Algorithmic Graph Theory Part IV - Further Examples of Tractable Problems

Martin Milanič

martin.milanic@upr.si

University of Primorska, Koper, Slovenia

Dipartimento di Informatica Università degli Studi di Verona, March 2013

- **0 2-S**ATISFIABILITY.
- 3-coloring Graphs with Small Dominating Sets.
- Maximum Independent Set Problem: an Overview of Combinatorial Techniques.
- Max Cut Problem in Planar Graphs.

A POLYNOMIAL ALGORITHM FOR 2-SATISFIABILITY.

SATISFIABILITY

Recall the SATISFIABILITY problem:

SATISFIABILITY

Input:	Boolean variables x_1, \ldots, x_n ,
	clauses C_1, \ldots, C_m over x_1, \ldots, x_n
	[clause = a disjunction of <i>literals</i>
	(variables or their negations)]
Question:	Is there a satisfying truth assignment?

Example:

Suppose we are given the following input to SATISFIABILITY: { x_1, x_2, x_3 }, $C_1 = x_1 \lor x_2 \lor x_3$, $C_2 = x_1 \lor \overline{x_2} \lor \overline{x_3}$, $C_3 = \overline{x_2} \lor x_3$, $C_4 = \overline{x_1} \lor \overline{x_3}$. $(\overline{x}_i \equiv \neg x_i)$

Truth assignment $x_1 = \top$, $x_2 = x_3 = \bot$ makes all clauses satisfied.

2-SATISFIABILITY: just like SATISFIABILITY, except that every clause consists of exactly 2 literals, $C_i = \lambda_{i1} \lor \lambda_{i2}$

This problem can be solved by a polynomial algorithm based on the **implication digraph** D = (V, A):

$$V = \{x_1, \dots, x_n\} \cup \{\overline{x_1}, \dots, \overline{x_n}\},$$
$$A = \bigcup_{i=1}^m \left\{ (\overline{\lambda_{i1}}, \lambda_{i2}), (\overline{\lambda_{i2}}, \lambda_{i1}) \right\}.$$

Directed edge $(\overline{\lambda_{i1}}, \lambda_{i2})$ means: if $\overline{\lambda_{i1}} = \top$, then also $\lambda_{i2} = \top$.

A Polynomial Algorithm for 2-SATISFIABILITY

Algorithm 2-SAT:

Input: Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m of length 2 **Output:** assignment of values $\{\top, \bot\}$ for x_1, \ldots, x_n for which the proposition $C_1 \land C_2 \land \ldots \land C_m$ is true, if such an assignment exists, NO, otherwise

```
Construct the implication digraph D = (V, A).
for each v \in V
```

Let S(v) be the set of points reachable from v. (Use BFS.) end for

```
if \exists a variable x_i such that \overline{x_i} \in S(x_i) and x_i \in S(\overline{x_i}) then return NO;
```

end if

while \exists a variable x_i such that the value of x_i is still undetermined **do** if $\overline{x_i} \notin S(x_i)$

set the value \top to all elements of $S(x_i)$;

set the value \perp to the negations of all elements of $S(x_i)$;

else

```
set the value \top to all elements of S(\overline{x_i});
```

set the value \perp to the negations of all elements of $S(\overline{x_i})$;

end if

end while

return the computed assignment;

A Polynomial Algorithm for 2-SATISFIABILITY

Example:

variables: x_1, \ldots, x_6

clauses:

 $\begin{array}{l} C_1 = \overline{x_1} \lor x_2 \\ C_2 = \overline{x_1} \lor \overline{x_4} \\ C_3 = x_1 \lor x_4 \\ C_4 = \overline{x_2} \lor \overline{x_3} \\ C_5 = \overline{x_3} \lor \overline{x_6} \\ C_6 = \overline{x_5} \lor \overline{x_6} \end{array}$

a satisfying truth assignment (x_1) $S(\overline{x}_1) = \{x_4, \overline{x}_1\}$ $S(x_1) = \{x_1, x_2, \overline{x}_3, \overline{x}_4\}$ $S(x_2) = \{x_2, \overline{x}_3\}$ $S(\overline{x}_2) = \{x_4, \overline{x}_1, \overline{x}_2\}$ $S(\overline{x}_3) = \{\overline{x}_3\}$ $S(x_3) = \{x_3, x_4, \overline{x}_1, \overline{x}_2, \overline{x}_6\}$ $S(x_4) = \{x_4, \overline{x}_1\}$ $S(\overline{x}_4) = \{x_1, x_2, \overline{x}_3, \overline{x}_4\}$

implication digraph

$$S(x_5) = \{x_5, \overline{x}_6\}$$

$$S(x_6) = \{x_5, x_6, \overline{x}_3, \overline{x}_5, \overline{x}_6\}$$

 $S(\overline{x}_5) = \{x_5, \overline{x}_5, \overline{x}_6\}$ $S(\overline{x}_6) = \{\overline{x}_6\}$

