Phylogenetic Trees

Course "Discrete Biological Models" (Modelli Biologici Discreti)

Zsuzsanna Lipták

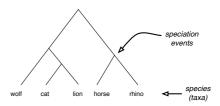
Laurea Triennale in Bioinformatica a.a. 2014/15, fall term

These slides are partially based on the lecture notes Algorithms for Phylogenetic Reconstruction, by Jens Stoye and others, Bielefeld University, 2009/2010.

Tree of Life, by Ernst Haeckel, 1874

2 / 25

What is a phylogenetic tree?



Phylogenetic trees display the evolutionary relationships among a set of objects (species). Contemporary species are represented by the leaves. Internal nodes of the tree represent speciation events (\approx common ancestors, usually extinct).

4 / 25

Different types of phylogenetic trees

- rooted vs. unrooted
- binary (fully resolved) vs. multifurcating (polytomy)
- are edge lengths significant?

Goal

Given n objects and data on these objects, find a phylogenetic tree with these objects at the leaves which best reflects the input data.

Ex.			
	а	b	С
а	0	5	2
b	5	0	4
с	2	4	0

Can we find a tree with a, b, c at the leaves s.t. the distance in the tree between a and b is 5, between a and c is 2, etc.?

Phylogenetic reconstruction

Number of phylogenetic trees

Note: We need to define more precisely • what kind of input data we have,	#taxa n	# unrooted trees $(2n-5)!!$	
• what kind of tree we want (e.g. rooted or unrooted), and	1	1	1
• what we mean by "reflect the data."	2	1	1
Dut first	3	1	3
But first,	4	3	15
Say we have answered these questions, then: Could we just list all possible trees and then choose the/a best one?			

7 / 25

There are $U_n = (2n-5)!! = \prod_{i=3}^{n} (2i-5)$ unrooted binary phylogenetic trees on *n* objects, and $R_n = (2n-3)!! = \prod_{i=2}^{n} (2i-3)$ rooted binary phylogenetic trees on *n* objects.

Proof

By induction on n, using that (1) we can get every unrooted tree on n + 1 objects in a unique way by adding a new leaf to an unrooted tree on n objects; (2) an unrooted binary tree with n leaves has 2n - 3 edges, (3) every unrooted tree on n objects can be rooted in (number of edges) ways, yielding a rooted tree on n objects.

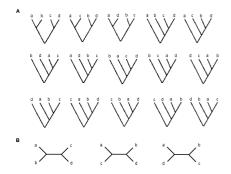
10 / 25

8 / 25

Number of phylogenetic trees

So there are super-exponentially many trees: We cannot check all of them!

Number of phylogenetic trees



All phylogenetic trees (rooted and unrooted) on 4 taxa.

9 / 25

Number of phylogenetic trees

#taxa n	# unrooted trees $(2n-5)!!$	# rooted trees $(2n-3)!!$
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10, 395
8	10, 395	135, 135
9	135, 135	2,027,025
10	2,027,025	34,459,425

Distance data

We can have two kinds of input data:

- distance data, or
- character data (later)

Distance data is given as an $(n \times n)$ matrix M with the pairwise distances between the taxa.

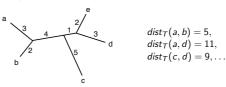
Ex. a b c	E.g., $M(a, b) = 5$ means that the distance between a and b is 5. Of the other is the relation
a 0 5 2 b 5 0 4 c 2 4 0	is 5. Often, this is the edit distance (between two genomic sequences, or between homolo- gous proteins,).

13 / 25

Distance data

Path metric of a tree

Given a tree T, the path-metric of T is $dist_T$, defined as: $dist_T(u, v) =$ length of the (unique) path between u and v. (In our trees edge weights are positive, so now: length of a path = sum of edge weights on path.) Example



Question

Is it always possible to find a tree s.t. its path-metric equals the input distances? I.e. does such a tree exist for any input matrix *M*?

