Phylogenetic Trees

Course "Discrete Biological Models" (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica
a.a. 2014/15, fall term

These slides are partially based on the lecture notes Algorithms for Phylogenetic Reconstruction, by Jens Stoye and others, Bielefeld University, 2009/2010.

Tree of Life, by Ernst Haeckel, 1874

What is a phylogenetic tree?

Phylogenetic trees display the evolutionary relationships among a set of objects (species). Contemporary species are represented by the leaves. Internal nodes of the tree represent speciation events (\approx common ancestors, usually extinct).

Different types of phylogenetic trees

- rooted vs. unrooted
- binary (fully resolved) vs. multifurcating (polytomy)
- are edge lengths significant?

Goal
Given n objects and data on these objects, find a phylogenetic tree with these objects at the leaves which best reflects the input data.

Ex.			
	a	b	c
a	0	5	2
b	5	0	4
c	2	4	0

Can we find a tree with a, b, c at the leaves s.t. the distance in the tree

Phylogenetic reconstruction

Note:
We need to define more precisely

- what kind of input data we have,
- what kind of tree we want (e.g. rooted or unrooted), and
- what we mean by "reflect the data."

But first, ...
Say we have answered these questions, then: Could we just list all possible trees and then choose the/a best one?
between a and b is 5 , between a and c is 2 , etc.?

Number of phylogenetic trees

\#taxa	\# unrooted trees	
n	$(2 n-5)!!$	rooted trees $(2 n-3)!!$
1	1	1
2	1	1
3	1	3
4	3	15

Phylogenetic reconstruction

Number of phylogenetic trees

в

All phylogenetic trees (rooted and unrooted) on 4 taxa.

Number of phylogenetic trees

\#taxa	\# unrooted trees	
n	\# rooted trees	
$(2 n-5)!!$	$(2 n-3)!!$	
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10,395
8	10,395	135,135
9	135,135	$2,027,025$
10	$2,027,025$	$34,459,425$

Distance data

We can have two kinds of input data:

- distance data, or
- character data (later)

Distance data is given as an $(n \times n)$ matrix M with the pairwise distances between the taxa.
E.g., $M(a, b)=5$ means that

Ex.

	a	b	c
a	0	5	2
b	5	0	4
c	2	4	0

Distance data

Path metric of a tree
Given a tree T, the path-metric of T is dist_{T}, defined as: $\operatorname{dist}_{T}(u, v)=$ length of the (unique) path between u and v. (In our trees edge weights are positive, so now: length of a path = sum of edge weights on path.)
Example

$$
\begin{aligned}
\operatorname{dist}_{T}(a, b) & =5 \\
\operatorname{dist}_{T}(a, d) & =11 \\
\operatorname{dist}_{T}(c, d) & =9, \ldots
\end{aligned}
$$

Question
Is it always possible to find a tree s.t. its path-metric equals the input distances? I.e. does such a tree exist for any input matrix M ?

Distance data

First of all, the input matrix M has to define a metric (= a distance function), i.e. for all x, y, z,

- $M(x, y) \geq 0$ and $(M(x, y)=0$ iff $x=y)$
(positive definite)
- $M(x, y)=M(y, x)$
(symmetry)
- $M(x, y)+M(y, z) \geq M(x, z)$
(triangle inequality)

For example, the edit distance is a metric, the Hamming distance (on strings of the same length), the Euclidean distance (on \mathbb{R}^{2}).

But is this enough?

Rooted trees and the molecular clock

In a rooted phylogenetic tree, the molecular clock assumption holds: that the speed of evolution is the same along all branches, i.e. the path distance from each leaf to the root is the same.

Ultrametrics and the three-point condition
Three point condition
Let d be a metric on a set of objects O, then d is an ultrametric if $\forall x, y, z \in O$:

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

Figure: Three point condition. It implies that the path metric of a tree is an ultrametric.

In other words, among the three distances, there is no unique maximum.

Example

Ex. 2				
	a	b	c	d
a	0	10	10	10
b	10	0	2	6
c	10	2	0	6
d	10	6	6	0

Example

Ex. 2				
	a	b	c	d
a	0	10	10	10
b	10	0	2	6
c	10	2	0	6
d	10	6	6	0

Checking the ultrametric condition, we see that:

- for a, b, c we get $2,10,10$ - okay
- for a, b, d we get $6,10,10$ - okay
- for a, c, d we get $6,10,10$ - okay
- for b, c, d we get $2,6,6$ - okay

Example

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex. 1 (from before)

	a	b	c
a	0	5	2
b	5	0	4
c	2	4	0

For the triple a, b, c (the only
triple), we get: $2,4,5$, and
there is a unique maximum: 5 .

Example

Compare this to our earlier example. There the matrix M does not define an ultrametric!

Ex.	(from			
	a	b	c	
a	0	5	2	
b	5	0	4	
c	2	4	0	

For the triple a, b, c (the only triple), we get: $2,4,5$, and there is a unique maximum: 5 .

Indeed, the only tree we found was not rooted:

Ultrametrics and the three-point condition

Theorem
Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique.

Algorithm
There are algorithms which, given M, compute this rooted tree in $O\left(n^{2}\right)$ time (e.g. UPGMA).

Ultrametrics and the three-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is a rooted tree whose path metric agrees with M if and only if M defines an ultrametric (i.e. if and only if the 3-point-condition holds). This tree is unique.

Additive metrics and the four-point condition

So what is the condition on the matrix M for unrooted trees?
Four point condition.
Let d be a metric on a set of objects O, then d is an additive metric if $\forall x, y, u, v \in O$:

$$
d(x, y)+d(u, v) \leq \max \{d(x, u)+d(y, u), d(x, v)+d(y, u)\}
$$

In other words, among the three sums of two distances, there is no unique maximum.

Additive metrics and the four-point condition

Figure: The four point condition. It implies that the path metric of a tree is an additive metric.

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Example

For ex., choose these 4 points: a, b, c, e. Then we get the three sums: $d(a, b)+d(c, e)=5+8=13, d(a, c)+d(b, e)=12+9=21$, and $d(a, e)+d(b, c)=10+11=21$. Among $13,21,21$, there is no unique maximum—okay. (Careful, this has to hold for all quadruples; how many are there?)

Additive metrics and the four-point condition

Theorem

Given an $(n \times n)$ distance matrix M. There is an unrooted tree whose path metric agrees with M if and only if M defines an additive metric (i.e. if and only if the 4-point-condition holds). This tree is unique.

Algorithm
There are algorithms which, given M, compute this unrooted tree in $O\left(n^{3}\right)$ time (e.g. Neighbor Joining).
In fact, it is even possible to compute a "good" tree if the matrix is not additive but "almost" (all this needs to be defined precisely, of course).

Summary for distance data

- When the input is a distance matrix, then we are looking for a tree whose path metric agrees with M.
- There are super-exponentially many trees on n taxa (both rooted and unrooted).
- If the distance matrix M defines an ultrametric, then a rooted tree agreeing with M exists, and can be computed efficiently (i.e. in polynomial time).
- If the distance matrix M defines an additive metric, then an unrooted tree agreeing with M exists, and can be computed efficiently (i.e. in polynomial time).

