
Algorithmic Graph Theory
Part IV - Further Examples of Tractable Problems

Martin Milanič
martin.milanic@upr.si

University of Primorska, Koper, Slovenia

Dipartimento di Informatica
Università degli Studi di Verona, March 2013

1 / 93

What we’ll do

1 2-SATISFIABILITY.
2 3-coloring Graphs with Small Dominating

Sets.
3 Maximum Independent Set Problem:

an Overview of Combinatorial Techniques.
4 Max Cut Problem in Planar Graphs.

1 / 93

A POLYNOMIAL ALGORITHM FOR 2-SATISFIABILITY.

1 / 93

SATISFIABILITY

Recall the SATISFIABILITY problem:

SATISFIABILITY

Input: Boolean variables x1, . . . , xn,
clauses C1, . . . ,Cm over x1, . . . , xn

[clause = a disjunction of literals

(variables or their negations)]

Question: Is there a satisfying truth assignment?

Example:
Suppose we are given the following input to SATISFIABILITY:
{x1, x2, x3},
C1 = x1 ∨ x2 ∨ x3,
C2 = x1 ∨ x2 ∨ x3,
C3 = x2 ∨ x3,
C4 = x1 ∨ x3.

(x i ≡ ¬xi)

Truth assignment x1 = ⊤, x2 = x3 = ⊥ makes all clauses satisfied.
2 / 93

2-SATISFIABILITY

2-SATISFIABILITY: just like SATISFIABILITY, except that every
clause consists of exactly 2 literals, Ci = λi1 ∨ λi2

This problem can be solved by a polynomial algorithm based
on the implication digraph D = (V ,A):

V = {x1, . . . , xn} ∪ {x1, . . . , xn} ,

A =

m
⋃

i=1

{

(λi1, λi2), (λi2, λi1)

}

.

Directed edge (λi1, λi2) means: if λi1 = ⊤, then also λi2 = ⊤.

3 / 93

A Polynomial Algorithm for 2-SATISFIABILITY

Algorithm 2-SAT:
Input: Boolean variables x1, . . . , xn, clauses C1, . . . ,Cm of length 2
Output: assignment of values {⊤,⊥} for x1, . . . , xn for which the proposition
C1 ∧ C2 ∧ . . . ∧ Cm is true, if such an assignment exists, NO, otherwise

Construct the implication digraph D = (V ,A).
for each v ∈ V

Let S(v) be the set of points reachable from v . (Use BFS.)
end for
if ∃ a variable xi such that xi ∈ S(xi) and xi ∈ S(xi) then

return NO;
end if
while ∃ a variable xi such that the value of xi is still undetermined do

if xi 6∈ S(xi)
set the value ⊤ to all elements of S(xi);
set the value ⊥ to the negations of all elements of S(xi);

else
set the value ⊤ to all elements of S(xi);
set the value ⊥ to the negations of all elements of S(xi);

end if
end while

return the computed assignment;
4 / 93

A Polynomial Algorithm for 2-SATISFIABILITY

Example:

variables: x1, . . . , x6

clauses:

C1 = x1 ∨ x2

C2 = x1 ∨ x4

C3 = x1 ∨ x4

C4 = x2 ∨ x3

C5 = x3 ∨ x6

C6 = x5 ∨ x6

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

implication digraph

S(x1) = {x1, x2, x3, x4}

S(x2) = {x2, x3}

S(x3) = {x3, x4, x1, x2, x6}

S(x4) = {x4, x1}

S(x5) = {x5, x6}

S(x6) = {x5, x6, x3, x5, x6}

S(x1) = {x4, x1}

S(x2) = {x4, x1, x2}

S(x3) = {x3}

S(x4) = {x1, x2, x3, x4}

S(x5) = {x5, x5, x6}

S(x6) = {x6}

⊤

⊤

⊤

⊤

⊥ ⊥

⊥ ⊥

⊤

⊥ ⊤

a satisfying truth assignment

⊥

5 / 93

A Polynomial Algorithm for 2-SATISFIABILITY

Time complexity of the algorithm is polynomial (O(n(n + m))):
2n BFS’s on a digraph with 2n vertices and 2m edges;

at most n iterations of the while loop; each uses O(n) time.

Correctness of the algorithm follows from the following facts:
If there exists a variable xi such that xi ∈ S(xi) and xi ∈ S(xi), then the
proposition is not satisfiable since xi ⇒ xi and xi ⇒ xi .

Claim: If u ∈ S(v), then also v ∈ S(¬u).

Proof: Directly from the construction of the implication digraph, since
(u, v) ∈ E ⇒ (v , u) ∈ E .

When setting the values in the while loop, no conflict arises:
Suppose that when traversing S(xi) we set the value ⊤ both to a
variable xj and its negation xj . This means that xj ∈ S(xi) and
xj ∈ S(xi) ⇒ xi ∈ S(xj). Therefore in D there is an xi–xj path and an
xj –xi path, therefore there also exists an xi –xi path. This however is a
contradiction with the assumption xi 6∈ S(xi).

