Algorithmic Graph Theory Part V - Approximation Algorithms for Graph Problems

Martin Milanič

martin.milanic@upr.si

University of Primorska, Koper, Slovenia

Dipartimento di Informatica Università degli Studi di Verona, March 2013 There are several approaches on how to deal with (the intractability of) NP -hard problems:

- polynomial algorithms for particular input instances
- approximation algorithms
- heuristics, local optimization
- "efficient" exponential algorithms
- randomized algorithms
- parameterized complexity (fixed-parameter tractable (FPT) algorithms)

- Basic Definitions.
- 2-Approximation Algorithm for Vertex Cover.
- Approximation Algorithms for the Metric TSP.

BASICS OF APPROXIMATION ALGORITHMS.

Heuristics:

• intuitive algorithms;

Heuristics:

- intuitive algorithms;
- guaranteed to run in polynomial time;

Heuristics:

- intuitive algorithms;
- guaranteed to run in polynomial time;
- no guarantee on quality of solution.

Heuristics:

- intuitive algorithms;
- guaranteed to run in polynomial time;
- no guarantee on quality of solution.

Approximation algorithms:

• guaranteed to run in polynomial time;

Heuristics:

- intuitive algorithms;
- guaranteed to run in polynomial time;
- no guarantee on quality of solution.

Approximation algorithms:

- guaranteed to run in polynomial time;
- guaranteed to find "high quality" solution, say within 1% of optimum;

Heuristics:

- intuitive algorithms;
- guaranteed to run in polynomial time;
- no guarantee on quality of solution.

Approximation algorithms:

- guaranteed to run in polynomial time;
- guaranteed to find "high quality" solution, say within 1% of optimum;
- Obstacle:

need to prove a solution's value is close to optimum, without even knowing what the optimum value is!

ρ -approximation algorithm:

 An algorithm A for an optimization problem Π that runs in polynomial time.

ρ -approximation algorithm:

- An algorithm A for an optimization problem Π that runs in polynomial time.
- For every instance of Π, A outputs a feasible solution with objective function value within ratio ρ of true optimum for that instance.

ρ -approximation algorithm:

- An algorithm A for an optimization problem Π that runs in polynomial time.
- For every instance of Π, A outputs a feasible solution with objective function value within ratio ρ of true optimum for that instance.

More specifically:

for minimization problems:
 for every instance *I*, we have *f*_A(*I*) ≤ ρ · OPT(*I*), where

ρ -approximation algorithm:

- An algorithm A for an optimization problem Π that runs in polynomial time.
- For every instance of Π, A outputs a feasible solution with objective function value within ratio ρ of true optimum for that instance.

More specifically:

• for minimization problems: for every instance *I*, we have $f_A(I) \le \rho \cdot \text{OPT}(I)$, where $f_A(I)$ is the value of the solution returned by the algorithm, and

ρ -approximation algorithm:

- An algorithm A for an optimization problem Π that runs in polynomial time.
- For every instance of Π, A outputs a feasible solution with objective function value within ratio ρ of true optimum for that instance.

More specifically:

• for minimization problems:

for every instance *I*, we have $f_A(I) \le \rho \cdot \text{OPT}(I)$, where $f_A(I)$ is the value of the solution returned by the algorithm, and

OPT(*I*) is the optimal solution value.

• for maximization problems: $f_A(I) \ge OPT(I)/\rho$.

Approaches to the Design of Approximation Algorithms

There exist several approaches to the design of approximation algorithms:

• combinatorial algorithms,

Approaches to the Design of Approximation Algorithms

There exist several approaches to the design of approximation algorithms:

- combinatorial algorithms,
- algorithms based on linear programming,

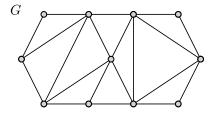
Approaches to the Design of Approximation Algorithms

There exist several approaches to the design of approximation algorithms:

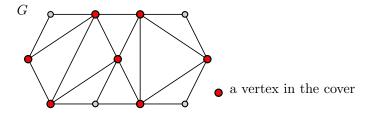
- combinatorial algorithms,
- algorithms based on linear programming,
- randomized algorithms,
- etc.