A Polynomial Algorithm for 2-SATISFIABILITY

Time complexity of the algorithm is polynomial (O(n(n + m))):

- 2*n* BFS's on a digraph with 2*n* vertices and 2*m* edges;
- at most *n* iterations of the **while** loop; each uses *O*(*n*) time.

Correctness of the algorithm follows from the following facts:

- If there exists a variable x_i such that $\overline{x_i} \in S(x_i)$ and $x_i \in S(\overline{x_i})$, then the proposition is not satisfiable since $x_i \Rightarrow \overline{x_i}$ and $\overline{x_i} \Rightarrow x_i$.
- Claim: If u ∈ S(v), then also v ∈ S(¬u).
 Proof: Directly from the construction of the implication digraph, since (u, v) ∈ E ⇒ (v, u) ∈ E.
- When setting the values in the **while** loop, no conflict arises: Suppose that when traversing $S(x_i)$ we set the value \top both to a variable x_j and its negation $\overline{x_j}$. This means that $x_j \in S(x_i)$ and $\overline{x_j} \in S(x_i) \Rightarrow \overline{x_i} \in S(x_j)$. Therefore in *D* there is an $x_i - x_j$ path and an $x_j - \overline{x_i}$ path, therefore there also exists an $x_i - \overline{x_j}$ path. This however is a contradiction with the assumption $\overline{x_i} \notin S(x_i)$.

A similar reasoning can be used for the traversal of $S(\overline{x_i})$.

There exist linear time implementations.

Aspvall, Plass and Tarjan (1979) gave a simple linear time algorithm:

- compute the strongly connected components (SCCs) of the implication digraph,
- if a variable and its negation are in the same SCC, then there is no satisfying assignment,
- else, shrink the SCCs to obtain the *condensation digraph* (which is an acyclic digraph),
- topologically order the condensation digraph, traverse the SCCs in this order, setting all unset terms in a SCC to be false, and all terms in the complementary component to true.

3-COLORING GRAPHS WITH SMALL DOMINATING SETS.

3-COLORABILITY is NP-complete.

Theorem

For every k, 3-COLORABILITY is solvable in polynomial time for graphs that contain a dominating set of size at most k.

dominating set in a graph G = (V, E): a set $D \subseteq V$ such that every vertex not in the set has a neighbor in the set:

$$(\forall u \in V \setminus D) (\exists v \in D) (uv \in E).$$

Suppose that G has a dominating set of size at most k.

Algorithm for 3-coloring:

- Find a dominating set *D* of size *k* in *G*. $O(n^k)$
- Generate the set C₃ all possible 3-colorings of the subgraph of G induced by D.
 O(3^k)

Solution for each $c \in C_3$ do if c can be extended to a 3-coloring of G then O(f(n))return YES; (G is 3-colorable)

return NO; (G is not 3-colorable)

How to check whether a given 3-coloring of G[D] can be extended to a 3-coloring of G?

Reduce to 2-SAT.

for each $v \in V(G) \setminus D$ do L(v) = list of allowed colors at vend for (Since D is a dominating set, $|L(v)| \le 2$ for all v.) if some L(v) is empty return NO; (the coloring cannot be extended) else ...

Create input instance I(c) for 2-SAT:

variables:

 x_{v} : $v \in V(G) \setminus D$. meaning: $x_{v} = \top \iff c(v) = \min L(v)$

clauses:

• for all $v \in V(G) \setminus D$ with |L(v)| = 1 add the clause

 $C_v = x_v \lor x_v$

for each edge uv ∈ E(G \ D) and for each color
 γ ∈ L(u) ∩ L(v) add the clause

$$C_{uv,\gamma}=\overline{\lambda_{u,\gamma}}\,\vee\,\overline{\lambda_{v,\gamma}}$$
 ;

where

$$\lambda_{u,\gamma} = \begin{cases} \mathbf{x}_u, & \text{if } \gamma = \min L(u); \\ \overline{\mathbf{x}_u}, & \text{else.} \end{cases}$$

The above clause is equivalent to the implication $\lambda_{u,\gamma} \Rightarrow \overline{\lambda_{v,\gamma}}$. meaning : $\lambda_{u,\gamma} = \top \Leftrightarrow c(u) = \gamma$.

return answer to 2-SAT on the input I(c).

