Algorithmic Graph Theory

Part V - Approximation Algorithms
for Graph Problems

Martin Milanic¢
martin. mlani c@pr. si

University of Primorska, Koper, Slovenia

Dipartimento di Informatica
Universita degli Studi di Verona, March 2013

1/26

Coping with NP -hardness

There are several approaches on how to deal with (the
intractability of) NP -hard problems:

@ polynomial algorithms for particular input instances
approximation algorithms

heuristics, local optimization

“efficient” exponential algorithms

randomized algorithms

parameterized complexity
(fixed-parameter tractable (FPT) algorithms)

2/26

What we’ll do

© Basic Definitions.
@ 2-Approximation Algorithm for Vertex Cover.
© Approximation Algorithms for the Metric TSP.

2/26

BASICS OF APPROXIMATION ALGORITHMS.

2/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;

3/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;

3/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;
@ no guarantee on quality of solution.

3/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;
@ no guarantee on quality of solution.

Approximation algorithms:
@ guaranteed to run in polynomial time;

3/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;
@ no guarantee on quality of solution.

Approximation algorithms:
@ guaranteed to run in polynomial time;

@ guaranteed to find “high quality” solution, say within 1% of
optimum;

3/26

Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;
@ no guarantee on quality of solution.

Approximation algorithms:
@ guaranteed to run in polynomial time;

@ guaranteed to find “high quality” solution, say within 1% of
optimum;

@ Obstacle:
need to prove a solution’s value is close to optimum,
without even knowing what the optimum value is!

3/26

Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.

4/26

Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.

@ For every instance of I1, A outputs a feasible solution with
objective function value within ratio p of true optimum for
that instance.

4/26

Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.

@ For every instance of I1, A outputs a feasible solution with
objective function value within ratio p of true optimum for
that instance.

More specifically:

@ for minimization problems:
for every instance |, we have fAo(l) < p - OPT(l), where

4/26

Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.

@ For every instance of I1, A outputs a feasible solution with
objective function value within ratio p of true optimum for
that instance.

More specifically:

@ for minimization problems:
for every instance |, we have fAo(l) < p - OPT(l), where
fa(l) is the value of the solution returned by the algorithm,
and

4/26

Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.
@ For every instance of I1, A outputs a feasible solution with

objective function value within ratio p of true optimum for
that instance.

More specifically:
@ for minimization problems:
for every instance |, we have fAo(l) < p - OPT(l), where
fa(l) is the value of the solution returned by the algorithm,
and
OPT(l) is the optimal solution value.

@ for maximization problems: fo(1) > OPT(l)/p.

4/26

Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

@ combinatorial algorithms,

5/26

Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

@ combinatorial algorithms,
@ algorithms based on linear programming,

5/26

Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

@ combinatorial algorithms,

@ algorithms based on linear programming,
@ randomized algorithms,

@ etc.

5/26

2-APPROXIMATION ALGORITHM
FOR THE VERTEX COVER PROBLEM

5/26

The Vertex Cover Problem

Recall:
vertex cover inagraphG = (V,E):
asubsetC CV suchthatforalle cE,enC # 0

6/26

The Vertex Cover Problem

Recall:
vertex cover inagraphG = (V,E):
asubsetC CV suchthatforalle cE,enC # 0

@ 2@ vertex in the cover

6/26

The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER
problem:

MINIMUM VERTEX COVER
Input: Graph G = (V,E).
Task: Find a minimum vertex cover in G.

7126

The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER
problem:

MINIMUM VERTEX COVER
Input: Graph G = (V,E).
Task: Find a minimum vertex cover in G.

In bipartite graphs, the problem can be solved optimally in
polynomial time.

7126

The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER
problem:

MINIMUM VERTEX COVER
Input: Graph G = (V,E).
Task: Find a minimum vertex cover in G.

In bipartite graphs, the problem can be solved optimally in
polynomial time.
For general graphs, the problem is NP-hard.

7126

2-Approximation Algorithm for Vertex Cover

Approx-Cover :

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover :
C =0

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover :
C =0
while (3e =uv € E)(u,v € V \C) do

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover :

C =0

while (3e =uv € E)(u,v € V \C) do
C:=CuU{u,v}

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover :

C =0

while (3e =uv € E)(u,v € V \C) do
C:=CuU{u,v}

end while

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover :

C =0

while (3e =uv € E)(u,v € V \C) do
C:=CuU{u,v}

end while

return C.

The algorithm computes an inclusion-wise maximal matching
M and returns the union of all edges in the matching.

8/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

Let M be the maximal matching consisting of all edges chosen
by the algorithm.

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

Let M be the maximal matching consisting of all edges chosen
by the algorithm.

Every vertex cover must contain at least one vertex of each
edge of M,

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

Let M be the maximal matching consisting of all edges chosen
by the algorithm.