A similar reasoning can be used for the traversal of S(xi).

6 / 93

A Linear Algorithm for 2-SATISFIABILITY

There exist linear time implementations.

Aspvall, Plass and Tarjan (1979) gave a simple linear time
algorithm:

compute the strongly connected components (SCCs) of
the implication digraph,

if a variable and its negation are in the same SCC, then
there is no satisfying assignment,

else, shrink the SCCs to obtain the condensation digraph
(which is an acyclic digraph),

topologically order the condensation digraph, traverse the
SCCs in this order, setting all unset terms in a SCC to be
false, and all terms in the complementary component to
true.

7 / 93

3-COLORING GRAPHS
WITH SMALL DOMINATING SETS.

7 / 93

3-coloring Graphs with Small Dominating Sets

3-COLORABILITY is NP-complete.

Theorem
For every k, 3-COLORABILITY is solvable in polynomial time for
graphs that contain a dominating set of size at most k.

dominating set in a graph G = (V ,E):
a set D ⊆ V such that every vertex not in the set has a
neighbor in the set:

(∀u ∈ V \ D)(∃v ∈ D)(uv ∈ E) .

8 / 93

3-coloring Graphs with Small Dominating Sets

Example:

9 / 93

3-coloring Graphs with Small Dominating Sets

Example:

9 / 93

3-coloring Graphs with Small Dominating Sets

Example:

9 / 93

3-coloring Graphs with Small Dominating Sets

Example:

9 / 93

3-coloring Graphs with Small Dominating Sets

Suppose that G has a dominating set of size at most k .

Algorithm for 3-coloring:
1 Find a dominating set D of size k in G. O(nk)

2 Generate the set C3 all possible 3-colorings of the
subgraph of G induced by D. O(3k)

3 for each c ∈ C3 do O(3k f (n))
if c can be extended to a 3-coloring of G then O(f (n))

return YES; (G is 3-colorable)
4 return NO; (G is not 3-colorable)

10 / 93

3-coloring Graphs with Small Dominating Sets

How to check whether a given 3-coloring of G[D] can be
extended to a 3-coloring of G?

Reduce to 2-SAT.

11 / 93

3-coloring Graphs with Small Dominating Sets

for each v ∈ V (G) \ D do
L(v) = list of allowed colors at v

end for
(Since D is a dominating set, |L(v)| ≤ 2 for all v.)
if some L(v) is empty return NO;

(the coloring cannot be extended)
else . . .

12 / 93

3-coloring Graphs with Small Dominating Sets

Create input instance I(c) for 2-SAT:

variables:
xv : v ∈ V (G) \ D .

meaning: xv = ⊤ ⇔ c(v) = min L(v)

13 / 93

3-coloring Graphs with Small Dominating Sets

clauses:
for all v ∈ V (G) \ D with |L(v)| = 1 add the clause

Cv = xv ∨ xv

for each edge uv ∈ E(G \ D) and for each color
γ ∈ L(u) ∩ L(v) add the clause

Cuv ,γ = λu,γ ∨ λv ,γ ;

where

λu,γ =

{

xu, if γ = min L(u);
xu, else.

The above clause is equivalent to the implication
λu,γ ⇒ λv ,γ .
meaning : λu,γ = ⊤ ⇔ c(u) = γ.

14 / 93

3-coloring Graphs with Small Dominating Sets

return answer to 2-SAT on the input I(c).

Correctness of the algorithm:

G is 3-colorable if and only if some c ∈ C3 can be extended
to a 3-coloring of G.

A given c ∈ C3 can be extended to a 3-coloring of G if and
only if I(c) is satisfiable.

Time complexity:
O(nk + 3k (n + m))

We need to solve 3k instances of 2-SAT, each of which has
O(n) variables and O(n + m) clauses.

15 / 93

3-coloring Graphs with Small Dominating Sets

Example:

7 8 9

4

1

5 6

3

2

D
1 2 3

{ , }

{ , }

{ , }
{ }1

2 3

{ , }2 3

1 2

{ , }1 2

1 3

variables: x1, . . . , x6

clauses:

C12,2 = x1 ∨ x2

C14,2 = x1 ∨ x4

C14,3 = x1 ∨ x4

C23,1 = x2 ∨ x3

C36,1 = x3 ∨ x6

C56,1 = x5 ∨ x6

C5 = x5 ∨ x5

16 / 93

3-coloring Graphs with Small Dominating Sets

Example:

7 8 9

4

1

5 6

3

2

D
1 2 3

{ , }

{ , }

{ , }
{ }1

2 3

{ , }2 3

1 2

{ , }1 2

1 3

variables: x1, . . . , x6

clauses:

C12,2 = x1 ∨ x2

C14,2 = x1 ∨ x4

C14,3 = x1 ∨ x4

C23,1 = x2 ∨ x3

C36,1 = x3 ∨ x6

C56,1 = x5 ∨ x6

C5 = x5 ∨ x5

17 / 93

3-coloring Graphs with Small Dominating Sets

Example:

C12,2 = ¬x1 ∨ x2

C14,2 = ¬x1 ∨ ¬x4

C14,3 = x1 ∨ x4

C23,1 = ¬x2 ∨ ¬x3

C36,1 = ¬x3 ∨ ¬x6

C56,1 = ¬x5 ∨ ¬x6

C5 = x5 ∨ x5

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

S(x1) = {x1, x2, x3, x4}

S(x2) = {x2, x3}

S(x3) = {x3, x4, x1, x2, x6}

S(x4) = {x4, x1}

S(x5) = {x5, x6}

S(x6) = {x5, x6, x3, x5, x6}

S(x1) = {x4, x1}

S(x2) = {x4, x1, x2}

S(x3) = {x3}

S(x4) = {x1, x2, x3, x4}

S(x5) = {x5, x5, x6}

S(x6) = {x6}

⊤

⊤

⊤

⊤

⊥ ⊥

⊥ ⊥

⊤

⊥ ⊤

⊥

variables: x1, . . . , x6

clauses:

a satisfying truth assignment

implication digraph

18 / 93

3-coloring Graphs with Small Dominating Sets

Example:

7 8 9

4

1

5 6

3

2

D
1 2 3

{ , }

{ , }

{ , }
{ }1

2 3

{ , }2 3

1 2

{ , }1 2

1 3

variables: x1, . . . , x6

clauses:

C12,2 = x1 ∨ x2

C14,2 = x1 ∨ x4

C14,3 = x1 ∨ x4

C23,1 = x2 ∨ x3

C36,1 = x3 ∨ x6

C56,1 = x5 ∨ x6

C5 = x5 ∨ x5

A satisfying assignment:
x1 = x2 = x5 = ⊤, x3 = x4 = x6 = ⊥

18 / 93

3-coloring Graphs with Small Dominating Sets

Example:
a 3-coloring of G:

7 8 9

4

1

5 6

3

2

D
1 2 3

1
3

2

2

1

3

19 / 93

THE INDEPENDENT SET PROBLEM.

19 / 93

What we’ll do

1 The Independent Set Problem in Hereditary
Graph Classes.

2 Matchings and the IS problem.
3 Augmenting Graphs.
4 Decompositions.
5 Combining the Methods.

19 / 93

THE INDEPENDENT SET PROBLEM
IN HEREDITARY GRAPH CLASSES.

19 / 93

Graphs and Independent Sets

G = (V ,E) - a finite simple undirected graph

independent set: a subset of pairwise non-adjacent
vertices

α(G) = max size of an independent set in G
[independence #]

20 / 93

The Independent Set Problem

INDEPENDENT SET

Input: Graph G = (V ,E), k ∈ N

Question: Does G contain an independent set of size k?

The IS problem is NP-hard .

21 / 93

Complexity of the IS Problem

:::::::::::::::::::::::::::::::::::::::

NP-hard

polynomial

triangle-free planar

maximum degree at most 3

[Poljak 1974] [Garey-Johnson-Stockmeyer 1976]

[Garey-Johnson 1977]

cographs

claw-free chordal

bipartite

[Minty 1980, Sbihi 1980] [Gavril 1972]

[Corneil-Perl-Stewart 1984]

22 / 93

Complexity of the Problem in Hereditary Classes

M: a set of graphs

Recall:

A graph G is M-free if it does not contain any graph from M
as an induced subgraph.

X hereditary ⇐⇒ X = {M-free graphs} for some M

M: the set of forbidden induced subgraphs for X

23 / 93

The graphs Si,j,k

Question
Under what conditions on M is the IS problem solvable in
polynomial time in the class of M-free graphs? When is it
NP-hard?

We will provide some partial answers to these questions:

a general hardness result

various techniques for developing polynomial time
algorithms in restricted classes

24 / 93

A Hardness Result

S = the set of graphs whose every connected component
is a tree with at most three leaves

Theorem (Alekseev 1982)

Let M be a finite set with M∩S = ∅ . Then, the IS problem is
NP-hard in the class of M-free planar graphs of maximum
degree at most 3.

Proof idea:
Reduction from the (NP-hard) IS problem in planar graphs of
maximum degree at most 3:
Given a planar graph G with ∆(G) ≤ 3, construct a graph G′ by
replacing each edge with a P4. Then α(G′) = α(G) + |E(G)|.
Repeating the reduction sufficiently many times produces an
M-free graph.

25 / 93

The IS Problem in M-free Planar Graphs

Exercise
Show that replacing an edge by a P4 increases the
independence number by exactly 1.

