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What we’ll do

1 THE BASICS.
2 PERFECT GRAPHS.
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6 THRESHOLD GRAPHS.
7 INTERVAL GRAPHS.
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THE BASICS.
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Induced Subgraphs

Recall:

Definition

Given two graphs G = (V ,E) and G′ = (V ′,E ′),
we say that G is an induced subgraph of G′ if
V ⊆ V ′

and E = {uv ∈ E ′ : u, v ∈ V}.

Equivalently: G can be obtained from G′ by deleting vertices.

Notation: G < G′
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Hereditary Graph Properties

Hereditary graph property (hereditary graph class)
= a class of graphs closed under deletion of vertices
= a class of graphs closed under taking induced subgraphs

Formally:
a set of graphs X such that

G ∈ X and H < G ⇒ H ∈ X

.
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Hereditary Graph Properties

Hereditary graph property (Hereditary graph class)
= a class of graphs closed under deletion of vertices
= a class of graphs closed under taking induced subgraphs

Examples:

forests

complete graphs

line graphs

bipartite graphs

planar graphs

graphs of degree at most ∆

triangle-free graphs

perfect graphs
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Hereditary Graph Properties

Why hereditary graph classes?

Vertex deletions are very useful for developing algorithms
for various graph optimization problems.

Every hereditary graph property can be described in terms
of forbidden induced subgraphs.
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Hereditary Graph Properties

H-free graph = a graph that does not contain H as an induced
subgraph
Free(H) = the class of H-free graphs

Free(M) :=
⋂

H∈M Free(H)
M-free graph = a graph in Free(M)

Proposition

X hereditary ⇐⇒ X = Free(M) for some M

M = {all (minimal) graphs not in X}

The set M is the set of forbidden induced subgraphs for X .
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Examples

M can be finite :

cographs
= P4-free graphs

line graphs

claw-free graphs = K1,3-free graphs

triangle-free graphs = K3-free graphs

graphs of degree at most ∆

. . . or infinite :

forests = {cycles}-free graphs

bipartite graphs = {odd cycles}-free graphs

chordal graphs = {cycles of order ≥ 4}-free graphs

perfect graphs

planar graphs
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Comparing Hereditary Graph Classes

Proposition

For every two sets M1 and M2 of graphs, it holds that:

Free(M1) ⊆ Free(M2)

if and only if

(∀G2 ∈ M2)(∃G1 ∈ M1)(G1 < G2) .

Exercise
Prove the above equivalence.

Example:
M1 = {P4,C4},
M2 = {C4,C5,C6, . . .}.
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Recognition Problems

For a given graph class X we can define the following problem:

RECOGNITION OF GRAPHS IN X
Input: A graph G.
Question : Is G ∈ X?

Examples:

If X = the class of all 3-colorable graphs, the recognition
problem is NP-complete.

If X = the class of graphs G such that
χ(G) = maxH⊆G δ(H) + 1 ,

the recognition problem is NP-complete.

If X = Free(M) where M is finite then the recognition
problem is in P. (Why?)
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PERFECT GRAPHS.
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α and ω

Recall:
ω(G): clique number of G = the maximum size of a clique in G.

clique = a subset of pairwise adjacent vertices

α(G): max size of an independent set in G

C is a clique in G ⇔ C is independent in G:

ω(G) = α(G)
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Perfect Graphs

Example:
ω(Kn) = n,

ω(Cn) =

{

3, if n = 3;
2, otherwise.

Recall the inequality:

χ(G) ≥ ω(G) .

Definition
A graph G is perfect, if

χ(H) = ω(H)

holds for every induced subgraph H of G.

Clearly, the class of perfect graphs is hereditary.
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Perfect Graphs

Theorem (Lov ász 1972, Perfect Graph Theorem)

A graph G is perfect if and only if its complement G is perfect.

Examples of non-perfect graphs:

odd cycles of order at least 5: C5,C7,C9, . . .

χ(C2k+1) = 3

ω(C2k+1) = 2.

their complements: C5,C7,C9, . . .

χ(C2k+1) = smallest number of pairwise disjoint cliques
covering all vertices of C2k+1 = k + 1

ω(C2k+1) = α(C2k+1) = k
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Berge Graphs

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Claude Berge, 1926–2002, a French mathematician

He was also a sculptor,
collector and expert on primitive art,
founding member of the literary group Oulipo ,
a Hex and chess player.
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The Strong Perfect Graph Theorem

Berge graph: a {C5,C7,C7,C9,C9, . . .}-free graph.

