NP completeness

Course "Discrete Biological Models" (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica
a.a. 2014/15, fall term

NP-completeness and the real world

Imagine you are working for a biotech company. One day your boss calls you and tells you that they have invented a new sequencing technology. It generates lots of fragments of the target molecule, which may overlap. Your job as chief algorithm designer is to write a program that reconstructs the target molecule.

You get to work ...

NP-completeness and the real world (2)

But after weeks and weeks and weeks...
all you have come up with is:

Exhaustive algorithm
List all possible permutations and choose the best.

NP-completeness and the real world (3)

This is no good, since for 1,000 fragments (typical experiment) this would need far longer than the age of the universe. Why?

- 1000 ! $\approx 4 \cdot 10^{2567}$ permutations source: Wolfram Alpha
- say we need 1000 operations per permutation (summing overlaps)
- if we have a computer that does 1 billion $\left(=10^{9}\right)$ operations $/ \mathrm{sec}$
- it can handle 1 million $\left(10^{6}\right)$ permutations per second
- So it will take $4 \cdot 10^{2567} / 10^{6}=4 \cdot 10^{2561}$ seconds

Age of the universe:

about 14 billion years $\approx 4 \cdot 10^{17}$ seconds
We can see that a million $\left(10^{6}\right)$ or a billion $\left(10^{9}\right)$ times faster computer wouldn't help much, either. Nor would faster handling of the permutations.

Or you could say:

"I can't find an efficient algorithm, because no such algorithm is possible!"
Unfortunately, it is very hard to do impossibility proofs...

So you can go to your boss and say:

"I can't find an efficient algorithm, I guess I'm just too dumb."
Bad idea, you may get fired!
source: Garey \& Johnson, A Guide to the Theory of NP-completeness, 1979

You prove that the reconstruction problem is NP-complete, and you say:

"I can't find an efficient algorithm, but neither can all these famous people."
So it makes no sense to fire you and get another expert

Overview

P - class of problems that can be solved efficiently (i.e., in polynomial time)

- $N P$ - class of problems that can solved in polynomial time by a non-deterministic Turing machine (nicer definition to follow)
- NP-complete problems - maximally difficult problems in NP: every other problem can be transformed into these in polynomial time (details later)
- NP-hard problems - like NP-complete problems, but not necessarily in $N P$

The class P

Definition

A decision problem X is in P if there is a polynomial time algorithm A which solves X.

A decision problem is one that allows only YES or NO answers.
Examples

- Given a sorted array of n numbers, is number x present? $O(\log n)$ time
- Given an array of n numbers, is number x present? $O(n)$ time
- Given a graph G, is G Eulerian? $O(n+m)$ time, where $n=|V|, m=|E(G)|$.
Details: Determine for each vertex whether it has even degree (or whether it is balanced if G is a digraph) in $O(n)$ time; determine with BFS whether G is connected in $O(n+m)$ time.

Overview

Usual way of drawing the classes P and $N P$:

Polynomial time algorithms

Algorithm A is polynomial time if there is a polynomial p s.t. for every input $/$ of size n, A terminates in at most $p(n)$ steps.
size is usually measured in bits, number of elements (for an integer array), number of vertices and edges (for graphs), number of characters (for strings)

The class NP

$N P$ - class of problems that can solved in polynomial time by a non-deterministic Turing machine (non-deterministic polynomial time)
alternative definition:
NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this, and it must be checkable (verifiable) in polynomial time.

Example
Problem: Given a graph $G=(V, E)$, is G Hamiltonian (i.e. does it have a Hamiltonian cycle)?
Certificate: A Hamiltonian cycle: check whether it is a cycle, and whether it contains every vertex exactly once, in $O(n)$ time, where $n=|V|$.

The class NP

NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this, and it must be checkable (verifiable) in polynomial time.