Example:
The IS problem is NP-hard for:

triangle-free planar graphs

M-free planar graphs where M is any finite set of graphs
with cycles

What if M ∩ S 6= ∅?
Is this a sufficient condition for M such that the IS problem is
polynomial for M-free graphs?

Open question!
26 / 93

Polynomial Approaches

Since the 1960s, several approaches have been developed for
solving the IS problem optimally in polynomial time in
hereditary graph classes:

matching techniques

augmenting graphs

divide-and-conquer approach whenever the input graph
admits a tree-like decomposition (e.g. for cographs)

dynamic programming for graphs which admit a recursive,
linear decomposition (e.g. for interval graphs)

local transformations

polyhedral optimization

semidefinite programming

algebraic methods (e.g. struction)

27 / 93

MATCHINGS AND THE IS PROBLEM.

27 / 93

Bipartite Graphs

A graph G is bipartite if there exists a partition of the vertex set
into two parts such that every edge has one endpoint in each
part.

28 / 93

Bipartite Graphs

Theorem (K őnig-Egerv áry 1931)

In a bipartite graph G, the maximum size of a matching equals
the minimum size of a vertex cover.

matching = a set of pairwise disjoint edges
vertex cover = a subset of vertices covering all edges

29 / 93

Finding Maximum Matchings

Augmenting path for M:

edge not in M

edge in M vertex covered by M

vertex not covered by M

Theorem (Petersen 1891, Berge 1957)

M is maximum ⇐⇒ there are no augmenting paths for M.

Kőnig gave an O(m) algorithm that finds an augmenting path
for a given matching.

=⇒ A maximum matching in a bipartite graph can be found in
time O(nm). The algorithm also produces a minimum vertex
cover.

30 / 93

Maximum Independent Sets in Bipartite Graphs

A maximum independent set in a bipartite graph G = (V ,E)
can also be found in polynomial time:

1 Compute a maximum matching M.
2 Using M, compute a minimum vertex cover C.
3 The set V \ C is a maximum independent set.

31 / 93

Line Graphs

Line graph L(G)

vertices are edges of G

two are adjacent iff they share a common vertex in G

a

b

c

d

e

f

a

b e

c d f

G L(G)

32 / 93

Matchings = Independent Sets in Line Graphs

matching in G ≡ independent set in L(G)

a

b

c

d

e

f

a

b e

c d f

G L(G)

32 / 93

Matchings = Independent Sets in Line Graphs

IS problem in line graphs = maximum matching problem in
general graphs

Edmonds 1965: a polynomial time algorithm for the
maximum matching problem

J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.

Roussopoulos 1973: a linear-time algorithm to determine
G from its line graph L(G)

Corollary

The IS problem can be solved in polynomial time in the class of
line graphs.

33 / 93

AUGMENTING GRAPHS.

33 / 93

Augmenting Graphs

A natural approach for solving optimization problems is the
following:

1 Start with some feasible solution.
2 Move to a better solution, if possible.
3 Repeat step 2.

In the case of the IS problem, step 2 is formalized by means of
augmenting graphs .

34 / 93

Augmenting Graphs

G graph, I independent set in G

G

I

B

W

An augmenting graph for I is an induced bipartite subgraph
H = (W ,B;E) of G with

W ⊆ I,
B ⊆ V\I,
|B| > |W |, and
no edges from B to I\W .

35 / 93

Augmenting Graphs

G graph, I independent set in G

G

I

B

W

The set I ′ = (I\W) ∪ B is independent with |I ′| > |I|.

35 / 93

Augmenting Graphs

W ⊆ I, B ⊆ V\I, |B| > |W |, and no edges from B to I\W .

Example:

I (yellow vertices)

augmenting graph

36 / 93

Augmenting Graphs

W ⊆ I, B ⊆ V\I, |B| > |W |, and no edges from B to I\W .

Example:

I (yellow vertices)

augmenting graph

36 / 93

Augmenting Graphs

W ⊆ I, B ⊆ V\I, |B| > |W |, and no edges from B to I\W .

Example:

I (yellow vertices)

augmenting graph

B

W

36 / 93

Augmenting Graphs

W ⊆ I, B ⊆ V\I, |B| > |W |, and no edges from B to I\W .

Example:

I (yellow vertices)

augmenting graph

36 / 93

Augmenting Graphs

W ⊆ I, B ⊆ V\I, |B| > |W |, and no edges from B to I\W .

Example:

I (yellow vertices)

augmenting graph

I
′ = (I\W) ∪BI
′ = (I\W) ∪B

36 / 93

The Method of Augmenting Graphs

Theorem of augmenting graphs

I is maximum ⇐⇒ there are no augmenting graphs for I.

To find a maximum independent set in G:

1 Start with any independent set I.
2 Find an augmenting graph for I.
3 Augment the set, and go to 2.

At most n augmentations.

⇒ Finding augmenting graphs is NP-hard.