Clearly, every perfect graph is Berge.

Conjecture (Berge 1963)

A graph G is perfect if and only if it is Berge.

Strong Perfect Graph Theorem (Chudnovsky, Robertson,
Seymour, Thomas 2002)

A graph G is perfect if and only if it is Berge.

Total length of the proof ≈ 150 pages.
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The Strong Perfect Graph Theorem

Theorem
Let G be a Berge graph. Then either:

G belongs to a basic class; that is, either:
G or G is bipartite, or
G or G is the line graph of a bipartite graph, or
G is a double split graph,

or G admits one of the following:
a 2-join,
a complement of 2-join,
a balanced skew partition.

16 / 55



The Strong Perfect Graph Theorem

Why does SPGT follow from the decomposition theorem?

Suppose the SPGC is false.
There is a smallest counterexample G.
G is not in any of the basic classes, since those graphs are
perfect.
G does not admit any of the four types of decomposition since
each of these decompositions preserves perfectness.
Contradiction.
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Algorthmic Aspects of Perfect Graphs

Some important NP-complete graph algorithmic problems are
solvable in polynomial time for perfect graphs:

COLORABILITY,

INDEPENDENT SET,

CLIQUE.

These results are due to Grötschel-Lovász-Schrijver (1984)
and are not combinatorial.

They are based on semidefinite programming and the
ellipsoid method.

Existence of combinatorial algorithms is an open problem.
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Recognizing Perfect Graphs

Theorem (Chudnovsky, Cornu éjols, Liu, Seymour, Vukovi ć
2005)

There is a polynomial-time algorithm for recognizing Berge
graphs.

O(|V |9)

36 pages

independent of the proof of SPGT
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Graphs Without Odd Holes

Does the input graph contain an odd cycle?

Solvable in P.

hole: a cycle of order at least 4

Does the input graph contain an odd hole?

Open!

Theorem (Bienstock 1991)

Testing whether a graph contains an odd hole through a given
vertex is NP-complete.
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Classes of Perfect Graphs

Some classes of perfect graphs:

bipartite graphs and their complements

line graphs of bipartite graphs (and their complements)

cographs

chordal graphs

split graphs

threshold graphs

interval graphs
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COGRAPHS.

21 / 55



Cographs

Definition
Cographs:

K1 is a cograph

If G and H are cographs, then so is their disjoint union.

If G and H are cographs, then so is their join.

There are no further cographs.

Exercise
Prove that the class of cographs is hereditary.
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Cographs

Example:
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Cographs

Example:
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Cographs

Example:
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Cographs

Example:

23 / 55



Cographs

Example:
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Cographs

Example:
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Cographs

Example:
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Cographs

Example:
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Properties of Cographs

For every cograph G 6= K1, either G or G is disconnected.

Exercise
Show that every cograph is perfect, using only the definitions of
the two classes.
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Properties of Cographs

The following graph is not a cograph:

Figure: P4: a self-complementary connected graph

Theorem
G is a cograph if and only if G is P4-free.

Corollary

Recognition of cographs is in P.

25 / 55



Properties of Cographs

Theorem (Corneil, Perl, and Stewart 1985)

Cographs can be recognized in linear time.

The recognition algorithm uses modular decomposition.

Theorem
G is a cograph if and only if G is P4-free.
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Proof

It can be proved by induction on the number of vertices that
every cograph is P4-free.

We prove that every P4-free graph is a cograph.

For a contradiction, let G = (V ,E) be a minimal
counterexample.
(G is a P4-free graph on n vertices that is not a cograph, while
every P4-free graph on less than n vertices is a cograph.)

Both G and G are connected.

Let x ∈ V (G). Then G − x is a cograph.

Since n > 2, we may assume that G − x is disconnected (else
replace G with its complement).
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Proof

Since G is connected, there exists a vertex y not adjacent to x .

Let C be the component of G − x containing y .

Since G is connected, x has a neighbor z in C.

We can then find two adjacent vertices u and v in C such that
ux ∈ E and vx 6∈ E .

Let D be a component of G − x different from C.