2-APPROXIMATION ALGORITHM FOR THE VERTEX COVER PROBLEM

Recall: **vertex cover** in a graph G = (V, E): a subset $C \subseteq V$ such that for all $e \in E$, $e \cap C \neq \emptyset$



Recall: **vertex cover** in a graph G = (V, E): a subset $C \subseteq V$ such that for all $e \in E$, $e \cap C \neq \emptyset$



Consider the optimization version of the VERTEX COVER problem:

MINIMUM VERTEX COVER Input: Graph G = (V, E). Task: Find a minimum vertex cover in *G*. Consider the optimization version of the VERTEX COVER problem:

MINIMUM VERTEX COVER Input: Graph G = (V, E).

Task: Find a minimum vertex cover in *G*.

In bipartite graphs, the problem can be solved optimally in polynomial time.

Consider the optimization version of the VERTEX COVER problem:

MINIMUM VERTEX COVER

Input: Graph G = (V, E).

Task: Find a minimum vertex cover in *G*.

In bipartite graphs, the problem can be solved optimally in polynomial time.

For general graphs, the problem is NP-hard.

Approx-Cover:

Approx-Cover: $C := \emptyset;$

Approx-Cover: $C := \emptyset$; while $(\exists e = uv \in E)(u, v \in V \setminus C)$ do

Approx-Cover: $C := \emptyset$; while $(\exists e = uv \in E)(u, v \in V \setminus C)$ do $C := C \cup \{u, v\}$

```
Approx-Cover:

C := \emptyset;

while (\exists e = uv \in E)(u, v \in V \setminus C) do

C := C \cup \{u, v\}

end while
```

```
Approx-Cover:

C := \emptyset;

while (\exists e = uv \in E)(u, v \in V \setminus C) do

C := C \cup \{u, v\}

end while

return C.
```

The algorithm computes an inclusion-wise maximal matching M and returns the union of all edges in the matching.

Claim

Approx-Cover is a 2-approximation algorithm for the MINIMUM VERTEX COVER problem.

Claim

Approx-Cover is a 2-approximation algorithm for the MINIMUM VERTEX COVER problem.

Proof:

Claim

Approx-Cover is a 2-approximation algorithm for the MINIMUM VERTEX COVER problem.

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Claim

Approx-Cover *is a* 2*-approximation algorithm for the* **MINIMUM** VERTEX COVER *problem.*

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Clearly, the algorithm can be implemented to run in polynomial time.

Claim

Approx-Cover *is a* 2*-approximation algorithm for the* **MINIMUM** VERTEX COVER *problem.*

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Clearly, the algorithm can be implemented to run in polynomial time.

Let M be the maximal matching consisting of all edges chosen by the algorithm.

Claim

Approx-Cover *is a* 2*-approximation algorithm for the* **MINIMUM** VERTEX COVER *problem.*

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Clearly, the algorithm can be implemented to run in polynomial time.

Let M be the maximal matching consisting of all edges chosen by the algorithm.

Every vertex cover must contain at least one vertex of each edge of M,

2-Approximation Algorithm for Vertex Cover

Claim

Approx-Cover *is a* 2*-approximation algorithm for the* **MINIMUM** VERTEX COVER *problem.*

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Clearly, the algorithm can be implemented to run in polynomial time.

Let M be the maximal matching consisting of all edges chosen by the algorithm.

Every vertex cover must contain at least one vertex of each edge of M,

hence $OPT \ge |M|$

2-Approximation Algorithm for Vertex Cover

Claim

Approx-Cover *is a* 2*-approximation algorithm for the* **MINIMUM** VERTEX COVER *problem.*

Proof:

The stopping criterion of the **while** loop guarantees that *C* is a cover.

Clearly, the algorithm can be implemented to run in polynomial time.

Let M be the maximal matching consisting of all edges chosen by the algorithm.

Every vertex cover must contain at least one vertex of each edge of M,

hence $OPT \ge |M|$

and consequently

$$|C|=2|M|\leq 2\cdot \text{OPT}.$$

The factor of 2 in the analysis cannot be improved:

The factor of 2 in the analysis cannot be improved:

• If $G = K_{n,n}$, then the algorithm returns $C = V(K_{n,n})$, while an optimal solution is of size *n* (either part of the bipartition).

