Modelli Biologici Discreti
 a.a. 2014/2015

Docente: Zsuzsanna Lipták

Verona, 17 Nov. 2014

Solution of exercise 5 of the first batch of exercises (on discrete maths).

Modular arithmetic: Prove the fundamental property of the modular congruence using the definitions.

$$
\begin{aligned}
& \text { If } x \equiv x^{\prime}(\bmod m) \text { and } y \equiv y^{\prime}(\bmod m) \text {, then } \\
& (x+y) \equiv\left(x^{\prime}+y^{\prime}\right)(\bmod m) \quad \text { and } \quad(x \cdot y) \equiv\left(x^{\prime} \cdot y^{\prime}\right)(\bmod m)
\end{aligned}
$$

1. By definition, $x \equiv x^{\prime}(\bmod m)$ implies that $x-x^{\prime} \in m \mathbb{Z}$, i.e., there is a $k \in \mathbb{Z}$ such that $x-x^{\prime}=k m$. Similarly, since $y \equiv y^{\prime}(\bmod m)$, there is a $k^{\prime} \in \mathbb{Z}$ s.t. $y-y^{\prime}=k^{\prime} m$. Therefore,

$$
(x+y)-\left(x^{\prime}+y^{\prime}\right)=\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right)=k m+k^{\prime} m=\left(k+k^{\prime}\right) m \in m \mathbb{Z}
$$

since $k+k^{\prime} \in \mathbb{Z}$. Thus, by definition, $(x+y) \equiv\left(x^{\prime}+y^{\prime}\right)(\bmod m)$.
2. Let $x=k m+r_{1}$, where $k, r_{1} \in \mathbb{Z}$ and $0 \leq r_{1}<m$. Note that this r_{1}, the remainder after division by m, is unique. Since $x^{\prime} \equiv x(\bmod m)$, therefore $x^{\prime}=k^{\prime} m+r_{1}$ for some $k^{\prime} \in \mathbb{Z}$, i.e. x^{\prime} has the same remainder as x modulo m. Similarly, since $y \equiv y^{\prime}(\bmod m)$, both have the same remainder r_{2} modulo m; say $y=\ell m+r_{2}$, and $y^{\prime}=\ell^{\prime} m+r_{2}$. Now we have

$$
\begin{aligned}
(x \cdot y)-\left(x^{\prime} \cdot y^{\prime}\right) & =\left(k m+r_{1}\right)\left(\ell m+r_{2}\right)-\left(k^{\prime} m+r_{1}\right)\left(\ell^{\prime} m+r_{2}\right) \\
& =\left(k \ell m^{2}+k m r_{2}+r_{1} \ell m+r_{1} r_{2}\right)-\left(k^{\prime} \ell^{\prime} m^{2}+k^{\prime} m r_{2}+r_{1} \ell^{\prime} m+r_{1} r_{2}\right) \\
& =\left(\left(k \ell m+k r_{2}+r_{1} \ell\right) m+r_{1} r_{2}\right)-\left(\left(k^{\prime} \ell^{\prime} m+k^{\prime} r_{2}+r_{1} \ell^{\prime}\right) m+r_{1} r_{2}\right) \\
& =\underbrace{\left(k \ell m+k r_{2}+r_{1} \ell-k^{\prime} \ell^{\prime} m-k^{\prime} r_{2}-r_{1} \ell^{\prime}\right)}_{:=K} m+\underbrace{\left(r_{1} r_{2}-r_{1} r_{2}\right)}_{=0} \\
& =K m \in m \mathbb{Z},
\end{aligned}
$$

since $K=k \ell m+k r_{2}+r_{1} \ell-k^{\prime} \ell^{\prime} m-k^{\prime} r_{2}-r_{1} \ell^{\prime} \in \mathbb{Z}$, because it is a sum of integers. So by definition, $(x \cdot y) \equiv\left(x^{\prime} \cdot y^{\prime}\right)(\bmod m)$.

