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Coping with NP -hardness

There are several approaches on how to deal with (the
intractability of) NP -hard problems:

@ polynomial algorithms for particular input instances
approximation algorithms

heuristics, local optimization

“efficient” exponential algorithms

randomized algorithms

parameterized complexity
(fixed-parameter tractable (FPT) algorithms)
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What we’ll do

© Basic Definitions.
@ 2-Approximation Algorithm for Vertex Cover.
© Approximation Algorithms for the Metric TSP.
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BASICS OF APPROXIMATION ALGORITHMS.
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Coping with NP -hardness

Heuristics:
@ intuitive algorithms;
@ guaranteed to run in polynomial time;
@ no guarantee on quality of solution.

Approximation algorithms:
@ guaranteed to run in polynomial time;

@ guaranteed to find “high quality” solution, say within 1% of
optimum;

@ Obstacle:
need to prove a solution’s value is close to optimum,
without even knowing what the optimum value is!
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Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.
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Approximation Algorithms and Schemes

p-approximation algorithm

@ An algorithm A for an optimization problem I1 that runs in
polynomial time.
@ For every instance of I1, A outputs a feasible solution with

objective function value within ratio p of true optimum for
that instance.

More specifically:
@ for minimization problems:
for every instance |, we have fAo(l) < p - OPT(l), where
fa(l) is the value of the solution returned by the algorithm,
and
OPT(l) is the optimal solution value.

@ for maximization problems: fo(1) > OPT(l)/p.
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Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

@ combinatorial algorithms,
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Approaches to the Design of Approximation
Algorithms

There exist several approaches to the design of approximation
algorithms:

@ combinatorial algorithms,

@ algorithms based on linear programming,
@ randomized algorithms,

@ etc.
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2-APPROXIMATION ALGORITHM
FOR THE VERTEX COVER PROBLEM
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The Vertex Cover Problem

Recall:
vertex cover inagraphG = (V,E):
asubsetC CV suchthatforalle cE,enC # 0
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The Vertex Cover Problem

Recall:
vertex cover inagraphG = (V,E):
asubsetC CV suchthatforalle cE,enC # 0

@ 2@ vertex in the cover
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The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER
problem:

MINIMUM VERTEX COVER
Input:  Graph G = (V,E).
Task: Find a minimum vertex cover in G.
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The Vertex Cover Problem

Consider the optimization version of the VERTEX COVER
problem:

MINIMUM VERTEX COVER
Input:  Graph G = (V,E).
Task: Find a minimum vertex cover in G.

In bipartite graphs, the problem can be solved optimally in
polynomial time.
For general graphs, the problem is NP-hard.
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2-Approximation Algorithm for Vertex Cover

Approx-Cover :
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2-Approximation Algorithm for Vertex Cover

Approx-Cover :

C =0

while (3e =uv € E)(u,v € V \C) do
C:=CuU{u,v}

end while

return C.

The algorithm computes an inclusion-wise maximal matching
M and returns the union of all edges in the matching.
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2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.
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2-Approximation Algorithm for Vertex Cover

Approx-Cover is a 2-approximation algorithm for the MINIMUM
VERTEX COVER problem.

Proof:

The stopping criterion of the while loop guarantees that C is a
cover.

Clearly, the algorithm can be implemented to run in polynomial
time.

Let M be the maximal matching consisting of all edges chosen
by the algorithm.

Every vertex cover must contain at least one vertex of each
edge of M,

hence OPT > |M|

and consequently

IC| =2|M| < 2-OPT.
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Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
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Other (In)approximability issues

The factor of 2 in the analysis cannot be improved:
@ If G = Ky, then the algorithm returns C = V (Ky ), while
an optimal solution is of size n (either part of the
bipartition).

Remark:
@ |t can be shown that a natural greedy algorithm is not a
p-approximation, for any p.
[Greedy: start with C = (). Until C is not a vertex cover,
peel off and add to C a vertex of maximum degree in the
current graph.]

Inapproximability of vertex cover:
@ If there exists a polynomial 1.36-approximation algorithm
for MINIMUM VERTEX COVER, then P = NP (Dinur-Safra 2005).
@ No p-approximation algorithm for MINIMUM VERTEX

COVER is known with p < 2.
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APPROXIMATION ALGORITHMS
FOR THE TRAVELING SALESMAN PROBLEM
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The Traveling Salesman Problem

TRAVELING SALESMAN (TSP)

Input:  Graph G = (V,E), acost functionc : E — R+.
Task: Find a Hamiltonian cycle in G of smallest total cost.
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The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p > 1, then P = NP.
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The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:
Suppose that A is a p-approximation algorithm for TSP.
We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.
| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).
Let G’ = Ky (complete graph), ¢ : (%) — R, where

1, ife € E;

c(e) = { plV|+1, otherwise.

Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V.
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The Traveling Salesman Problem

Proposition

If there exists a p-approximation algorithm for TSP for some
p>1,then P = NP.

Proof:

Suppose that A is a p-approximation algorithm for TSP.

We will show how to decide in polynomial time, using A, whether a given
graph G is Hamiltonian (which is an NP-complete problem).
HAMILTONIAN CYCLE: determine whether a given graph contains a cycle
going through every vertex exactly once.

| = instance for HAMILTONIAN CYCLE: a graph G = (V,E).

Let G’ = Ky (complete graph), ¢ : (%) — R, where

cle) = 1, ife € E;
| plV|+1, otherwise.