Let w be a neighbor of x in D.

G contains an induced P4 on the vertices (v ,u, x ,w).

Contradiction.
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Two Exercises

Exercise 1:
What are the P3-free graphs?

Exercise 2:
What are the bipartite P4-free graphs?
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Cographs: Algorithmic Aspects

Proposition

The following problems are polynomially solvable for cographs:

(a) INDEPENDENT SET,

(b) CLIQUE,

(c) DOMINATING SET.

(d) COLORABILITY.

For example, α(G) can be computed recursively as follows:
α(K1) = 1
If K is the disjoint union of G and H then

α(K ) = α(G) + α(H) .

If K is the join of G and H then

α(K ) = max{α(G), α(H)} .
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CHORDAL GRAPHS.
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Chordal Graphs

Definition
A graph is chordal if every cycle on at least 4 vertices contains
a chord.

chord : an edge connecting two non-consecutive vertices of the
cycle.

Figure: A cycle with four chords.
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Chordal Graphs

Example:

chordal not chordal

32 / 55



Perfectness of Chordal Graphs

A graph is chordal if and only if it is {C4,C5, . . .}-free.

Proposition

Every chordal graph is perfect.

Proof: We apply the SPGT.
If a chordal graph G is not perfect then
G 6∈ Free({C5,C7,C7,C9,C9, . . .}).
⇒ C2k+1 < G for some k ≥ 3.

Since C4 < C2k+1, it follows that C4 < G. Contradiction.

33 / 55



Chordal Graphs: the Intersection Model

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of
subtrees in a tree.
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Chordal Graphs: the Intersection Model

Theorem (Gavril, 1974)

Chordal graphs are precisely the vertex-intersection graphs of
subtrees in a tree.

Example:

T

T1

T2 T3

T5 T4

T6

T4

T5
T6

T1

T2

T3

T6

G

34 / 55



Chordal Graphs: Structural Properties

A cutset: a set of vertices X ⊆ V such that the graph G − X is
disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.
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Chordal Graphs: Structural Properties

A cutset: a set of vertices X ⊆ V such that the graph G − X is
disconnected.

Theorem (Dirac, 1961)

Every minimal cutset in a chordal graph is a clique.

cutset

35 / 55



Proof

By contradiction. Suppose X is a minimal cutset in G
containing two non-adjacent vertices x and y .

Choose two components C and D of the (disconnected) graph
G − X .

By the minimality of X , every vertex of X has a neighbor in
every component of G − X .

Let P be a shortest x-y path all of whose internal vertices
belong to C.
Let Q be a shortest x-y path all of whose internal vertices
belong to D.

Then P ∪ Q is a chordless cycle on at least 4 vertices.

Contradiction.
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Chordal Graphs: Structural Properties

A vertex is simplicial if its neighborhood is a clique.

Corollary

Let G be a chordal graph. Then,

(i) G is either complete or it contains a pair of non-adjacent
simplicial vertices.

(ii) G contains a simplicial vertex.

Theorem (Fulkerson and Gross, 1965)

A graph is chordal if and only if it has a perfect elimination
ordering.

A permutation (v1, . . . , vn) of the vertices of a graph G is a
perfect elimination ordering if each vi is a simplicial vertex of
G[vi , . . . , vn].
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Chordal Graphs: Algorithmic Aspects

Theorem
Every chordal graph contains a simplicial vertex.

If G is chordal and v ∈ V (G) then G − v is chordal.

With iterative deleting of simplicial vertices, it is easy to develop
polynomial time algorihtms for the following problems on
chordal graphs:

CLIQUE,

COLORABILITY,

INDEPENDENT SET.
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Chordal Graphs: Algorithmic Aspects

Suppose v is a simplicial vertex in a chordal graph G.

CLIQUE:

ω(G) = max{d(v) + 1, ω(G − v)} .

COLORABILITY:

χ(G) = max{d(v) + 1, χ(G − v)} .

Apply the greedy coloring algorithm to the vertices in the
reverse of a perfect elimination ordering.

INDEPENDENT SET:

α(G) = 1 + α(G − N[v ]) .
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SPLIT GRAPHS.
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Definition

Definition
A graph is split if there exists a partition of its vertex set into a
clique and an independent set.