Example

Problem: Given a complete digraph $G=(V, E)$ with non-negative weights on edges, does it have a Hamiltonian path of weight at least r ?
Certificate: a Ham. path of weight $\geq r$: check weight of path, check whether it contains every vertex exactly once, in $O(n)$ time, where $n=|V|$

The class NP

NP = class of polynomial time checkable problems
Whenever the answer is YES, there must exist a certificate (proof) of this, and it must be checkable (verifiable) in polynomial time.

Example

Problem: Given a fragment set \mathcal{F} of m fragments, does a superstring of length $\leq k$ exist?
Certificate: a superstring S of length $\leq k$: check for every f whether f is substring of S, in $O(|f|+|S|)$ time; altogether $O(||\mathcal{F}||+m|S|)$ time, so polynomial in input size.
input: \mathcal{F}, inputsize: $\left\|\mathcal{F}\left|\|=\sum_{i=1}^{m}\right| f_{i}\left|,|S| \leq \sum_{i}\right| f_{i} \mid\right.$, so $\left.m|S| \leq\right\| \mathcal{F} \|^{2}$
P and $N P$

$$
\text { The } P=N P \text { question }
$$

One of the big open question of computer science is:

$$
\text { Is } P=N P ?
$$

- Since $P \subseteq N P$ is clear, the question is: $N P \subset P$?
- Can every problem in NP be solved efficiently?
- I.e. is the shaded area empty?

N.B.: There is a US $\$ 1,000,000$ prize for solving this question.

NP-complete and NP-hard problems

NP-complete problems
A problem X is NP-complete if

- it is in NP
- every problem in NP can be transformed/reduced to it in polynomial time (details soon)

NP-hard problems
A problem X is NP-hard if

- every problem in NP can be transformed/reduced to it in polynomial time (details soon)
i.e., the only difference is that it is not necessarily itself in $N P$.

The $P=N P$ question

Most people believe: $P \neq N P$.

NP-complete and NP-hard problems

Theorem
Let X be an $N P$-complete or $N P$-hard problem. If we find a polynomial time algorithm for X, then $P=N P$.

Corollary
Let X be an $N P$-complete or $N P$-hard problem. Then there is no polynomial time algorithm for X, unless $P=N P$.

Since we all believe that $P \neq N P$, this means in practical terms:
In practice
Let X be an $N P$-complete or $N P$-hard problem. Then there is no polynomial time algorithm for X, fullstop.

NP-complete problems

Michael R. Garey, David S. Johnson, Computers and Intractability - A Guide to the Theory of NP-completeness, 1979
one of the best known and most cited books ever in computer science

NP-complete problems

You have found your problem (the Shortest Common Superstring Problem) in the Garey-Johnson:

"I can't find an efficient algorithm, but neither can all these famous people."

NP-complete problems
Contains a list of known NP-complete problems:

228
np-Complete problems
A4.2 COMPRESSION AND REPRESENTATION
[SR8] SHORTEST COMMON SUPERSEQUENCE
INSTANCE: Finite alphabet Σ, finite set R of strings from Σ^{*}, and a positive in-
teger K. Is there a string $w \in \Sigma^{*}$ with $|w| \leqslant K$ such that each string $x \in R$ is a subsequence of w, i.e., $w=w_{0} x_{1} w_{1} x_{2} w_{2} \cdots x_{k} w_{k}$ where each $w_{i} \in \Sigma^{*}$ and $x=x_{1} x_{2} \cdots x_{k}$?
Reference: [Maier, 1978]. Transformation from VERTEX COVER.
Comment Remains NP . Completee even if $|\Sigma|=5$. Solvable in polynomial time if
$|R|=2$ (by first computing the largest common subsequence) or if all $x \in R$ have Comment: Remains NP-complete even if $||\mid=5$. Solvable in polynomial time if
$|R|=2$ (by first computing the largest common subsequence) or if all $x \in R$ have
$|x| \leqslant 2$. $|x| \leqslant 2$.
[SR9] SHORTEST COMMON SUPERSTRING
ISR9] SHORTEST COMMON SUPERSTRING
INSTANCE: Finite alphabet Σ, finite set R of strings from Σ^{*}, and a positive in-
teger K.
QUESTION:
QUESTION: Is there a string $w \in \Sigma^{* *}$ with $|w| \leqslant K$ such that each string $x \in R$ is
Reference: [Maier and Storer, 1977]. Transformation from VERTEX COVER for cubic graphs.
Comment: Remains NP-complete even if $|\Sigma|=2$ or if all $x \in R$ have $|x| \leqslant 8$ and contain no remeated symbols. Solvable in polynomial time if all $x \in R$ have
$|x| \leqslant 2$.

