Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses

Martin Milanič

martin.milanic@upr.si

University of Primorska, Koper, Slovenia

Dipartimento di Informatica Università degli Studi di Verona, March 2013

What we'll do

- THE BASICS.
- PERFECT GRAPHS.
- COGRAPHS.
- CHORDAL GRAPHS.
- SPLIT GRAPHS.
- **1** THRESHOLD GRAPHS.
- Interval Graphs.

THE BASICS.

Induced Subgraphs

Recall:

Definition

```
Given two graphs G = (V, E) and G' = (V', E'), we say that G is an induced subgraph of G' if V \subseteq V' and E = \{uv \in E' : u, v \in V\}.
```

Equivalently: G can be obtained from G' by deleting vertices.

Notation: G < G'

Hereditary graph property (hereditary graph class)

- = a class of graphs closed under deletion of vertices
- = a class of graphs closed under taking induced subgraphs

Formally:

a set of graphs X such that

$$G \in X$$
 and $H < G \Rightarrow H \in X$

.

Hereditary graph property (Hereditary graph class)

- = a class of graphs closed under deletion of vertices
- = a class of graphs closed under taking induced subgraphs

- forests
- complete graphs
- line graphs
- bipartite graphs
- planar graphs
- graphs of degree at most Δ
- triangle-free graphs
- perfect graphs

Why hereditary graph classes?

- Vertex deletions are very useful for developing algorithms for various graph optimization problems.
- Every hereditary graph property can be described in terms of forbidden induced subgraphs.

H-free graph = a graph that does not contain *H* as an induced subgraph

Free(H) = the class of H-free graphs

 $Free(\mathcal{M}) := \bigcap_{H \in \mathcal{M}} Free(H)$ \mathcal{M} -free graph = a graph in $Free(\mathcal{M})$

Proposition

X hereditary $\iff X = Free(\mathcal{M})$ for some \mathcal{M}

• $\mathcal{M} = \{ \text{all (minimal) graphs not in } X \}$

The set \mathcal{M} is the set of **forbidden induced subgraphs** for X.

Examples

\mathcal{M} can be **finite**:

- cographsP₄-free graphs
- line graphs
- claw-free graphs = K_{1,3}-free graphs
- triangle-free graphs = K_3 -free graphs
- graphs of degree at most Δ

...or infinite:

- forests = {cycles}-free graphs
- bipartite graphs = {odd cycles}-free graphs
- chordal graphs = {cycles of order ≥ 4}-free graphs
- perfect graphs
- planar graphs

Comparing Hereditary Graph Classes

Proposition

For every two sets \mathcal{M}_1 and \mathcal{M}_2 of graphs, it holds that:

$$Free(\mathcal{M}_1) \subseteq Free(\mathcal{M}_2)$$

if and only if

$$(\forall G_2 \in \mathcal{M}_2)(\exists G_1 \in \mathcal{M}_1)(G_1 < G_2).$$

Exercise

Prove the above equivalence.

$$\begin{split} \mathcal{M}_1 &= \{P_4, C_4\}, \\ \mathcal{M}_2 &= \{C_4, C_5, C_6, \ldots\}. \end{split}$$

Recognition Problems

For a given graph class *X* we can define the following problem:

RECOGNITION OF GRAPHS IN X

Input: A graph G. Question: Is $G \in X$?

- If X = the class of all 3-colorable graphs, the recognition problem is NP-complete.
- If X = Free(M) where M is finite then the recognition problem is in P. (Why?)

PERFECT GRAPHS.

α and ω

Recall:

 $\omega(G)$: clique number of G = the maximum size of a clique in G. **clique** = a subset of pairwise adjacent vertices

 $\alpha(G)$: max size of an independent set in G

- C is a clique in $G \Leftrightarrow C$ is independent in \overline{G} :
- $\omega(G) = \alpha(\overline{G})$

Perfect Graphs

Example:

$$\omega(K_n) = n$$
,

$$\omega(C_n) = \begin{cases} 3, & \text{if } n = 3; \\ 2, & \text{otherwise.} \end{cases}$$

Recall the inequality:

$$\chi(G) \geq \omega(G)$$
.