Correctness of the algorithm:

- G is 3-colorable if and only if some c ∈ C₃ can be extended to a 3-coloring of G.
- A given c ∈ C₃ can be extended to a 3-coloring of G if and only if *I*(c) is satisfiable.

Time complexity:

$$O(n^k + 3^k(n+m))$$

• We need to solve 3^k instances of 2-SAT, each of which has O(n) variables and O(n+m) clauses.

Example:

variables: x_1, \ldots, x_6 clauses: $C_5 = x_5 \lor x_5$ $C_{12,2} = \overline{x_1} \lor x_2$ $C_{14,2} = \overline{x_1} \lor \overline{x_4}$ $C_{14,3} = x_1 \lor x_4$ $C_{23,1} = \overline{x_2} \lor \overline{x_3}$ $C_{36,1} = \overline{x_3} \lor \overline{x_6}$

$$C_{56,1} = \overline{x_5} \vee \overline{x_6}$$

Example:

a satisfying truth assignment T T L L T L x_3 x_4 x_5 x_6 x_1 x_2 x_3 x_4 x_5 x_6 x_1 x_2 x_3 x_4 x_5 x_6

$$\begin{split} S(x_1) &= \{x_1, x_2, \overline{x}_3, \overline{x}_4\}\\ S(x_2) &= \{x_2, \overline{x}_3\}\\ S(x_3) &= \{x_3, x_4, \overline{x}_1, \overline{x}_2, \overline{x}_6\}\\ S(x_4) &= \{x_4, \overline{x}_1\}\\ S(x_5) &= \{x_5, \overline{x}_6\}\\ S(x_6) &= \{x_5, x_6, \overline{x}_3, \overline{x}_5, \overline{x}_6\} \end{split}$$

$$\begin{split} S(\overline{x}_1) &= \{x_4, \overline{x}_1\} \\ S(\overline{x}_2) &= \{x_4, \overline{x}_1, \overline{x}_2\} \\ S(\overline{x}_3) &= \{\overline{x}_3\} \\ S(\overline{x}_4) &= \{x_1, x_2, \overline{x}_3, \overline{x}_4\} \\ S(\overline{x}_5) &= \{x_5, \overline{x}_5, \overline{x}_6\} \\ S(\overline{x}_6) &= \{\overline{x}_6\} \end{split}$$

variables: x_1, \ldots, x_6

clauses:

 $\begin{array}{l} C_5 = x_5 \lor x_5 \\ C_{12,2} = \neg x_1 \lor x_2 \\ C_{14,2} = \neg x_1 \lor \neg x_4 \\ C_{14,3} = x_1 \lor x_4 \\ C_{23,1} = \neg x_2 \lor \neg x_3 \\ C_{36,1} = \neg x_3 \lor \neg x_6 \\ C_{56,1} = \neg x_5 \lor \neg x_6 \end{array}$

implication digraph

Example:

variables: x_1, \dots, x_6 clauses: $C_5 = x_5 \lor x_5$ $C_{12,2} = \overline{x_1} \lor x_2$ $C_{14,2} = \overline{x_1} \lor \overline{x_4}$ $C_{14,3} = x_1 \lor x_4$ $C_{23,1} = \overline{x_2} \lor \overline{x_3}$ $C_{36,1} = \overline{x_3} \lor \overline{x_6}$ $C_{56,1} = \overline{x_5} \lor \overline{x_6}$

A satisfying assignment: $x_1 = x_2 = x_5 = \top$, $x_3 = x_4 = x_6 = \bot$

Example:

a 3-coloring of G:

THE INDEPENDENT SET PROBLEM.

- The Independent Set Problem in Hereditary Graph Classes.
- Matchings and the IS problem.
- Augmenting Graphs.
- O Decompositions.
- Combining the Methods.

THE INDEPENDENT SET PROBLEM IN HEREDITARY GRAPH CLASSES.

Graphs and Independent Sets

- G = (V, E) a finite simple undirected graph
- independent set: a subset of pairwise non-adjacent vertices
- α(G) = max size of an independent set in G [independence #]

INDEPENDENT SET Input: Graph $G = (V, E), k \in \mathbb{N}$ Question: Does G contain an independent set of size k?

The IS problem is NP-hard.