Optimization problem
Given \mathcal{F}, find a shortest common superstring S.
Decision problem
Given \mathcal{F}, does a common superstring S exist with $|S| \leq k$?
N.B.

If I can solve the decision problem, then I can also solve a reduced version of the optimization problem: determining the length of an SCS. Use $\log (\|\mathcal{F}\|)$ many calls to the decision problem.
(Details: Determine the length of an SCS using binary search: Let $N=\|\mathcal{F}\|$. We know that a common superstring exists with length N, namely the concatenation of all $f \in \mathcal{F}$. Now set $k=N / 2$; if the answer is YES, continue with $k=N / 4$, else with $k=3 N / 4$, etc.)

Decision problems vs. optimization problems

- Many NP-hard problems are optimization versions of NP-complete problems.
- If the decision version is $N P$-complete, then the optimization version is automatically NP-hard. (Why?)
- So it's enough to prove that the decision version is NP-complete. (Or to find it in the Garey-Johnson.)

An example reduction

SCS-decision

Given: Fragment set \mathcal{F}
Question:
Does a superstring of length $\leq k$ exist?

Example

\{TACC, CGGACT, ACTAC, ACGGA\}

Weighted Hamiltonian
path-decision
Given: A weighted complete digraph G
Question: Does G have a Ham.
path of weight $\geq\|\mathcal{F}\|-k$?

Polynomial time reductions/transformations

Now we want to talk about NP-complete problems. These are the ones to which all others in NP can be reduced in polynomial time. What does this mean?
"Translate problem X to problem Y in polynomial time"

Definition
We say that problem X is polynomial time reducible to problem Y, $X \leq_{p} Y$, if there is an algorithm A and a polynomial p, s.t. for every instance I of X, A constructs an instance J of Y in time $p(|I|)$ such that:
I is a YES-instance of $X \Leftrightarrow J$ is a YES-instance of Y.

An example reduction

Let \mathcal{F} contain m fragments of length r.

- Time for transformation: $O\left(m^{2} r^{2}\right)$, (or even faster): the time of the transformation is dominated by the time for computing the overlaps between the fragments, i.e. the weights on the edges
- This is polynomial in the input size $\|\mathcal{F}\|=m r$ (namely, with polynomial $p(n)=n^{2}$).
- YES on the left \Leftrightarrow YES on the right
- Therefore we have shown:

SCS-decision \leq_{p} Weighted Hamiltonian path-decision

Polynomial time reductions/transformations

Definition (again)

We say that problem X is polynomial time reducible to problem Y, $X \leq_{p} Y$, if there is an algorithm A and a polynomial p, s.t. for every instance I of X, A constructs an instance J of Y in time $p(|/|)$ such that:
I is a YES-instance of $X \quad \Leftrightarrow \quad J$ is a YES-instance of Y.
N.B.

- Think of $X \leq_{p} Y$ as meaning: X is " not harder" than Y
- Note that we are still paying for the reduction/transformation: it takes polynomial time!

There are important technical differences between Karp-reductions/transformations (R . Karp, 1972), and Turing-reductions (S. Cook, 1971), which we are ignoring here.