Every vertex cover must contain at least one vertex of each
edge of M,

hence OPT > |M|

9/26

2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

Let M be the maximal matching consisting of all edges chosen
by the algorithm.

Every vertex cover must contain at least one vertex of each
edge of M,

hence OPT > |M|

and consequently

IC| =2|M| < 2-OPT.

9/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:

10/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:

@ If G = Ky, then the algorithm returns C = V (Ky), while
an optimal solution is of size n (either part of the
bipartition).

10/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:

@ If G = Ky, then the algorithm returns C = V (Ky), while
an optimal solution is of size n (either part of the
bipartition).

Remark:

@ |t can be shown that a natural greedy algorithm is not a
p-approximation, for any p.

10/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
@ If G = Ky, then the algorithm returns C = V (Ky), while
an optimal solution is of size n (either part of the
bipartition).

Remark:
@ |t can be shown that a natural greedy algorithm is not a
p-approximation, for any p.
[Greedy: start with C = (). Until C is not a vertex cover,
peel off and add to C a vertex of maximum degree in the
current graph.]

10/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
@ If G = Ky, then the algorithm returns C = V (Ky), while
an optimal solution is of size n (either part of the
bipartition).

Remark:
@ |t can be shown that a natural greedy algorithm is not a
p-approximation, for any p.
[Greedy: start with C = (). Until C is not a vertex cover,
peel off and add to C a vertex of maximum degree in the
current graph.]

Inapproximability of vertex cover:
@ If there exists a polynomial 1.36-approximation algorithm
for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).

10/26

Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
@ If G = Ky, then the algorithm returns C = V (Ky), while
an optimal solution is of size n (either part of the
bipartition).

Remark:
@ |t can be shown that a natural greedy algorithm is not a
p-approximation, for any p.
[Greedy: start with C = (). Until C is not a vertex cover,
peel off and add to C a vertex of maximum degree in the
current graph.]

Inapproximability of vertex cover:
@ If there exists a polynomial 1.36-approximation algorithm
for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).
@ No p-approximation algorithm for MINIMUM VERTEX

COVER is known with p < 2.
10/26

APPROXIMATION ALGORITHMS
FOR THE TRAVELING SALESMAN PROBLEM

10/26

The Traveling Salesman Problem

TRAVELING SALESMAN (TSP)

Input: Graph G = (V,E), acost functionc : E — R+.
Task: Find a Hamiltonian cycle in G of smallest total cost.

11/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p > 1, then P = NP.

12/26

The Traveling Salesman Problem

Proposition
If there exists a p-approximation algorithm for TSP for some
p > 1, then P = NP.

Proof:
Suppose that A is a p-approximation algorithm for TSP.

12/26

The Traveling Salesman Problem

Proposition
If there exists a p-approximation algorithm for TSP for some
p > 1, then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

Let G’ = Ky (complete graph), ¢ : (%) — R, where

cle) = 1, ife € E;
| plV|+1, otherwise.

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

Let G’ = Ky (complete graph), ¢ : (%) — R, where

cle) = 1, ife € E;
| plV|+1, otherwise.

Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V1.

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

Let G’ = Ky (complete graph), ¢ : (%) — R, where

cle) = 1, ife € E;
| plV|+1, otherwise.
Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V.
Let I be the solution to the TSP given (Ky, ¢), computed by our algorithm A.

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:
Suppose that A is a p-approximation algorithm for TSP.
We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.
| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).
Let G’ = Ky (complete graph), ¢ : (%) — R, where

1, ife € E;

c(e) = { plV|+1, otherwise.

Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V.
Let I be the solution to the TSP given (Ky, ¢), computed by our algorithm A.
(a) Ifc(r') < p|V],thenT C E, hence G is Hamiltonian.

12/26

The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

Let G’ = Ky (complete graph), ¢ : (%) — R, where

cle) = 1, ife € E;
| plV|+1, otherwise.

Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V.

Let I be the solution to the TSP given (Ky, ¢), computed by our algorithm A.
(a) Ifc(r') < p|V],thenT C E, hence G is Hamiltonian.

(b) Ifc(l) > p|V|, then OPT > |V|, hence G is not Hamiltonian. O
12/26

A Heuristic for TSP

Approx-TSP (G, c)

@ Find a minimum spanning tree T = (V, Et) for (G, c).

13/26

A Heuristic for TSP

Approx-TSP (G, c)

@ Find a minimum spanning tree T = (V, Et) for (G, c).

li 1
2 L
) N
6
8 9 8 9
1
input instance minimum spanning tree T'

(The cost of an egde connecting two vertices is equal to the Euclidean distance between them.)

13/26

A Heuristic for TSP

Approx-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).