Complexity of the IS Problem

 \mathcal{M} : a set of graphs

Recall:

A graph G is \mathcal{M} -free if it does not contain any graph from \mathcal{M} as an induced subgraph.

X hereditary \iff X = {M-free graphs} for some M

 \mathcal{M} : the set of forbidden induced subgraphs for X

Question

Under what conditions on \mathcal{M} is the IS problem solvable in polynomial time in the class of \mathcal{M} -free graphs? When is it NP-hard?

We will provide some partial answers to these questions:

- a general hardness result
- various techniques for developing polynomial time algorithms in restricted classes

S = the set of graphs whose every connected component is a tree with at most three leaves

Theorem (Alekseev 1982)

Let \mathcal{M} be a finite set with $\mathcal{M} \cap S = \emptyset$. Then, the IS problem is NP-hard in the class of \mathcal{M} -free planar graphs of maximum degree at most 3.

Proof idea:

Reduction from the (NP-hard) IS problem in planar graphs of maximum degree at most 3:

Given a planar graph *G* with $\Delta(G) \leq 3$, construct a graph *G'* by replacing each edge with a P_4 . Then $\alpha(G') = \alpha(G) + |E(G)|$. Repeating the reduction sufficiently many times produces an \mathcal{M} -free graph.

The IS Problem in \mathcal{M} -free Planar Graphs

Exercise

Show that replacing an edge by a P_4 increases the independence number by exactly 1.

Example:

The IS problem is NP-hard for:

- triangle-free planar graphs
- *M*-free planar graphs where *M* is any finite set of graphs with cycles

What if $M \cap S \neq \emptyset$?

Is this a sufficient condition for \mathcal{M} such that the IS problem is polynomial for \mathcal{M} -free graphs?

Open question!
Since the 1960s, several approaches have been developed for solving the IS problem optimally in polynomial time in hereditary graph classes:

- matching techniques
- augmenting graphs
- divide-and-conquer approach whenever the input graph admits a tree-like decomposition (e.g. for cographs)
- dynamic programming for graphs which admit a recursive, linear decomposition (e.g. for interval graphs)
- Iocal transformations
- polyhedral optimization
- semidefinite programming
- algebraic methods (e.g. struction)

MATCHINGS AND THE IS PROBLEM.

A graph G is bipartite if there exists a partition of the vertex set into two parts such that every edge has one endpoint in each part.

Bipartite Graphs

Theorem (Kőnig-Egerváry 1931)

In a bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.

- matching = a set of pairwise disjoint edges
- vertex cover = a subset of vertices covering all edges

Finding Maximum Matchings

Augmenting path for *M*:

- edge in M
- vertex covered by M
- edge not in M overtex not covered by M

Theorem (Petersen 1891, Berge 1957)

M is maximum \iff there are no augmenting paths for M.

Kőnig gave an O(m) algorithm that finds an augmenting path for a given matching.

 \implies A maximum matching in a bipartite graph can be found in time O(nm). The algorithm also produces a minimum vertex cover.

A maximum independent set in a bipartite graph G = (V, E) can also be found in polynomial time:

- Compute a maximum matching *M*.
- Using *M*, compute a minimum vertex cover *C*.
- Solution The set $V \setminus C$ is a maximum independent set.

Line graph L(G)

- vertices are edges of G
- two are adjacent iff they share a common vertex in G

Matchings = Independent Sets in Line Graphs

• matching in $G \equiv$ independent set in L(G)

Matchings = Independent Sets in Line Graphs

IS problem in line graphs = maximum matching problem in general graphs

• Edmonds 1965: a polynomial time algorithm for the maximum matching problem

J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.

 Roussopoulos 1973: a linear-time algorithm to determine G from its line graph L(G)

Corollary

The IS problem can be solved in polynomial time in the class of line graphs.

AUGMENTING GRAPHS.

A natural approach for solving optimization problems is the following:

- Start with some feasible solution.
- 2 Move to a better solution, if possible.
- Repeat step 2.

In the case of the IS problem, step 2 is formalized by means of **augmenting graphs**.

G graph, I independent set in G

An augmenting graph for *I* is an induced bipartite subgraph H = (W, B; E) of *G* with

- $W \subseteq I$,
- $B \subseteq V \setminus I$,
- |*B*| > |*W*|, and
- no edges from *B* to $I \setminus W$.

G graph, I independent set in G

The set $I' = (I \setminus W) \cup B$ is independent with |I'| > |I|.

$W \subseteq I$, $B \subseteq V \setminus I$, |B| > |W|, and no edges from B to $I \setminus W$.

