Approx-TSP (G, c)

Find a minimum spanning tree T = (V ,ET ) for (G, c).

W ← walk in which each edge appears exactly twice
(obtained for example with depth-first search)

H ← cycle that visits vertices in the order as they appear in
W for the first time

1

2

3 4 5

6

7

8 9

1

2

3 4 5

6

7

8 9

optimal solution traveling salesman tour determined by W

cost ≈ 15, 72cost ≈ 13, 95
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The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
For all u, v ,w ∈ V :

c(uw) ≤ c(uv) + c(vw) .
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The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
For all u, v ,w ∈ V :

c(uw) ≤ c(uv) + c(vw) .

A reduction from the HAMILTONIAN CYCLE problem shows:

Proposition

METRIC TSP is NP-hard.
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC

TSP problem.
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC

TSP problem.

Proof:
Let H∗ be an optimal tour. We need to show: c(H) ≤ 2 · c(H∗).

c(T ) ≤ c(H∗), since removing any edge of H∗ results in a
spanning tree.
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3 4 5

6 7

8 9
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2

3 4 5

6

7

8 9

optimal solution H
∗ minus one edge

minimum spanning tree T
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC

TSP problem.

Proof:
c(T ) ≤ c(H∗), since removing any edge of H∗ results in a
spanning tree.
c(W ) = 2 · c(T ), since every edge is visited exactly twice.

1

2

3 4 5

6 7

8 9

walk W

1

2

3 4 5

6 7
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC

TSP problem.

Proof:
c(T ) ≤ c(H∗), since removing any edge of H∗ results in a
spanning tree.
c(W ) = 2 · c(T ), since every edge is visited exactly twice.
c(H) ≤ ·c(W ), due to the triangle inequality.

1

2

3 4 5

6 7

8 9

1

2

3 4 5

6

7

8 9

walk W traveling salesman tour determined by W 19 / 26



The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC

TSP problem.
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The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC

TSP problem.

Christofides-TSP (G, c)

Find a minimum spanning tree T = (V ,ET ) for (G, c).
Find a minimum cost perfect matching M connecting
vertices of odd degree in T .

1

2

3 4 5

6 7

8 9

1

6
7

9

matching Mminimum spanning tree T

vertices of odd degree are red
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The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC

TSP problem.

Christofides-TSP (G, c)

Find a minimum spanning tree T = (V ,ET ) for (G, c).
Find a minimum cost perfect matching M connecting
vertices of odd degree in T .
G′ ← T ∪M
E ← Euler tour in G′ (graph G′ is Eulerian, since it is connected

and has all vertices of even degree).
1

2

3 4 5

6
7

8 9

G′

1

2

3 4 5

6
7

8 9

E = Euler tour in G′
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The Metric TSP: Christofides’ Algorithm

Proof:
Let H∗ be an optimal tour. We need to show: c(H) ≤ 1.5 ·c(H∗).
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The Metric TSP: Christofides’ Algorithm

Proof:
Let H∗ be an optimal tour. We need to show: c(H) ≤ 1.5 ·c(H∗).

c(T ) ≤ c(H∗), as before
c(M) ≤ (1/2) · c(Γ∗) ≤ (1/2) · c(H∗), where Γ∗ is an
optimal cycle on the odd vertices of T .

The first inequality follows since Γ∗ is the union of two
perfect matchings.
The second inequality follows from the triangle inequality.

1

6
7

9

matching M

1

6
7

9

cycle Γ∗
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The Metric TSP: Christofides’ Algorithm

Proof:

c(T ) ≤ c(H∗), as before

c(M) ≤ (1/2) · c(Γ∗) ≤ (1/2) · c(H∗), where Γ∗ is an
optimal cycle on the odd vertices of T .

Due to the triangle inquality:
c(H) ≤ c(M) + c(T ) ≤ (3/2) · c(H∗).

1

2

3 4 5

6
7

8 9

G′

1

2

3 4 5

6

7

8 9

H = traveling salesman tour
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What we did – Week 1

1 Tue March 5: Review of basic notions in graph theory,
algorithms and complexity X

2 Wed March 6: Graph colorings X

3 Thu March 7: Perfect graphs and their subclasses, part 1 X

4 Fri March 8: Perfect graphs and their subclasses, part 2 X
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What we’ll do – Week 2

1 Tue March 19: Further examples of tractable problems,
part 1 X

2 Wed March 20:
Further examples of tractable problems, part 2 X

Approximation algorithms for graph problems X

3 Thu March 21: Lectio Magistralis lecture, “Graph classes:
interrelations, structure, and algorithmic issues”
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Questions?

Thank you for your attention!

martin.milanic@upr.si
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