37 / 93

The Method of Augmenting Graphs

Finding augmenting graphs is NP-hard for general graphs.
But it can be solved in polynomial time for particular graph
classes.

It suffices to consider minimal augmenting graphs:

An augmenting graph for I is minimal if it does not contain
any smaller augmenting graph for I.

Proposition

An augmenting graph (W ,B;E) for I is minimal if and only if
|B| = |W |+ 1 and for every nonempty subset X ⊆ W,
|N(X)| > |X |.

Exercise
Prove the above proposition.

38 / 93

The Method of Augmenting Graphs

To solve IS in a class of graphs X by augmentation, we have to:

1 Characterize minimal augmenting graphs in X , and
2 Develop a poly-time procedure for finding them.

39 / 93

Application 1: Claw-free Graphs

claw = K1,3

claw-free graphs ⊃ line graphs

40 / 93

Application 1: Claw-free Graphs

Which claw-free graphs are augmenting?

bipartite and claw-free ⇒ maximum vertex degree is 2

bipartite of max degree 2 ⇒ paths and even cycles

41 / 93

Application 1: Claw-free Graphs

Which claw-free graphs are augmenting?

bipartite and claw-free ⇒ maximum vertex degree is 2

bipartite of max degree 2 ⇒ paths and even cycles

augmenting ⇒ the number of vertices must be odd

X X X

41 / 93

Application 1: Claw-free Graphs

The only claw-free augmenting graphs are
paths with an even number of edges = augmenting chains

Theorem (Minty 1980, Sbihi 1980, Lov ász-Plummer 1986)

A maximum independent set in a claw-free graph can be found
in polynomial time.

Sbihi’s solution is based on the augmenting graph method.

42 / 93

Application 2: Fork-free Graphs

fork

fork-free graphs ⊃ claw-free graphs

Theorem (Alekseev 1999)

The IS problem is solvable in polynomial time in the class of
fork-free graphs.

The algorithm is based on the augmenting graph method.

43 / 93

Application 2: Fork-free Graphs

There only minimal fork-free augmenting graphs are:

augmenting chains,

augmenting complexes: bipartite graphs every vertex of
which contains at most one non-neighbor in the opposite
part.

If G contains both a path Pk with k ≥ 8 and a claw as
induced subgraphs, then G admits a decomposition
reducing the problem to subgraphs with fewer vertices.

The problem of finding an augmenting complex of
maximum increment in G is recursively reduced to the IS
problem in induced subgraphs of G.

44 / 93

DECOMPOSITIONS.

44 / 93

Decompositions.

1 Decomposition by clique separators
2 Modular decomposition
3 Tree decompositions and graphs of bounded treewidth
4 Graphs of bounded clique-width

45 / 93

The Weighted Independent Set Problem

WEIGHTED INDEPENDENT SET (WIS) Problem:
Input : G = (V ,E), w : V → N

Task : Compute αw (G) = max weight of an IS.

5

7
4

310

6
αw(G) = 15

46 / 93

Decomposition by Clique Separators

Theorem (Whitesides 1981, Tarjan 1985)

Given a graph G, its decomposition by clique separators can be
computed in polynomial time. It reduces the WIS problem to
graphs without clique separators.

separator = cutset = a set X such that G − X is disconnected

clique separator

47 / 93

Application: Trees and Chordal Graphs

Trees: every tree on at least three vertices has a clique
separator.

Corollary

The WIS problem is solvable in polynomial time for trees.

Chordal graphs:

Theorem (Dirac 1961): Every chordal graph is either complete,
or has a clique separator.

Corollary

The WIS problem is solvable in polynomial time in the class of
chordal graphs.

48 / 93

Application: 2-separable Graphs

Definition
A graph G is 2-separable if every two nonadjacent vertices can
be separated by at most two other vertices.

Complete graphs, cycles are 2-separable.

Theorem (Cicalese-M. 2012)

A connected graph G is 2-separable if and only if G arises from
complete graphs and cycles by pasting along vertices or edges.

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

49 / 93

Application: 2-separable Graphs

The WIS problem is solvable in polynomial time for complete
graphs, and also for cycles (for cycles, we will see later why).

Corollary

The WIS problem is solvable in polynomial time for 2-separable
graphs.

50 / 93

Modular Decomposition

M ⊆ V (G) is a module of G if
every vertex outside M is adjacent to either
all vertices of M or to none of them.

M1

M2

M1 is not a module, M2 is!

51 / 93

Modular Decomposition

Trivial modules:
M = V

|M| ≤ 1

G is prime if its only modules are trivial.

a prime graph

52 / 93

Modular Decomposition

Goal: Given a weighted graph G, compute αw (G)

53 / 93

Modular Decomposition

Goal: Given a weighted graph G, compute αw (G)

If G is disconnected:

I1

I2

I3I3

solve the problem on components and combine by taking
the union

αw (G) =
k
∑

i=1

αw (Gi) .