$W \subseteq I$, $B \subseteq V \setminus I$, |B| > |W|, and no edges from B to $I \setminus W$.

$W \subseteq I$, $B \subseteq V \setminus I$, |B| > |W|, and no edges from B to $I \setminus W$.

$W \subseteq I$, $B \subseteq V \setminus I$, |B| > |W|, and no edges from B to $I \setminus W$.

$W \subseteq I$, $B \subseteq V \setminus I$, |B| > |W|, and no edges from B to $I \setminus W$.

The Method of Augmenting Graphs

Theorem of augmenting graphs

I is maximum \iff there are no augmenting graphs for I.

To find a maximum independent set in G:

- Start with any independent set *I*.
- Find an augmenting graph for I.
- Augment the set, and go to 2.

• At most *n* augmentations.

• \Rightarrow Finding augmenting graphs is NP-hard.

The Method of Augmenting Graphs

Finding augmenting graphs is NP-hard for general graphs. But it can be solved in polynomial time for particular graph classes.

It suffices to consider **minimal** augmenting graphs:

• An augmenting graph for *I* is minimal if it does not contain any smaller augmenting graph for *I*.

Proposition

An augmenting graph (W, B; E) for I is minimal if and only if |B| = |W| + 1 and for every nonempty subset $X \subseteq W$, |N(X)| > |X|.

Exercise

Prove the above proposition.

To solve IS in a class of graphs X by augmentation, we have to:

Characterize minimal augmenting graphs in X, and
Develop a poly-time procedure for finding them.

Application 1: Claw-free Graphs

claw-free graphs \supset line graphs

Application 1: Claw-free Graphs

Which claw-free graphs are augmenting?

- bipartite and claw-free \Rightarrow maximum vertex degree is 2
- bipartite of max degree $2 \Rightarrow$ paths and even cycles

Which claw-free graphs are augmenting?

- bipartite and claw-free \Rightarrow maximum vertex degree is 2
- bipartite of max degree 2 \Rightarrow paths and even cycles
- $\bullet\,$ augmenting $\Rightarrow\,$ the number of vertices must be odd

The only claw-free augmenting graphs are *paths with an even number of edges* = augmenting chains

Theorem (Minty 1980, Sbihi 1980, Lovász-Plummer 1986)

A maximum independent set in a claw-free graph can be found in polynomial time.

Sbihi's solution is based on the augmenting graph method.

Application 2: Fork-free Graphs

fork-free graphs \supset claw-free graphs

Theorem (Alekseev 1999)

The IS problem is solvable in polynomial time in the class of fork-free graphs.

The algorithm is based on the augmenting graph method.

There only minimal fork-free augmenting graphs are:

- augmenting chains,
- augmenting complexes: bipartite graphs every vertex of which contains at most one non-neighbor in the opposite part.
- If G contains both a path P_k with k ≥ 8 and a claw as induced subgraphs, then G admits a decomposition reducing the problem to subgraphs with fewer vertices.
- The problem of finding an augmenting complex of maximum increment in *G* is recursively reduced to the IS problem in induced subgraphs of *G*.

DECOMPOSITIONS.

- Decomposition by clique separators
- Modular decomposition
- Tree decompositions and graphs of bounded treewidth
- Graphs of bounded clique-width

The Weighted Independent Set Problem

WEIGHTED INDEPENDENT SET (WIS) Problem: Input: $G = (V, E), w : V \to \mathbb{N}$ Task: Compute $\alpha_w(G) = \max$ weight of an IS.

Decomposition by Clique Separators

Theorem (Whitesides 1981, Tarjan 1985)

Given a graph G, its decomposition by clique separators can be computed in polynomial time. It reduces the WIS problem to graphs without clique separators.

separator = cutset = a set X such that G - X is disconnected

Application: Trees and Chordal Graphs

Trees: every tree on at least three vertices has a clique separator.

Corollary

The WIS problem is solvable in polynomial time for trees.

Chordal graphs:

Theorem (Dirac 1961): Every chordal graph is either complete, or has a clique separator.

Corollary

The WIS problem is solvable in polynomial time in the class of chordal graphs.

Definition

A graph *G* is 2-separable if every two nonadjacent vertices can be separated by at most two other vertices.

Complete graphs, cycles are 2-separable.

Theorem (Cicalese-M. 2012)

A connected graph G is 2-separable if and only if G arises from complete graphs and cycles by pasting along vertices or edges.

Application: 2-separable Graphs

Application: 2-separable Graphs

Application: 2-separable Graphs

The WIS problem is solvable in polynomial time for complete graphs, and also for cycles (for cycles, we will see later why).