Polynomial time reductions/transformations

Theorem

Let X be an $N P$-complete problem. If we find a polynomial time algorithm for X, then $P=N P$.

Proof
Let A be a polytime algorithm for X. We have to show: $N P \subseteq P$. Let Y be any problem in $N P$. We will now give a polytime algorithm for Y. Let I be an instance of Y. Since X is NP-complete, there is an algorithm B which transforms any instance I of Y into an instance J of X in polynomial time, say in $p_{B}(|/|)$. In particular this implies $|J| \leq p_{B}(|I|)$. The algorithm A for X solves J in time $p_{A}(|J|) \leq p_{A}\left(p_{B}(|I|)\right)$ (since all parameters are positive). Thus, we have an algorithm $C=A \circ B(B$ followed by $A)$ for Y, which gives an answer to instance I in time at most $p_{C}(| | \mid):=p_{B}(| | \mid)+p_{A}\left(p_{B}(|/|)\right)$, which, being a sum and composition of polynomials, is a polynomial in $|/|$.

Polynomial time reductions/transformations

NP-complete problems
A problem X is NP-complete if

- it is in NP
- for every problem $Y \in N P: Y \leq_{p} X$.

Theorem

Let X be an $N P$-complete problem. If we find a polynomial time algorithm for X, then $P=N P$.

Is your problem NP-complete?

So if you have a computational problem, and you think it might be $N P$-complete, then

- Find it in the Garey-Johnson, or some other compendium of $N P$-complete / $N P$-hard problems, or
- prove that it is $N P$-complete.

This is far beyond the scope of this course ...
You will learn how to do this in an advanced course on algorithms/complexity.

Recap

- NP: problems which are polynomial-time checkable (for YES-instances, a certificate exists which can be verified in polynomial time)
- polynomial time reduction/transformation, $X \leq_{p} Y$, means: instances of X can be transformed to instances of Y in polynomial time
- NP-complete problems: problems in NP to which all problems in NP can be polytime reduced
- NP-hard problems: like NP-complete but not necessarily in NP
- An efficient (=polytime) algorithm for an NP-complete or NP-hard problem would imply: $\mathrm{P}=\mathrm{NP}$, which nobody believes is true
- Therefore, no efficient algorithm can exist for these problems (we all believe)

Why do we believe that $P \neq N P$?

... by some of the best mathematicians and computer scientists on earth ...

"I can't find an efficient algorithm, but neither can all these famous people."

Why do we believe that $P \neq N P$?

- Many, many important real-life problems are NP-complete or NP-hard.
- Finding an efficient algorithm for just one of these would prove $P=N P$.
- Much much work has gone into finding efficient algorithms for these.
- By some of the best mathematicians and computer scientists on earth.
- No one has been able to find an efficient algorithm for any one of these problems so far.

What to do next?

If we find that our computational problem is NP-complete or NP-hard, then what can we do?

- despair/give up
- Run an exhaustive search algorithm - This is often possible for small instances, often combined with specific tricks.
- Verify that your instances are really general. Often, the general case is NP-complete, but many special cases are not!
E.g. the SBH-sequencing problem is not NP-complete: otherwise we could not have found a better formulation (Euler cycles in de Bruijn graphs) which is polynomially solvable!
(continued on next page)

What to do next?

(continued from previous page)

- Devise heuristics: algorithms that work well in practice but without guaranteeing the quality of the solution.
- Polynomial time approximation algorithms: Algorithms that do not guarantee the optimal solution, but a solution which approximates the optimum. E.g. the Greedy Algorithm for SCS guarantees a solution which is at most 4 times longer than the optimum.
- and, and, and ...

Summary

- There are certain problems for which no efficient algorithms exist (very, very, very, very probably)
- These are called NP-complete (decision problems) or NP-hard (optimization problems)
- Many real-life problems, also in computational biology/bioinformatics, are NP-complete/NP-hard
- There are ways of dealing with this (see previous list)

Summary

Merry Christmas!