Definition

A graph G is perfect, if

$$\chi(H) = \omega(H)$$

holds for every induced subgraph H of G.

Clearly, the class of perfect graphs is hereditary.

Perfect Graphs

Theorem (Lovász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement \overline{G} is perfect.

Examples of non-perfect graphs:

• odd cycles of order at least 5: C_5, C_7, C_9, \dots

$$\chi(C_{2k+1})=3$$

$$\omega(C_{2k+1}) = 2.$$

• their complements: $\overline{C_5}$, $\overline{C_7}$, $\overline{C_9}$, ...

 $\chi(\overline{C_{2k+1}}) =$ smallest number of pairwise disjoint cliques covering all vertices of $C_{2k+1} = k+1$

$$\omega(\overline{\mathbf{C}_{2k+1}}) = \alpha(\mathbf{C}_{2k+1}) = k$$

Berge Graphs

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Claude Berge, 1926–2002, a French mathematician

He was also a sculptor, collector and expert on primitive art, founding member of the literary group **Oulipo**, a Hex and chess player.

The Strong Perfect Graph Theorem

Berge graph: a $\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}$ -free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour, Thomas 2002)

A graph G is perfect if and only if it is Berge.

Total length of the proof \approx 150 pages.

The Strong Perfect Graph Theorem

Theorem

Let G be a Berge graph. Then either:

- G belongs to a basic class; that is, either:
 - G or G is bipartite, or
 - G or \overline{G} is the line graph of a bipartite graph, or
 - G is a double split graph,

or G admits one of the following:

- a 2-join,
- a complement of 2-join,
- a balanced skew partition.

The Strong Perfect Graph Theorem

Why does SPGT follow from the decomposition theorem?

Suppose the SPGC is false.

There is a smallest counterexample *G*.

G is not in any of the basic classes, since those graphs are perfect.

G does not admit any of the four types of decomposition since each of these decompositions preserves perfectness.

Contradiction.

Algorthmic Aspects of Perfect Graphs

Some important NP-complete graph algorithmic problems are solvable in polynomial time for perfect graphs:

- COLORABILITY,
- INDEPENDENT SET,
- CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984) and are not combinatorial.

 They are based on semidefinite programming and the ellipsoid method.

Existence of combinatorial algorithms is an open problem.

Recognizing Perfect Graphs

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vuković 2005)

There is a polynomial-time algorithm for recognizing Berge graphs.

- $O(|V|^9)$
- 36 pages
- independent of the proof of SPGT

Graphs Without Odd Holes

Does the input graph contain an odd cycle?

Solvable in P.

hole: a cycle of order at least 4

Does the input graph contain an odd hole?

Open!

Theorem (Bienstock 1991)

Testing whether a graph contains an odd hole through a given vertex is NP-complete.

Classes of Perfect Graphs

Some classes of perfect graphs:

- bipartite graphs and their complements
- line graphs of bipartite graphs (and their complements)
- cographs
- chordal graphs
- split graphs
- threshold graphs
- interval graphs

COGRAPHS.

Definition

Cographs:

- K₁ is a cograph
- If G and H are cographs, then so is their disjoint union.
- If G and H are cographs, then so is their join.
- There are no further cographs.

Exercise

Prove that the class of cographs is hereditary.

Properties of Cographs

For every cograph $G \neq K_1$, either G or \overline{G} is disconnected.

Exercise

Show that every cograph is perfect, using only the definitions of the two classes.

Properties of Cographs

The following graph is not a cograph:

Figure: P_4 : a self-complementary connected graph

Theorem

G is a cograph if and only if G is P_4 -free.

Corollary

Recognition of cographs is in P.

Properties of Cographs

Theorem (Corneil, Perl, and Stewart 1985)

Cographs can be recognized in linear time.

The recognition algorithm uses modular decomposition.

Theorem

G is a cograph if and only if G is P_4 -free.

Proof

It can be proved by induction on the number of vertices that every cograph is P_4 -free.

We prove that every P_4 -free graph is a cograph.

For a contradiction, let G = (V, E) be a minimal counterexample.

(G is a P_4 -free graph on n vertices that is not a cograph, while every P_4 -free graph on less than n vertices is a cograph.)