Corollary

The WIS problem is solvable in polynomial time for 2-separable graphs.

 $M \subseteq V(G)$ is a *module* of *G* if every vertex outside *M* is adjacent to either all vertices of *M* or to none of them.

M_1 is not a module, M_2 is!

Trivial modules:

•
$$M = V$$

G is prime if its only modules are trivial.

a prime graph

Goal: Given a weighted graph *G*, compute $\alpha_w(G)$

Goal: Given a weighted graph *G*, compute $\alpha_w(G)$ If *G* is disconnected:

 solve the problem on components and combine by taking the union

$$\alpha_w(\mathbf{G}) = \sum_{i=1}^k \alpha_w(\mathbf{G}_i).$$

If \overline{G} is disconnected:

If \overline{G} is disconnected:

 solve the problem on co-components and combine by taking the heaviest solution

$$\alpha_{w}(\mathbf{G}) = \max_{1 \leq i \leq k} \alpha_{w}(\mathbf{G}_{i}).$$

If both G and \overline{G} are connected, then we can partition V(G) into maximal modules:

module: $U \subseteq V(G)$ such that $\forall v \in V \setminus U$, $N(v) \cap U \in \{\emptyset, U\}$

If both G and \overline{G} are connected, then we can partition V(G) into maximal modules:

module: $U \subseteq V(G)$ such that $\forall v \in V \setminus U$, $N(v) \cap U \in \{\emptyset, U\}$

If both G and \overline{G} are connected, then we can partition V(G) into maximal modules:

module: $U \subseteq V(G)$ such that $\forall v \in V \setminus U$, $N(v) \cap U \in \{\emptyset, U\}$

 \rightarrow characteristic graph

• compute $\alpha_w(G[M_1]), \ldots, \alpha_w(G[M_k])$ recursively Let $w'(M_i) = \alpha_w(M_i)$. Then

 $\alpha_w(\mathbf{G}) = \alpha_{w'}(\mathbf{G}').$

Theorem

The modular decomposition tree is unique and can be computed in linear time. It reduces the WIS problem in a class of graphs X to prime induced subgraphs of graphs in X.

Application 1: Cographs

 $cographs = P_4$ -free graphs

Every cograph with at least two vertices is either disconnected, or its complement is disconnected.

In particular, the only prime cograph is K_1 .

Corollary

The WIS problem is solvable in polynomial time for cographs.

Application 2: Fork-free Graphs

fork

Theorem (Alekseev 1999)

A maximum independent set in a fork-free graph can be found in polynomial time.

- augmenting graph approach
- running time: $O(n^{10})$

Theorem (Lozin–M. 2008)

An independent set of maximum weight in a fork-free graph can be found in time O(nT), where T is the time needed to solve the same problem in claw-free graphs.

Theorem

An independent set of maximum weight in a claw-free graph can be found in polynomial time T.

Minty 1980, Nakamura-Tamura 2001, Oriolo-Pietropaoli-Stauffer 2008, Faenza-Oriolo-Stauffer 2011

•
$$T = O(n^7) \rightarrow O(n^3)$$

Improvements over Alekseev's result:

- $\bullet \ unweighted \rightarrow weighted$
- improved time complexity ($O(n^4)$ instead of $O(n^{10})$).

Anti-Neighborhoods

$$\alpha_{w}(G) = \max_{x \in V(G)} \{w(x) + \alpha_{w}(G - N[x])\}$$

Main observation:

G prime fork-free graph, $x \in V(G)$.

Then, every prime induced subgraph of G - N[x] is claw-free.

Definition

A *tree-decomposition* of a graph G = (V, E): a tree $T = (\mathcal{I}, F)$ where each vertex $i \in \mathcal{I}$ has a label $X_i \subseteq V$ such that:

(i)
$$\cup_{i\in\mathcal{I}}X_i = V$$
,

(ii) For every edge $uv \in E$, there exists an $i \in \mathcal{I}$ such that $u, v \in X_i$, and

(iii) For every $v \in V$, the vertices of T whose label contains v induce a connected subgraph of T.

The *width* of such a decomposition is $\max_{i \in \mathcal{I}} |X_i| - 1$.

The treewidth of a graph G is the minimum k such that G has a tree-decomposition of width k.

Treewidth and Tree Decompositions

Example:

A graph with a tree decomposition of width 3:

Equivalently:

The treewidth of G is the minimum clique number over all chordal supergraphs of G, minus one.