14 / 25

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

- $M(x, y) \ge 0$ and (M(x, y) = 0 iff x = y)
- M(x,y) = M(y,x)
- $M(x,y) + M(y,z) \ge M(x,z)$

For example, the edit distance is a metric, the Hamming distance (on strings of the same length), the Euclidean distance (on \mathbb{R}^2).

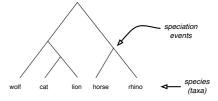
But is this enough?

15 / 25

(positive definite)

(triangle inequality)

(symmetry)



Rooted trees and the molecular clock

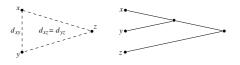
In a rooted phylogenetic tree, the molecular clock assumption holds: that the speed of evolution is the same along all branches, i.e. the path distance from each leaf to the root is the same.

16 / 25

Ultrametrics and the three-point condition

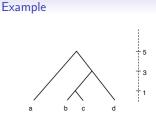
Three point condition

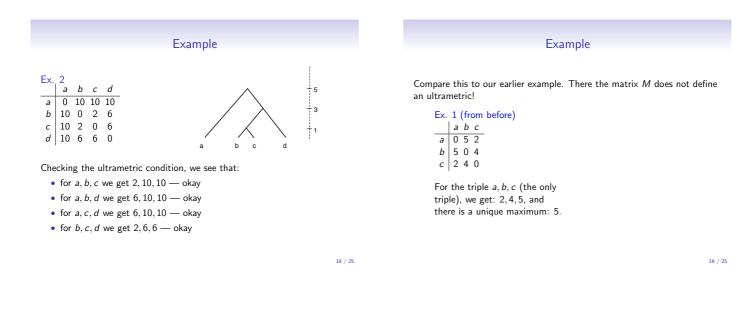
Let *d* be a metric on a set of objects *O*, then *d* is an ultrametric if $\forall x, y, z \in O$:



 $\ensuremath{\mathsf{Figure}}$: Three point condition. It implies that the path metric of a tree is an ultrametric.

In other words, among the three distances, there is no unique maximum. $$^{17/\,25}$$



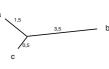


Example

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Indeed, the only tree we found was not rooted:

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.



19 / 25

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique.

20 / 25

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique.

Algorithm

There are algorithms which, given M, compute this rooted tree in $O(n^2)$ time (e.g. UPGMA).

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?

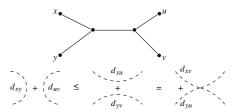
Four point condition.

Let *d* be a metric on a set of objects *O*, then *d* is an additive metric if $\forall x, y, u, v \in O$:

 $d(x, y) + d(u, v) \le \max\{d(x, u) + d(y, u), d(x, v) + d(y, u)\}$

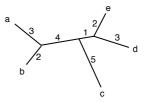
In other words, among the three sums of two distances, there is no unique maximum.

Additive metrics and the four-point condition



 $\ensuremath{\mathsf{Figure}}$: The four point condition. It implies that the path metric of a tree is an additive metric.

22 / 25



For ex., choose these 4 points: a, b, c, e. Then we get the three sums: d(a, b) + d(c, e) = 5 + 8 = 13, d(a, c) + d(b, e) = 12 + 9 = 21, and d(a, e) + d(b, c) = 10 + 11 = 21. Among 13,21,21, there is no unique maximum—okay. (Careful, this has to hold for all quadruples; how many are there?)

23 / 25

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Algorithm

There are algorithms which, given M, compute this unrooted tree in $O(n^3)$ time (e.g. Neighbor Joining).

In fact, it is even possible to compute a "good" tree if the matrix is not additive but "almost" (all this needs to be defined precisely, of course).

24 / 25

Summary for distance data

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with M.
- There are super-exponentially many trees on *n* taxa (both rooted and unrooted).
- If the distance matrix M defines an ultrametric, then a rooted tree agreeing with M exists, and can be computed efficiently (i.e. in polynomial time).
- If the distance matrix M defines an additive metric, then an unrooted tree agreeing with M exists, and can be computed efficiently (i.e. in polynomial time).

24 / 25