@ W « walk in which each edge appears exactly twice
(obtained for example with depth-first search)

14/26

A Heuristic for TSP

Approx-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).

@ W « walk in which each edge appears exactly twice
(obtained for example with depth-first search)

@ H <« cycle that visits vertices in the order as they appear in
W for the first time

14/26

A Heuristic for TSP

Approx-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).

@ W « walk in which each edge appears exactly twice
(obtained for example with depth-first search)

@ H <« cycle that visits vertices in the order as they appear in
W for the first time

8 9 8 9

.
walk W traveling salesman tour determined by W
(obtained with DFS)

14/26

A Heuristic for TSP

Approx-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ W «+ walk in which each edge appears exactly twice
(obtained for example with depth-first search)

@ H « cycle that visits vertices in the order as they appear in
W for the first time

1 1
2 2
3 5 3 4 5
6 6
7

8 9 8 9
optimal solution traveling salesman tour determined by W
cost ~ 13,95 cost & 15,72

15/26

The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
Forallu,v,w € V:

c(uw) < c(uv) +c(vw).

16/26

The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
Forallu,v,w € V:

c(uw) <c(uv) +c(vw).
A reduction from the HAMILTONIAN CYCLE problem shows:

Proposition
METRIC TSP is NP-hard.

16/26

The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

17/26

The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
Let H* be an optimal tour. We need to show: c(H) < 2-c(H¥).

17/26

The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
Let H* be an optimal tour. We need to show: c(H) < 2-c(H¥).

@ c(T) < c(H*), since removing any edge of H* results in a
spanning tree.

1 1

8 9 8 9

¢

minimum spanning tree 7'

optimal solution H* minus one edge 17/26

The Metric TSP: a 2-approximation

Proposition
APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
® ¢(T) < c(H*), since removing any edge of H* results in a
spanning tree.
@ c(W) =2.¢(T), since every edge is visited exactly twice.

1 1

{ 7 7

8 9 8 9

minimum spanning tree 7' walk W
18/26

The Metric TSP: a 2-approximation

Proposition
APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
® ¢(T) < c(H*), since removing any edge of H* results in a
spanning tree.
@ c(W) =2.¢(T), since every edge is visited exactly twice.
® c(H) < -c(W), due to the triangle inequality.

1 1

8 9 8 9

walk W traveling salesman tour determined by W 19/26

The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.

20/26

The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.

Christofides-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ Find a minimum cost perfect matching M connecting
vertices of odd degree in T.

1 1

um spanning tree 7' matching M

vertices of odd degree are red

20/26

The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.

Christofides-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ Find a minimum cost perfect matching M connecting
vertices of odd degree in T.
@G «+TUM
@ E « Euler tour in G’ (graph G’ is Eulerian, since it is connected
and has all vertices of even degree).

1 1

Ved E = Euler tour in G

21/26

The Metric TSP: Christofides’ Algorithm

Proof:
Let H* be an optimal tour. We need to show: c(H) < 1.5-c(H*).

22/26

The Metric TSP: Christofides’ Algorithm

Proof:
Let H* be an optimal tour. We need to show: c(H) < 1.5-c(H*).

@ ¢(T) < c(H*), as before

22/26

The Metric TSP: Christofides’ Algorithm

Proof:
Let H* be an optimal tour. We need to show: c(H) < 1.5-c(H*).

@ ¢(T) < c(H*), as before
@ c(M) <(1/2)-c(l) <(1/2)-c(H*), where I'* is an
optimal cycle on the odd vertices of T.

@ The first inequality follows since I'* is the union of two
perfect matchings.
@ The second inequality follows from the triangle inequality.

1 1

9

cycle I'* matching M

22/26

The Metric TSP: Christofides’ Algorithm

Proof:

@ ¢(T) < c(H*), as before
@ c(M) <(1/2)-c(l) <(1/2)-c(H*), where I'* is an
optimal cycle on the odd vertices of T.

@ Due to the triangle inquality:
c(H)<c(M)+c(T)<(3/2)-c(H*).

1 1

23/26

What we did — Week 1

© Tue March 5: Review of basic notions in graph theory,
algorithms and complexity v/

@ Wed March 6: Graph colorings v/
© Thu March 7: Perfect graphs and their subclasses, part 1 v/

© Fri March 8: Perfect graphs and their subclasses, part 2 v/

24/26

What we’ll do — Week 2

© Tue March 19: Further examples of tractable problems,
partl v

@ Wed March 20:
Further examples of tractable problems, part 2 v/
Approximation algorithms for graph problems v/

© Thu March 21: Lectio Magistralis lecture, “Graph classes:
interrelations, structure, and algorithmic issues”

25/26

Questions?

Thank you for your attention!

martin.milanic@upr.si

26/26