Example: Cycles are of treewidth two.

Exercise

Determine the treewidth of complete graphs K_n and of complete bipartite graphs $K_{m,n}$.

Many problems that are generally NP-hard can be solved in polynomial time on graphs of tree-width at most k, for every fixed k.

Theorem (Courcelle's Theorem, 1990)

Every property of graphs expressible by a monadic second order sentence with quantifiers over vertex and edge sets is decidable in linear time on graphs of tree-width at most k.

Courcelle 1990, Arnborg-Lagergren-Seese 1991, Borie-Parker-Tovey 1991, Courcelle-Mosbah 1993

For the WIS problem, a direct algorithm with time complexity $O(2^k n)$ can be developed.

- clique-width = another important graph parameter generalizing treewidth
- *cwd*(*G*) = minimum number of labels needed to construct *G* using the following four operations:
 - (i) *i*(*v*): creation of a new vertex *v* with label *i*
 - (ii) $G \oplus H$: disjoint union of two labeled graphs G and H
 - (iii) $\eta_{i,j}$: joining by an edge each vertex with label *i* to each vertex with label *j* (where $i \neq j$)
 - (iv) $\rho_{i \rightarrow j}$: renaming label *i* to *j*

An expression formed with the above operations is called a k-expression if it uses at most k labels.

Example: A path (a, b, c, d, e) can be defined with the following 3-expression:

 $\eta_{3,2}(3(e) \oplus \rho_{3\to 2}(\rho_{2\to 1}(\eta_{3,2}(3(d) \oplus \rho_{3\to 2}(\rho_{2\to 1}(\eta_{3,2}(3(c) \oplus \eta_{2,1}(2(b) \oplus 1(a)))))))))$

Exercise

Prove that for every k, $cwd(P_k) \leq 3$.

Exercise

Prove that for every tree *T*, $cwd(T) \leq 3$.

- Many problems that are NP-hard in general are polynomially solvable for {G : cwd(G) ≤ k}
- P_4 -free graphs \equiv graphs of clique-width ≤ 2
- graphs of bounded treewidth are of bounded clique-width: *cwd*(G) ≤ 3 ⋅ 2^{twd}(G)-1 [Corneil-Rotics 2005]
- but not vice-versa (complete graphs are of clique-width ≤ 2 but have unbounded treewidth)

 for graphs of cwd ≤ k, it is easy to develop a direct poly-time solution to the WIS problem

More generally:

Theorem (Courcelle-Makowsky-Rotics 1993)

Every optimization problem expressible by a monadic second order sentence with quantifiers over vertices and vertex sets is solvable in linear time, given a *k*-expression defining the input graph.

COMBINING THE METHODS.

Modular Decomposition and Clique Separators

atom of G = an induced subgraph of G that has no clique separators

Theorem (Brandstädt-Hoáng 2007)

If WIS is solvable in time T on prime atoms of a graph G then it is solvable in time n^2T on G.

Applications: poly time algorithms for the WIS problem in:

- (*P*₅,banner)-free graphs (Brandstädt-Hoáng 2007)
 Every anti-neighborhood graph in a prime (*P*₅,banner)-free atom is chordal.
- several other subclasses of P₅-free graphs (Brandstädt-Le-Mahfud 2007)

Theorem (Lozin-M. 2010)

A maximum independent set in an $S_{1,2,k}$ -free planar graph can be found in polynomial time.

Ingredients of the proof:

- reduction from S_{1,2,k}-free graphs to S_{1,2,2}-free graphs via bounded treewidth,
- decomposition by clique separators (reduction to 2-connected components),
- method of augmenting graphs.

Two open questions:

- Is there a hereditary graph class X such that the IS problem is polynomially solvable for graphs in X, while the WIS problem is NP-hard?
- What is the complexity of the IS problem in the class of P₅-free graphs?
MAX CUT PROBLEM IN PLANAR GRAPHS.

ΜΑΧ Ουτ	
Input:	Multigraph $G = (V, E), \ k \in \mathbb{N}$
Question:	Does V admit a cut of size at least k?

cut: a partition of *V* into two pairwise disjoint sets *A* and *B* **size** of a cut (*A*, *B*): the number |E(A, B)|, where $E(A, B) = E \cap \{ab : a \in A, b \in B\}$.

The MAX CUT problem is equivalent to asking: Does the input graph G have a bipartite subgraph with k edges?

The NP-completeness of the Max Cut Problem

Theorem (Karp, 1972)

The MAX CUT problem is NP-complete.