Both G and \overline{G} are connected.

Let $x \in V(G)$. Then G - x is a cograph.

Since n > 2, we may assume that G - x is disconnected (else replace G with its complement).

Proof

Since \overline{G} is connected, there exists a vertex y not adjacent to x.

Let *C* be the component of G - x containing *y*.

Since *G* is connected, *x* has a neighbor *z* in *C*.

We can then find two adjacent vertices u and v in C such that $ux \in E$ and $vx \notin E$.

Let D be a component of G - x different from C.

Let w be a neighbor of x in D.

G contains an induced P_4 on the vertices (v, u, x, w).

Contradiction.

Two Exercises

Exercise 1:

What are the P_3 -free graphs?

Exercise 2:

What are the bipartite P_4 -free graphs?

Cographs: Algorithmic Aspects

Proposition

The following problems are polynomially solvable for cographs:

- (a) INDEPENDENT SET,
- (b) CLIQUE,
- (c) DOMINATING SET.
- (d) COLORABILITY.

For example, $\alpha(G)$ can be computed recursively as follows:

- $\alpha(K_1) = 1$
- If K is the disjoint union of G and H then

$$\alpha(K) = \alpha(G) + \alpha(H).$$

• If K is the join of G and H then

$$\alpha(K) = \max\{\alpha(G), \alpha(H)\}.$$

CHORDAL GRAPHS.

Chordal Graphs

Definition

A graph is chordal if every cycle on at least 4 vertices contains a chord.

chord: an edge connecting two non-consecutive vertices of the cycle.

Figure: A cycle with four chords.

Chordal Graphs

Example:

Perfectness of Chordal Graphs

A graph is chordal if and only if it is $\{C_4, C_5, \ldots\}$ -free.

Proposition

Every chordal graph is perfect.

Proof: We apply the SPGT.

If a chordal graph G is not perfect then

$$G \notin Free(\{C_5, C_7, \overline{C_7}, C_9, \overline{C_9}, \ldots\}).$$

$$\Rightarrow \overline{C_{2k+1}} < G$$
 for some $k \ge 3$.

Since $C_4 < \overline{C_{2k+1}}$, it follows that $C_4 < G$. Contradiction.

Chordal Graphs: the Intersection Model

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of subtrees in a tree.

Chordal Graphs: the Intersection Model

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of subtrees in a tree.

Example:

Chordal Graphs: Structural Properties

A cutset: a set of vertices $X \subseteq V$ such that the graph G - X is disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.

Chordal Graphs: Structural Properties

A cutset: a set of vertices $X \subseteq V$ such that the graph G - X is disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.

Proof

By contradiction. Suppose X is a minimal cutset in G containing two non-adjacent vertices x and y.

Choose two components C and D of the (disconnected) graph G - X.

By the minimality of X, every vertex of X has a neighbor in every component of G - X.

Let *P* be a shortest *x-y* path all of whose internal vertices belong to *C*.

Let Q be a shortest x-y path all of whose internal vertices belong to D.

Then $P \cup Q$ is a chordless cycle on at least 4 vertices.

Contradiction.

Chordal Graphs: Structural Properties

A vertex is simplicial if its neighborhood is a clique.

Corollary

Let G be a chordal graph. Then,

- (i) G is either complete or it contains a pair of non-adjacent simplicial vertices.
- (ii) G contains a simplicial vertex.

Theorem (Fulkerson and Gross, 1965)

A graph is chordal if and only if it has a perfect elimination ordering.

A permutation (v_1, \ldots, v_n) of the vertices of a graph G is a perfect elimination ordering if each v_i is a simplicial vertex of $G[v_i, \ldots, v_n]$.

Chordal Graphs: Algorithmic Aspects

Theorem

Every chordal graph contains a simplicial vertex.

If G is chordal and $v \in V(G)$ then G - v is chordal.

With iterative deleting of simplicial vertices, it is easy to develop polynomial time algorihtms for the following problems on chordal graphs:

- CLIQUE,
- COLORABILITY,
- INDEPENDENT SET.

Chordal Graphs: Algorithmic Aspects

Suppose *v* is a simplicial vertex in a chordal graph *G*.