53 / 93

Modular Decomposition

If G is disconnected:

54 / 93

Modular Decomposition

If G is disconnected:

I

solve the problem on co-components and combine by
taking the heaviest solution

αw (G) = max
1≤i≤k

αw (Gi) .

54 / 93

Modular Decomposition

If both G and G are connected, then we can partition V (G) into
maximal modules:

module: U ⊆ V (G) such that ∀ v ∈ V\U, N(v) ∩ U ∈ {∅,U}

55 / 93

Modular Decomposition

If both G and G are connected, then we can partition V (G) into
maximal modules:

I1 I2

module: U ⊆ V (G) such that ∀ v ∈ V\U, N(v) ∩ U ∈ {∅,U}

55 / 93

Modular Decomposition

If both G and G are connected, then we can partition V (G) into
maximal modules:

I1 I2

module: U ⊆ V (G) such that ∀ v ∈ V\U, N(v) ∩ U ∈ {∅,U}

→ characteristic graph

55 / 93

Modular Decomposition

M1 M2 M3 M4

M5

compute αw (G[M1]), . . . , αw (G[Mk]) recursively

Let w ′(Mi) = αw (Mi).
Then

αw (G) = αw ′(G′) .

56 / 93

Modular Decomposition

Theorem
The modular decomposition tree is unique and can be
computed in linear time.
It reduces the WIS problem in a class of graphs X to prime
induced subgraphs of graphs in X.

57 / 93

Application 1: Cographs

P4

cographs = P4-free graphs

Every cograph with at least two vertices is either disconnected,
or its complement is disconnected.

In particular, the only prime cograph is K1.

Corollary

The WIS problem is solvable in polynomial time for cographs.

58 / 93

Application 2: Fork-free Graphs

fork

Theorem (Alekseev 1999)

A maximum independent set in a fork-free graph can be found
in polynomial time.

augmenting graph approach

running time: O(n10)

59 / 93

Application 2: Fork-free Graphs

Theorem (Lozin–M. 2008)

An independent set of maximum weight in a fork-free graph can
be found in time O(nT), where T is the time needed to solve
the same problem in claw-free graphs.

Theorem
An independent set of maximum weight in a claw-free graph
can be found in polynomial time T .

Minty 1980, Nakamura-Tamura 2001, Oriolo-Pietropaoli-Stauffer 2008,

Faenza-Oriolo-Stauffer 2011

T = O(n7) → O(n3)

60 / 93

Application 2: Fork-free Graphs

Improvements over Alekseev’s result:

unweighted → weighted

improved time complexity (O(n4) instead of O(n10)).

61 / 93

Anti-Neighborhoods

αw (G) = max
x∈V (G)

{w(x) + αw (G − N[x])}

G−N [x]

x

N(x)

Main observation:
G prime fork-free graph, x ∈ V (G).
Then, every prime induced subgraph of G − N[x] is claw-free.

62 / 93

Treewidth and Tree Decompositions

Definition
A tree-decomposition of a graph G = (V ,E):
a tree T = (I,F) where each vertex i ∈ I has a label Xi ⊆ V
such that:

(i) ∪i∈IXi = V ,

(ii) For every edge uv ∈ E , there exists an i ∈ I such that
u, v ∈ Xi , and

(iii) For every v ∈ V , the vertices of T whose label contains v
induce a connected subgraph of T .

The width of such a decomposition is maxi∈I |Xi | − 1.

The treewidth of a graph G is the minimum k such that G has a
tree-decomposition of width k .

63 / 93

Treewidth and Tree Decompositions

Example:
A graph with a tree decomposition of width 3:

64 / 93

Treewidth and Tree Decompositions

Equivalently:

The treewidth of G is the minimum clique number over all
chordal supergraphs of G, minus one.

Example:
Cycles are of treewidth two.

Exercise
Determine the treewidth of complete graphs Kn and of
complete bipartite graphs Km,n.

65 / 93

Treewidth and Tree Decompositions

Many problems that are generally NP-hard can be solved in
polynomial time on graphs of tree-width at most k , for every
fixed k .

Theorem (Courcelle’s Theorem, 1990)

Every property of graphs expressible by a monadic second
order sentence with quantifiers over vertex and edge sets is
decidable in linear time on graphs of tree-width at most k.

Courcelle 1990, Arnborg-Lagergren-Seese 1991, Borie-Parker-Tovey 1991, Courcelle-Mosbah 1993

For the WIS problem, a direct algorithm with time complexity
O(2kn) can be developed.

66 / 93

Graphs of Bounded Clique-Width

clique-width = another important graph parameter
generalizing treewidth
cwd(G) = minimum number of labels needed to construct
G using the following four operations:

(i) i(v): creation of a new vertex v with label i
(ii) G ⊕ H : disjoint union of two labeled graphs G and H
(iii) ηi,j : joining by an edge each vertex with label i to each

vertex with label j (where i 6= j)
(iv) ρi→j : renaming label i to j

An expression formed with the above operations is called a
k-expression if it uses at most k labels.