Notice: G is Hamiltonian if and only if G’ has a Hamiltonian cycle of total cost
V.

Let I be the solution to the TSP given (Ky, ¢), computed by our algorithm A.
(a) Ifc(r') < p|V],thenT C E, hence G is Hamiltonian.

(b) Ifc(l) > p|V|, then OPT > |V|, hence G is not Hamiltonian. O
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A Heuristic for TSP

Approx-TSP (G, c)

@ Find a minimum spanning tree T = (V, Et) for (G, c).
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A Heuristic for TSP

Approx-TSP (G, c)

@ Find a minimum spanning tree T = (V, Et) for (G, c).

li 1
2 L
) N
6
8 9 8 9
1
input instance minimum spanning tree T'

(The cost of an egde connecting two vertices is equal to the Euclidean distance between them.)
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@ Find a minimum spanning tree T = (V, Et) for (G, c).

@ W « walk in which each edge appears exactly twice
(obtained for example with depth-first search)

@ H <« cycle that visits vertices in the order as they appear in
W for the first time

8 9 8 9

.
walk W traveling salesman tour determined by W
(obtained with DFS)
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A Heuristic for TSP

Approx-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ W «+ walk in which each edge appears exactly twice
(obtained for example with depth-first search)

@ H « cycle that visits vertices in the order as they appear in
W for the first time

1 1
2 2
3 5 3 4 5
6 6
7

8 9 8 9
optimal solution traveling salesman tour determined by W
cost ~ 13,95 cost & 15,72
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The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
Forallu,v,w € V:

c(uw) < c(uv) +c(vw).
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The Metric TSP

METRIC TSP: TSP in which the cost function obeys the triangle
inequality:
Forallu,v,w € V:

c(uw) <c(uv) +c(vw).
A reduction from the HAMILTONIAN CYCLE problem shows:

Proposition
METRIC TSP is NP-hard.
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.
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The Metric TSP: a 2-approximation

Proposition

APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
Let H* be an optimal tour. We need to show: c(H) < 2-c(H¥).

@ c(T) < c(H*), since removing any edge of H* results in a
spanning tree.

1 1

8 9 8 9

¢

minimum spanning tree 7'

optimal solution H* minus one edge 17/26



The Metric TSP: a 2-approximation

Proposition
APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
® ¢(T) < c(H*), since removing any edge of H* results in a
spanning tree.
@ c(W) =2.¢(T), since every edge is visited exactly twice.

1 1

{ 7 7

8 9 8 9

minimum spanning tree 7' walk W
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The Metric TSP: a 2-approximation

Proposition
APPROX-TSP is a 2-approximation algorithm for the METRIC
TSP problem.

Proof:
® ¢(T) < c(H*), since removing any edge of H* results in a
spanning tree.
@ c(W) =2.¢(T), since every edge is visited exactly twice.
® c(H) < -c(W), due to the triangle inequality.

1 1

8 9 8 9

walk W traveling salesman tour determined by W 19/26



The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.
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The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.

Christofides-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ Find a minimum cost perfect matching M connecting
vertices of odd degree in T.

1 1

um spanning tree 7' matching M

vertices of odd degree are red
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The Metric TSP: Christofides’ Algorithm

Theorem (Christofides, 1976)

There exists a 1.5-approximation algorithm for the METRIC
TSP problem.

Christofides-TSP (G, c)
@ Find a minimum spanning tree T = (V, Et) for (G, c).
@ Find a minimum cost perfect matching M connecting
vertices of odd degree in T.
@G «+TUM
@ E « Euler tour in G’ (graph G’ is Eulerian, since it is connected
and has all vertices of even degree).

1 1

Ved E = Euler tour in G
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The Metric TSP: Christofides’ Algorithm

Proof:
Let H* be an optimal tour. We need to show: c(H) < 1.5-c(H*).
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The Metric TSP: Christofides’ Algorithm

Proof:
Let H* be an optimal tour. We need to show: c(H) < 1.5-c(H*).

@ ¢(T) < c(H*), as before
@ c(M) <(1/2)-c(l) <(1/2)-c(H*), where I'* is an
optimal cycle on the odd vertices of T.

@ The first inequality follows since I'* is the union of two
perfect matchings.
@ The second inequality follows from the triangle inequality.

1 1

9

cycle I'* matching M
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The Metric TSP: Christofides’ Algorithm

Proof:

@ ¢(T) < c(H*), as before
@ c(M) <(1/2)-c(l) <(1/2)-c(H*), where I'* is an
optimal cycle on the odd vertices of T.

@ Due to the triangle inquality:
c(H)<c(M)+c(T)<(3/2)-c(H*).

1 1
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What we did — Week 1

© Tue March 5: Review of basic notions in graph theory,
algorithms and complexity v/

@ Wed March 6: Graph colorings v/
© Thu March 7: Perfect graphs and their subclasses, part 1 v/

© Fri March 8: Perfect graphs and their subclasses, part 2 v/
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What we’ll do — Week 2

© Tue March 19: Further examples of tractable problems,
partl v

@ Wed March 20:
Further examples of tractable problems, part 2 v/
Approximation algorithms for graph problems v/

© Thu March 21: Lectio Magistralis lecture, “Graph classes:
interrelations, structure, and algorithmic issues”
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Questions?

Thank you for your attention!

martin.milanic@upr.si
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