CLIQUE:

$$\omega(G) = \max\{d(v) + 1, \omega(G - v)\}.$$

COLORABILITY:

$$\chi(G) = \max\{d(v) + 1, \chi(G - v)\}.$$

Apply the greedy coloring algorithm to the vertices in the reverse of a perfect elimination ordering.

INDEPENDENT SET:

$$\alpha(\mathbf{G}) = 1 + \alpha(\mathbf{G} - N[\mathbf{v}]).$$

SPLIT GRAPHS.

Definition

Definition

A graph is split if there exists a partition of its vertex set into a clique and an independent set.

Source: http://en.wikipedia.org/wiki/Split_graph

Forbidden Induced Subgraphs

Theorem (Földes and Hammer, 1977)

A graph is split if and only if it is $\{2K_2, C_4, C_5\}$ -free.

Exercise

Prove the *if* part of the theorem.

Other Properties

Corollary

A graph is split if and only if its complement is a split graph. A graph G is a split graph if and only if both G and \overline{G} are chordal.

Theorem

Split graphs are precisely the vertex-intersection graphs of subtrees of a star.

Theorem

Let $d_1 \geq d_2 \geq \ldots \geq d_n$ be the degree sequence of a graph G. Also, let $m = \max\{i : d_i \geq i-1\}$. Then, G is a split graph if and only if $\sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$.

Algorithmic Aspects

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

- COLORABILITY? In P.
- CLIQUE? In P.
- INDEPENDENT SET? In P.
- DOMINATING SET? NP-complete.

Open Problem. Give the forbidden induced subgraph characterization of graphs that can be partitioned into a clique and a graph of maximum degree at most 1.

THRESHOLD GRAPHS.

Definition

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $X \subseteq V$,

X is independent if and only if
$$\sum_{v \in X} w(v) \le t$$
.

Definition

Definition

A graph G = (V, E) is threshold if there exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every vertex set $X \subseteq V$,

X is independent if and only if $\sum_{v \in X} w(v) \le t$.

Forbidden Induced Subgraphs

Theorem (Chvátal, Hammer 1977)

A graph is threshold if and only if it is $\{2K_2, C_4, P_4\}$ -free.

Further Characterizations

Theorem

The following properties are equivalent for a graph G:

- G is threshold.
- G is a split cograph.
- **③** There exist positive real vertex weights w(v) for all $v \in V$ and a threshold $t \in \mathbb{R}$ such that for every two distinct vertices $u, v \in V$,

$$uv \in E$$
 if and only if $w(u) + w(v) \ge t$.

- G can be constructed from the one-vertex graph by repeated applications of the following two operations:
 - Addition of a single isolated vertex to the graph.
 - Addition of a single dominating vertex to the graph.

Algorithmic Aspects

Threshold graphs can be recognized in linear time.

Other algorithmic problems on threshold graphs:

- COLORABILITY? In P.
- CLIQUE? In P.
- INDEPENDENT SET? In P.
- DOMINATING SET? In P.

INTERVAL GRAPHS.

Definition

Definition

A graph is an interval graph if its vertices can be put into one-to-one correspondence with a set of intervals on the real line such that two vertices are connected by an edge if and only if their corresponding intervals have nonempty intersection.

Two Exercises

Exercise 1

Prove that interval graphs are chordal.

Exercise 2

Prove that the following two graphs are not interval:

Algorithmic Aspects

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.

Other algorithmic problems on interval graphs:

- COLORABILITY? In P.
 - CLIQUE? In P.
 - INDEPENDENT SET? In P.
 - DOMINATING SET? In P.

Hasse Diagram of Some Classes of Perfect Graphs

Hasse Diagram of Some Classes of Perfect Graphs

What we'll do - Week 1

- Tue March 5: Review of basic notions in graph theory, algorithms and complexity √
- Wed March 6: Graph colorings √
- 3 Thu March 7-8: Perfect graphs and their subclasses√

What we'll do – Week 2

- Tue March 19: Further examples of tractable problems, part 1
- Wed March 20: Further examples of tractable problems, part 2 Approximation algorithms for graph problems
- Thu March 21: Lectio Magistralis lecture, "Graph classes: interrelations, structure, and algorithmic issues"