Example: A path (a,b, c,d ,e) can be defined with the following
3-expression:

η3,2(3(e)⊕ρ3→2(ρ2→1(η3,2(3(d)⊕ρ3→2(ρ2→1(η3,2(3(c)⊕η2,1(2(b)⊕1(a)))))))))

67 / 93

Graphs of Bounded Clique-Width

Exercise
Prove that for every k , cwd(Pk) ≤ 3.

Exercise
Prove that for every tree T , cwd(T) ≤ 3.

68 / 93

Graphs of Bounded Clique-Width

Many problems that are NP-hard in general are
polynomially solvable for {G : cwd(G) ≤ k}

P4-free graphs ≡ graphs of clique-width ≤ 2

graphs of bounded treewidth are of bounded clique-width:
cwd(G) ≤ 3 · 2twd(G)−1 [Corneil-Rotics 2005]

but not vice-versa (complete graphs are of clique-width ≤ 2
but have unbounded treewidth)

69 / 93

Graphs of Bounded Clique-Width

for graphs of cwd ≤ k , it is easy to develop a direct
poly-time solution to the WIS problem

More generally:

Theorem (Courcelle-Makowsky-Rotics 1993)

Every optimization problem expressible by a monadic second
order sentence with quantifiers over vertices and vertex sets is
solvable in linear time, given a k-expression defining the input
graph.

70 / 93

COMBINING THE METHODS.

70 / 93

Modular Decomposition and Clique Separators

atom of G = an induced subgraph of G that has no clique
separators

Theorem (Brandst ädt-Ho áng 2007)

If WIS is solvable in time T on prime atoms of a graph G then it
is solvable in time n2T on G.

Applications: poly time algorithms for the WIS problem in:

(P5,banner)-free graphs (Brandstädt-Hoáng 2007)

Every anti-neighborhood graph in a prime (P5,banner)-free atom is

chordal.

several other subclasses of P5-free graphs
(Brandstädt-Le-Mahfud 2007)

71 / 93

S1,2,k -free Planar Graphs

Theorem (Lozin-M. 2010)

A maximum independent set in an S1,2,k -free planar graph can
be found in polynomial time.

1 2 k

S1,2,k

Ingredients of the proof:

reduction from S1,2,k -free graphs to S1,2,2-free graphs via
bounded treewidth,

decomposition by clique separators (reduction to
2-connected components),

method of augmenting graphs.

72 / 93

Two Open Problems

Two open questions:

Is there a hereditary graph class X such that the IS
problem is polynomially solvable for graphs in X , while the
WIS problem is NP-hard?

What is the complexity of the IS problem in the class of
P5-free graphs?

73 / 93

MAX CUT PROBLEM IN PLANAR GRAPHS.

73 / 93

The Max Cut Problem

MAX CUT

Input: Multigraph G = (V ,E), k ∈ N

Question: Does V admit a cut of size at least k?

cut : a partition of V into two pairwise disjoint sets A and B
size of a cut (A,B): the number |E(A,B)|, where
E(A,B) = E ∩ {ab : a ∈ A,b ∈ B}.

The MAX CUT problem is equivalent to asking:
Does the input graph G have a bipartite subgraph with k
edges?

74 / 93

The NP-completeness of the Max Cut Problem

Theorem (Karp, 1972)

The MAX CUT problem is NP-complete.

Proof:
1. MAX CUT ∈ NP : we can verify in polynomial time whether
(A,B) is a cut of size at least k .

75 / 93

The NP-completeness of the Max Cut Problem

2. Reduction from VERTEX COVER.
I = (G = (V ,E), k) instance for VERTEX COVER;
we may assume G has no isolated vertices
7→
J(I) = (G′,2|E | − k) instance for MAX CUT, where

G′ is a graph obtained from G by adding to it a new vertex u
and connecting each v ∈ V with dG(v) − 1 parallel edges to u.

Exercise

Prove that G contains a vertex cover of size k if and only if G′

contains a cut of size at least 2|E | − k .

76 / 93

The Max Cut Problem in Planar Graphs

Theorem (Hadlock, 1975)

The MAX CUT problem is solvable in polynomial time if G is
planar.

To explain this result, we need to recall some facts about duals
of planar graphs.

77 / 93

Duality

Given a connected plane multigraph
(= a planar multigraph embedded in the plane) G,
we create its dual multigraph G∗, as follows:

Create a vertex for each face of G, and

For each edge e of G, create an edge e∗ connecting the
two vertices corresponding two the two faces e is incident
with.