The factor of 2 in the analysis cannot be improved:

- If $G = K_{n,n}$, then the algorithm returns $C = V(K_{n,n})$, while an optimal solution is of size *n* (either part of the bipartition).
- Remark:
 - It can be shown that a natural greedy algorithm is not a ρ-approximation, for any ρ.

The factor of 2 in the analysis cannot be improved:

• If $G = K_{n,n}$, then the algorithm returns $C = V(K_{n,n})$, while an optimal solution is of size *n* (either part of the bipartition).

Remark:

 It can be shown that a natural greedy algorithm is not a ρ-approximation, for any ρ.
 [Greedy: start with C = Ø. Until C is not a vertex cover, peel off and add to C a vertex of maximum degree in the current graph.]

The factor of 2 in the analysis cannot be improved:

• If $G = K_{n,n}$, then the algorithm returns $C = V(K_{n,n})$, while an optimal solution is of size *n* (either part of the bipartition).

Remark:

It can be shown that a natural greedy algorithm is not a *ρ*-approximation, for any *ρ*.
 [Greedy: start with C = Ø. Until C is not a vertex cover, peel off and add to C a vertex of maximum degree in the current graph.]

Inapproximability of vertex cover:

 If there exists a polynomial 1.36-approximation algorithm for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).

The factor of 2 in the analysis cannot be improved:

• If $G = K_{n,n}$, then the algorithm returns $C = V(K_{n,n})$, while an optimal solution is of size *n* (either part of the bipartition).

Remark:

It can be shown that a natural greedy algorithm is not a *ρ*-approximation, for any *ρ*.
 [Greedy: start with C = Ø. Until C is not a vertex cover, peel off and add to C a vertex of maximum degree in the current graph.]

Inapproximability of vertex cover:

- If there exists a polynomial 1.36-approximation algorithm for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).
- No ρ -approximation algorithm for MINIMUM VERTEX COVER is known with ρ < 2.

APPROXIMATION ALGORITHMS FOR THE TRAVELING SALESMAN PROBLEM

TRAVELING SALESMAN (TSP)Input:Graph G = (V, E), a cost function $c : E \to \mathbb{R}+$.Task:Find a Hamiltonian cycle in G of smallest total cost.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proof:

Suppose that *A* is a ρ -approximation algorithm for TSP. We will show how to decide in polynomial time, using *A*, whether a given graph *G* is Hamiltonian (which is an NP-complete problem).

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proof:

Suppose that *A* is a ρ -approximation algorithm for TSP. We will show how to decide in polynomial time, using *A*, whether a given graph *G* is Hamiltonian (which is an NP-complete problem). HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \geq 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Let $G' = K_V$ (complete graph), $c : \binom{V}{2} \to \mathbb{R}_+$, where

$$m{c}(m{e}) = \left\{ egin{array}{c} 1, & ext{if } m{e} \in m{E}; \
ho|m{V}|+1, & ext{otherwise}. \end{array}
ight.$$

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \ge 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Let $G' = K_V$ (complete graph), $c : \binom{V}{2} \to \mathbb{R}_+$, where

$$m{c}(m{e}) = \left\{ egin{array}{c} 1, & ext{if } m{e} \in m{E}; \
ho|m{V}|+1, & ext{otherwise}. \end{array}
ight.$$

Notice: G is Hamiltonian if and only if G' has a Hamiltonian cycle of total cost |V|.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \ge 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Let $G' = K_V$ (complete graph), $c : \binom{V}{2} \to \mathbb{R}_+$, where

$$c(e) = \left\{ egin{array}{c} 1, & ext{if } e \in E; \
ho|V|+1, & ext{otherwise}. \end{array}
ight.$$

Notice: *G* is Hamiltonian if and only if G' has a Hamiltonian cycle of total cost |V|.

