Phylogenetic Trees

Course "Discrete Biological Models" (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica a.a. 2014/15, fall term

These slides are partially based on the lecture notes *Algorithms for Phylogenetic Reconstruction*, by Jens Stoye and others, Bielefeld University, 2009/2010.

Tree of Life, by Ernst Haeckel, 1874

Phylogenetic trees display the evolutionary relationships among a set of objects (species). Contemporary species are represented by the leaves. Internal nodes of the tree represent speciation events (\approx common ancestors, usually extinct).

Different types of phylogenetic trees

• rooted vs. unrooted

- binary (fully resolved) vs. multifurcating (polytomy)
- are edge lengths significant?

Goal

Given n objects and data on these objects, find a phylogenetic tree with these objects at the leaves which best reflects the input data.

Ex.			
	a	b	С
а	0	5	2
b	5	0	4
с	2	4	0

Can we find a tree with a, b, c at the leaves s.t. the distance in the tree between a and b is 5, between a and c is 2, etc.?

Phylogenetic reconstruction

Number of phylogenetic trees

Note: We need to define more precisely • what kind of input data we have,	#taxa n	# unrooted trees $(2n-5)!!$	# rooted trees $(2n-3)!!$
 what kind of tree we want (e.g. rooted or unrooted), and 	1	1	1
 what we mean by "reflect the data." 	2	1	1
	3	1	3
But first,	4	3	15
Say we have answered these questions, then: Could we just list all possible			

Say we have answered these questions, then: Could we just list all possible trees and then choose the/a best one?

Number of phylogenetic trees

All phylogenetic trees (rooted and unrooted) on 4 taxa.

9 / 25

Number of phylogenetic trees

<i>#taxa</i>	# unrooted trees	
п	(2n-5)!!	(2n-3)!!
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10, 395
8	10, 395	135, 135
9	135, 135	2,027,025
10	2,027,025	34,459,425

Theorem

There are $U_n = (2n-5)!! = \prod_{i=3}^n (2i-5)$ unrooted binary phylogenetic trees on *n* objects, and $R_n = (2n-3)!! = \prod_{i=2}^n (2i-3)$ rooted binary phylogenetic trees on *n* objects.

Proof

By induction on n, using that (1) we can get every unrooted tree on n + 1 objects in a unique way by adding a new leaf to an unrooted tree on n objects; (2) an unrooted binary tree with n leaves has 2n - 3 edges, (3) every unrooted tree on n objects can be rooted in (number of edges) ways, yielding a rooted tree on n objects.

Number of phylogenetic trees

So there are super-exponentially many trees: We cannot check all of them!

Distance data

We can have two kinds of input data:

- distance data, or
- character data (later)

Distance data is given as an $(n \times n)$ matrix M with the pairwise distances between the taxa.

Ex.			
	a	b	С
а	0	5	2
b	5	0	4
с	0 5 2	4	0

E.g., M(a, b) = 5 means that the distance between *a* and *b* is 5. Often, this is the edit distance (between two genomic sequences, or between homologous proteins, ...).

Distance data

Path metric of a tree

Given a tree T, the path-metric of T is $dist_T$, defined as: $dist_T(u, v) =$ length of the (unique) path between u and v. (In our trees edge weights are positive, so now: length of a path = sum of edge weights on path.)

Example

Question

Is it always possible to find a tree s.t. its path-metric equals the input distances? I.e. does such a tree exist for any input matrix M?

14 / 25

Rooted trees and the molecular clock

In a rooted phylogenetic tree, the molecular clock assumption holds: that the speed of evolution is the same along all branches, i.e. the path distance from each leaf to the root is the same.

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

- *M*(*x*, *y*) ≥ 0 and (*M*(*x*, *y*) = 0 iff *x* = *y*) (positive definite)
 M(*x*, *y*) = *M*(*y*, *x*) (symmetry)
- $M(x, y) + M(y, z) \ge M(x, z)$ (triangle inequality)

For example, the edit distance is a metric, the Hamming distance (on strings of the same length), the Euclidean distance (on \mathbb{R}^2).

But is this enough?

Ultrametrics and the three-point condition

Three point condition

Let *d* be a metric on a set of objects *O*, then *d* is an ultrametric if $\forall x, y, z \in O$:

$$d(x,y) \le \max\{d(x,z), d(z,y)\}$$

 $\ensuremath{\mathsf{Figure}}$: Three point condition. It implies that the path metric of a tree is an ultrametric.

In other words, among the three distances, there is no unique maximum.

Example Ex. 2 а b c d 10 10 10 0 а ÷ 3 10 0 2 6 b 10 2 0 6 с d 10 6 6 0 b с d

Checking the ultrametric condition, we see that:

- for *a*, *b*, *c* we get 2, 10, 10 okay
- for *a*, *b*, *d* we get 6, 10, 10 okay
- for *a*, *c*, *d* we get 6, 10, 10 okay
- for b, c, d we get 2, 6, 6 okay

18 / 25

Example

Example

Compare this to our earlier example. There the matrix ${\cal M}$ does not define an ultrametric!

Ex.				before)
	a	b	С	
а	0 5 2	5	2	
b	5	0	4	
С	2	4	0	

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

Example

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex. 1 (from before) | a b c |

 a
 0
 5
 2

 b
 5
 0
 4

 c
 2
 4
 0

Indeed, the only tree we found was not rooted:

For the triple a, b, c (the only triple), we get: 2, 4, 5, and there is a unique maximum: 5.

20 / 25

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique.

Algorithm

There are algorithms which, given M, compute this rooted tree in $O(n^2)$ time (e.g. UPGMA).

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?

Four point condition.

Theorem

Let *d* be a metric on a set of objects *O*, then *d* is an additive metric if $\forall x, y, u, v \in O$:

$$d(x, y) + d(u, v) \le \max\{d(x, u) + d(y, u), d(x, v) + d(y, u)\}$$

In other words, among the three sums of two distances, there is no unique maximum.

19 / 25

Ultrametrics and the three-point condition

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path

metric agrees with M if and only if M defines an ultrametric (i.e. if and

only if the 3-point-condition holds). This tree is unique.

Additive metrics and the four-point condition

Figure : The four point condition. It implies that the path metric of a tree is an additive metric.

Example

For ex., choose these 4 points: a, b, c, e. Then we get the three sums: d(a, b) + d(c, e) = 5 + 8 = 13, d(a, c) + d(b, e) = 12 + 9 = 21, and d(a, e) + d(b, c) = 10 + 11 = 21. Among 13, 21, 21, there is no unique maximum—okay. (Careful, this has to hold for all quadruples; how many are there?)

23 / 25

22 / 25

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Algorithm

There are algorithms which, given M, compute this unrooted tree in $O(n^3)$ time (e.g. Neighbor Joining).

In fact, it is even possible to compute a "good" tree if the matrix is not additive but "almost" (all this needs to be defined precisely, of course).

Summary for distance data

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with *M*.
- There are super-exponentially many trees on *n* taxa (both rooted and unrooted).
- If the distance matrix *M* defines an ultrametric, then a rooted tree agreeing with *M* exists, and can be computed efficiently (i.e. in polynomial time).
- If the distance matrix *M* defines an additive metric, then an unrooted tree agreeing with *M* exists, and can be computed efficiently (i.e. in polynomial time).