Source: http://en.wikipedia.org/wiki/Split graph
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Forbidden Induced Subgraphs

Theorem (F öldes and Hammer, 1977)

A graph is split if and only if it is {2K2,C4,C5}-free.

2K2 C4 C5

Exercise
Prove the if part of the theorem.
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Other Properties

Corollary

A graph is split if and only if its complement is a split graph.
A graph G is a split graph if and only if both G and G are
chordal.

Theorem
Split graphs are precisely the vertex-intersection graphs of
subtrees of a star.

Theorem
Let d1 ≥ d2 ≥ . . . ≥ dn be the degree sequence of a graph G.
Also, let m = max{i : di ≥ i − 1}. Then, G is a split graph if
and only if

∑m
i=1 di = m(m − 1) +

∑n
i=m+1 di .
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Algorithmic Aspects

Split graphs can be recognized in linear time.

Other algorithmic problems on split graphs:

COLORABILITY? In P.

CLIQUE? In P.

INDEPENDENT SET? In P.

DOMINATING SET? NP-complete.
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Open Problem . Give the forbidden induced subgraph
characterization of graphs that can be partitioned into a clique
and a graph of maximum degree at most 1.
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THRESHOLD GRAPHS.
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set X ⊆ V ,

X is independent if and only if
∑

v∈X

w(v) ≤ t .
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Definition

Definition
A graph G = (V ,E) is threshold if there exist positive real
vertex weights w(v) for all v ∈ V and a threshold t ∈ R such
that for every vertex set X ⊆ V ,

X is independent if and only if
∑

v∈X

w(v) ≤ t .

4 2

6

7

t = 7

1
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Forbidden Induced Subgraphs

Theorem (Chv átal, Hammer 1977)

A graph is threshold if and only if it is {2K2,C4,P4}-free.

2K2 C4 P4
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Further Characterizations

Theorem
The following properties are equivalent for a graph G:

1 G is threshold.
2 G is a split cograph.
3 There exist positive real vertex weights w(v) for all v ∈ V

and a threshold t ∈ R such that for every two distinct
vertices u, v ∈ V,

uv ∈ E if and only if w(u) + w(v) ≥ t .

4 G can be constructed from the one-vertex graph by
repeated applications of the following two operations:

Addition of a single isolated vertex to the graph.
Addition of a single dominating vertex to the graph.
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Algorithmic Aspects

Threshold graphs can be recognized in linear time.

Other algorithmic problems on threshold graphs:

COLORABILITY? In P.

CLIQUE? In P.

INDEPENDENT SET? In P.

DOMINATING SET? In P.

48 / 55



INTERVAL GRAPHS.
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Definition

Definition
A graph is an interval graph if its vertices can be put into
one-to-one correspondence with a set of intervals on the real
line such that two vertices are connected by an edge if and only
if their corresponding intervals have nonempty intersection.

Source: http://en.wikipedia.org/wiki/Interval graph
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Two Exercises

Exercise 1
Prove that interval graphs are chordal.

Exercise 2
Prove that the following two graphs are not interval:
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Algorithmic Aspects

Theorem (Booth and Lueker 1976)

Interval graphs can be recognized in linear time.

Other algorithmic problems on interval graphs:

COLORABILITY? In P.

CLIQUE? In P.

INDEPENDENT SET? In P.

DOMINATING SET? In P.
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Hasse Diagram of Some Classes of Perfect Graphs

perfect graphs

chordal bipartite

split

threshold

interval trees

cographs
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Hasse Diagram of Some Classes of Perfect Graphs

split

tree

interval

bipartite

blockplanar bipartite

circular arc

permutation

distance-

chordal bipartite

strongly chordal

trapezoid

dually chordal

bipartite cocomparability

line graphs of

chordal
AT-free

perfect

bipartite graphs

permutation

hereditary
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What we’ll do – Week 1

1 Tue March 5: Review of basic notions in graph theory,
algorithms and complexity X

2 Wed March 6: Graph colorings X

3 Thu March 7–8: Perfect graphs and their subclassesX
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What we’ll do – Week 2

1 Tue March 19: Further examples of tractable problems,
part 1

2 Wed March 20:
Further examples of tractable problems, part 2
Approximation algorithms for graph problems

3 Thu March 21: Lectio Magistralis lecture, “Graph classes:
interrelations, structure, and algorithmic issues”
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