Let Γ be the solution to the TSP given (K_V , c), computed by our algorithm A.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \ge 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Let $G' = K_V$ (complete graph), $c : \binom{V}{2} \to \mathbb{R}_+$, where

$$c(e) = \left\{ egin{array}{c} 1, & ext{if } e \in E; \
ho|V|+1, & ext{otherwise}. \end{array}
ight.$$

Notice: G is Hamiltonian if and only if G' has a Hamiltonian cycle of total cost |V|.

Let Γ be the solution to the TSP given (K_V , c), computed by our algorithm A.

(a) If $c(\Gamma) \le \rho |V|$, then $\Gamma \subseteq E$, hence G is Hamiltonian.

Proposition

If there exists a ρ -approximation algorithm for TSP for some $\rho \ge 1$, then P = NP.

Proof:

Suppose that A is a ρ -approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given graph G is Hamiltonian (which is an NP-complete problem).

HAMILTONIAN CYCLE: determine whether a given graph contains a cycle going through every vertex exactly once.

I = instance for HAMILTONIAN CYCLE: a graph G = (V, E).

Let $G' = K_V$ (complete graph), $c : \binom{V}{2} \to \mathbb{R}_+$, where

$$m{c}(m{e}) = \left\{ egin{array}{c} 1, & ext{if } m{e} \in m{E}; \
ho|m{V}|+1, & ext{otherwise}. \end{array}
ight.$$

Notice: G is Hamiltonian if and only if G' has a Hamiltonian cycle of total cost |V|.

Let Γ be the solution to the TSP given (K_V , c), computed by our algorithm A.

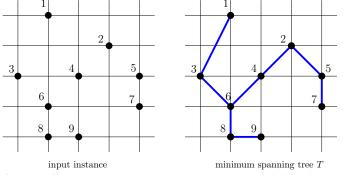
- (a) If $c(\Gamma) \leq \rho |V|$, then $\Gamma \subseteq E$, hence G is Hamiltonian.
- (b) If $c(\Gamma) > \rho |V|$, then OPT > |V|, hence G is not Hamiltonian.

Approx-TSP(G, c)

• Find a minimum spanning tree $T = (V, E_T)$ for (G, c).

Approx-TSP(G, c)

• Find a minimum spanning tree $T = (V, E_T)$ for (G, c).

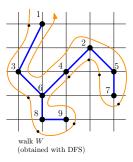


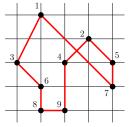
(The cost of an egde connecting two vertices is equal to the Euclidean distance between them.)

- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- W ← walk in which each edge appears exactly twice (obtained for example with depth-first search)

- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- W ← walk in which each edge appears exactly twice (obtained for example with depth-first search)
- *H* ← cycle that visits vertices in the order as they appear in *W* for the first time

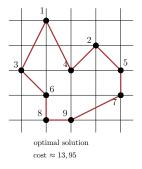
- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- W ← walk in which each edge appears exactly twice (obtained for example with depth-first search)
- *H* ← cycle that visits vertices in the order as they appear in *W* for the first time

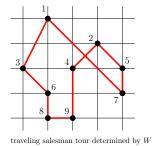




traveling sales man tour determined by ${\cal W}$

- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- W ← walk in which each edge appears exactly twice (obtained for example with depth-first search)
- *H* ← cycle that visits vertices in the order as they appear in *W* for the first time





METRIC TSP: TSP in which the cost function obeys the triangle inequality: For all $u, v, w \in V$:

 $c(uw) \leq c(uv) + c(vw)$.

METRIC TSP: TSP in which the cost function obeys the triangle inequality: For all $u, v, w \in V$:

 $c(uw) \leq c(uv) + c(vw)$.

A reduction from the HAMILTONIAN CYCLE problem shows:

Proposition

METRIC TSP is NP-hard.

Proposition

APPROX-TSP *is a 2-approximation algorithm for the* METRIC TSP *problem.*

Proposition

APPROX-TSP *is a 2-approximation algorithm for the* METRIC TSP *problem.*

Proof:

Let H^* be an optimal tour. We need to show: $c(H) \leq 2 \cdot c(H^*)$.