78 / 93

Duality – Example

G

79 / 93

Duality – Example

G

79 / 93

Duality – Example

G

e

e∗

79 / 93

Duality – Example

G

G∗

e

e∗

79 / 93

Duality – Example

G∗

79 / 93

Duality

Proposition

(G∗)∗ ∼= G.
Moreover, there is a bijective correspondence between:

vertices of G and faces of G∗,

edges of G and edges of G∗,

faces of G and vertices of G∗.

80 / 93

Duality – Example

G∗

81 / 93

Duality – Example

G∗

81 / 93

Duality – Example

G∗

(G∗)∗

81 / 93

Duality – Example

(G∗)∗ ∼= G

81 / 93

Duality – Example

G∗

G

81 / 93

The Max Cut Problem in Planar Graphs

PLANAR MAX CUT

Input: A planar multigraph G = (V ,E), k ∈ N

Question: Does V admit a cut of size at least k?

Theorem (Hadlock, 1975)

The PLANAR MAX CUT problem is solvable in polynomial time.

We will give a sketch of the proof of this theorem.

First, we may assume that

G is connected (otherwise we solve the problem separately
on connected components),

G is embedded in the plane (there exists a linear time
algorithm for finding a planar embedding of a planar
multigraph).

82 / 93

The Max Cut Problem in Planar Graphs

GA

83 / 93

The Max Cut Problem in Planar Graphs

GA

cut edges

83 / 93

The Max Cut Problem in Planar Graphs

We may delete loops, as they will never count towards the size
of a cut.

GA

cut edges

83 / 93

The Max Cut Problem and Odd Cycle Covers

Recall:
The MAX CUT problem is equivalent to verifying whether G has
a bipartite subgraph with k edges.

Equivalently:
Does G have an odd cycle cover of at most |E | − k edges?

odd cycle cover in a graph G = (V ,E): a subset E ′ ⊆ E that
intersects every odd cycle in G

84 / 93

The Max Cut Problem in Planar Graphs

Proposition

Let (A,B) be a cut in G. Then, the set

{e∗ : e ∈ E(A,B)}

forms an even subgraph of G∗.

even multigraph : a multigraph in which every vertex has even
degree (i.e., is contained in an even number of edges)

85 / 93

The Max Cut Problem in Planar Graphs

G∗

GA

86 / 93

The Max Cut Problem in Planar Graphs

An odd-vertex pairing in a graph: a set of edges the removal
of which makes the graph even.

Observation:
An edge set E ′ ⊆ E is an odd-cycle cover of G if and only if the
set (E ′)∗ = {e∗ : e ∈ E} is an odd-vertex pairing of G∗.

Proposition

The PLANAR MAX CUT problem on G is equivalent to the
problem of finding a smallest odd-vertex pairing in G∗.

87 / 93

The Max Cut Problem in Planar Graphs

Let S be the set of vertices of odd degree in G∗.

G∗

S

88 / 93

The Max Cut Problem in Planar Graphs

Proposition

Let E ′ be a smallest odd-vertex pairing in G∗. Then E ′ is the
disjoint union of |S|/2 paths each connecting two different
vertices in S.

The problem can be reduced to that of finding a
perfect matching of minimum weight
in the complete graph KS, with
w(xy) =length of a shortest x-y path in G∗.

perfect matching = a matching covering all vertices of a graph

Theorem (Edmonds, 1965)

There exists a polynomial time algorithm to find a perfect
matching of minimum weight in a given edge-weighted graph.

89 / 93

The Max Cut Problem in Planar Graphs

G∗

90 / 93

The Max Cut Problem in Planar Graphs

G∗

91 / 93

The Max Cut Problem in Planar Graphs

Let E ′ denote a smallest odd-vertex pairing in G∗.

G

G∗E
′

91 / 93

The Max Cut Problem in Planar Graphs

Let E ′ denote a smallest odd-vertex pairing in G∗.

G

G∗

E
′

91 / 93

The Max Cut Problem in Planar Graphs

A maximum cut is given by any partition (A,B) such that

{e ∈ E(G) : e∗ ∈ E(G∗) \ E ′} = E(A,B) .

Such a partition can be found by placing a vertex in A, examining its
neighbors to determine which ones are in B, and repeating this
procedure. The fact that the graph (V (G∗),E(G∗) \ E ′) is even will
assure that no conflict will arise.

G

G∗

A

E
′

Remark: the same approach can also be used to solve the
91 / 93

What we did – Week 1

1 Tue March 5: Review of basic notions in graph theory,
algorithms and complexity X

2 Wed March 6: Graph colorings X

3 Thu March 7: Perfect graphs and their subclasses, part 1 X

4 Fri March 8: Perfect graphs and their subclasses, part 2 X

92 / 93

What we’ll do – Week 2

1 Tue March 19: Further examples of tractable problems,
part 1 X

2 Wed March 20:
Further examples of tractable problems, part 2 X

Approximation algorithms for graph problems

3 Thu March 21: Lectio Magistralis lecture, “Graph classes:
interrelations, structure, and algorithmic issues”

93 / 93