Proof:

1. MAX $CUT \in NP$: we can verify in polynomial time whether (A, B) is a cut of size at least k.

2. Reduction from VERTEX COVER. I = (G = (V, E), k) instance for VERTEX COVER; we may assume *G* has no isolated vertices \mapsto J(I) = (G', 2|E| - k) instance for MAX CUT, where *G'* is a graph obtained from *G* by adding to it a new vertex *u* and connecting each $v \in V$ with $d_G(v) - 1$ parallel edges to *u*.

Exercise

Prove that *G* contains a vertex cover of size *k* if and only if *G'* contains a cut of size at least 2|E| - k.

Theorem (Hadlock, 1975)

The MAX CUT problem is solvable in polynomial time if G is planar.

To explain this result, we need to recall some facts about duals of planar graphs.

Given a connected **plane multigraph** (= a planar multigraph embedded in the plane) G, we create its **dual multigraph** G^* , as follows:

- Create a vertex for each face of G, and
- For each edge *e* of *G*, create an edge *e*^{*} connecting the two vertices corresponding two the two faces *e* is incident with.

Proposition

 $(G^*)^* \cong G.$

Moreover, there is a bijective correspondence between:

- vertices of G and faces of G*,
- edges of G and edges of G*,

faces of G and vertices of G*.

PLANAR MAX CUT

Input: A planar multigraph
$$G = (V, E), k \in \mathbb{N}$$

Question: Does V admit a cut of size at least k?

Theorem (Hadlock, 1975)

The PLANAR MAX CUT problem is solvable in polynomial time.

We will give a sketch of the proof of this theorem.

First, we may assume that

- *G* is connected (otherwise we solve the problem separately on connected components),
- *G* is embedded in the plane (there exists a linear time algorithm for finding a planar embedding of a planar multigraph).

We may delete loops, as they will never count towards the size of a cut.

Recall:

The MAX CUT problem is equivalent to verifying whether G has a bipartite subgraph with k edges.

Equivalently:

Does G have an odd cycle cover of at most |E| - k edges?

odd cycle cover in a graph G = (V, E): a subset $E' \subseteq E$ that intersects every odd cycle in G

Proposition

Let (A, B) be a cut in G. Then, the set

 $\{\mathbf{e}^* : \mathbf{e} \in E(\mathbf{A}, \mathbf{B})\}$

forms an even subgraph of G*.

even multigraph: a multigraph in which every vertex has even degree (i.e., is contained in an even number of edges)

An **odd-vertex pairing** in a graph: a set of edges the removal of which makes the graph even.

Observation:

An edge set $E' \subseteq E$ is an odd-cycle cover of *G* if and only if the set $(E')^* = \{e^* : e \in E\}$ is an odd-vertex pairing of G^* .

Proposition

The PLANAR MAX CUT problem on G is equivalent to the problem of finding a smallest odd-vertex pairing in G^* .

Let S be the set of vertices of odd degree in G^* .

Proposition

Let E' be a smallest odd-vertex pairing in G^* . Then E' is the disjoint union of |S|/2 paths each connecting two different vertices in S.

The problem can be reduced to that of finding a **perfect matching of minimum weight**

in the complete graph K_S , with

w(xy) = length of a shortest *x*-*y* path in *G*^{*}.

perfect matching = a matching covering all vertices of a graph

Theorem (Edmonds, 1965)

There exists a polynomial time algorithm to find a perfect matching of minimum weight in a given edge-weighted graph.

Let E' denote a smallest odd-vertex pairing in G^* .

Let E' denote a smallest odd-vertex pairing in G^* .

A maximum cut is given by any partition (A, B) such that

$$\{\mathbf{e}\in E(G)\,:\,\mathbf{e}^*\in E(G^*)\setminus E'\}=E(A,B)\,.$$

Such a partition can be found by placing a vertex in *A*, examining its neighbors to determine which ones are in *B*, and repeating this procedure. The fact that the graph $(V(G^*), E(G^*) \setminus E')$ is even will assure that no conflict will arise.

- Tue March 5: Review of basic notions in graph theory, algorithms and complexity √
- 2 Wed March 6: Graph colorings √
- 💿 Thu March 7: Perfect graphs and their subclasses, part 1 \checkmark
- If the second s

- Tue March 19: Further examples of tractable problems, part 1 √
- Wed March 20: Further examples of tractable problems, part 2 ✓ Approximation algorithms for graph problems
- Thu March 21: Lectio Magistralis lecture, "Graph classes: interrelations, structure, and algorithmic issues"