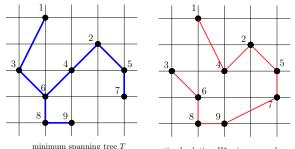
Proposition

APPROX-TSP *is a 2-approximation algorithm for the* METRIC TSP *problem.*

Proof:

Let H^* be an optimal tour. We need to show: $c(H) \leq 2 \cdot c(H^*)$.

c(T) ≤ c(H*), since removing any edge of H* results in a spanning tree.



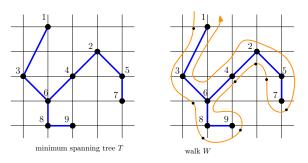
optimal solution H^* minus one edge

Proposition

APPROX-TSP *is a 2-approximation algorithm for the* METRIC TSP *problem.*

Proof:

- c(T) ≤ c(H*), since removing any edge of H* results in a spanning tree.
- $c(W) = 2 \cdot c(T)$, since every edge is visited exactly twice.

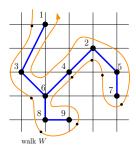


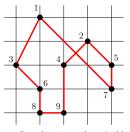
Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC TSP problem.

Proof:

- c(T) ≤ c(H*), since removing any edge of H* results in a spanning tree.
- $c(W) = 2 \cdot c(T)$, since every edge is visited exactly twice.
- $c(H) \leq c(W)$, due to the triangle inequality.





traveling sales man tour determined by ${\cal W}$

Theorem (Christofides, 1976)

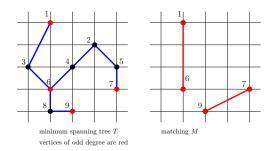
There exists a 1.5-approximation algorithm for the METRIC TSP problem.

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC TSP problem.

Christofides-TSP(G, c)

- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- Find a minimum cost perfect matching *M* connecting vertices of odd degree in *T*.

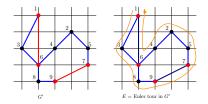


Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC TSP problem.

Christofides-TSP(G, c)

- Find a minimum spanning tree $T = (V, E_T)$ for (G, c).
- Find a minimum cost perfect matching *M* connecting vertices of odd degree in *T*.
- $G' \leftarrow T \cup M$
- *E* ← Euler tour in *G*' (graph *G*' is Eulerian, since it is connected and has all vertices of even degree).



Proof:

Let H^* be an optimal tour. We need to show: $c(H) \le 1.5 \cdot c(H^*)$.

Proof:

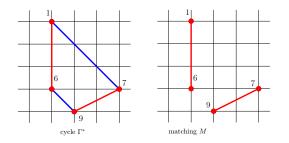
Let H^* be an optimal tour. We need to show: $c(H) \leq 1.5 \cdot c(H^*)$.

• $c(T) \leq c(H^*)$, as before

Proof:

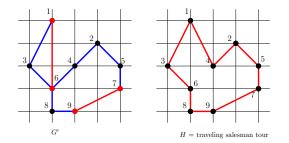
Let H^* be an optimal tour. We need to show: $c(H) \leq 1.5 \cdot c(H^*)$.

- $c(T) \leq c(H^*)$, as before
- c(M) ≤ (1/2) · c(Γ*) ≤ (1/2) · c(H*), where Γ* is an optimal cycle on the odd vertices of *T*.
 - The first inequality follows since Γ* is the union of two perfect matchings.
 - The second inequality follows from the triangle inequality.



Proof:

- $c(T) \leq c(H^*)$, as before
- c(M) ≤ (1/2) · c(Γ*) ≤ (1/2) · c(H*), where Γ* is an optimal cycle on the odd vertices of *T*.
- Due to the triangle inquality: $c(H) \le c(M) + c(T) \le (3/2) \cdot c(H^*).$



- Tue March 5: Review of basic notions in graph theory, algorithms and complexity √
- 2 Wed March 6: Graph colorings √
- 💿 Thu March 7: Perfect graphs and their subclasses, part 1 \checkmark
- If the interval of the term of term o

- Tue March 19: Further examples of tractable problems, part 1 √
- Wed March 20: Further examples of tractable problems, part 2 ✓ Approximation algorithms for graph problems ✓
- Thu March 21: Lectio Magistralis lecture, "Graph classes: interrelations, structure, and algorithmic issues"

Thank you for your attention!

martin.milanic@upr.si