
The Greedy Algorithm for Shortest Common
Superstrings

Course “Discrete Biological Models” (Modelli Biologici Discreti)

Zsuzsanna Lipták

Laurea Triennale in Bioinformatica

a.a. 2014/15, fall term

Problem: Shortest Common Superstring

Recall the definition

Shortest Common Superstring (SCS)

Input: A collection F of strings.
Output: A shortest possible string S s.t. for every f 2 F , S is a
superstring of f .

N.B.
The problem is NP-hard (= “very di�cult” for now), therefore we will not
be able to find an algorithm which

1. always finds an optimal solution (here: a shortest superstring), and
2. is e�cient, i.e. runs in polynomial time.

The greedy algorithm for SCS finds a superstring which is not necessarily
shortest, but has at most 4 times the optimal length.

2 / 18

Substring-freeness

N.B.
We will assume from here on that F is substring-free, i.e. there are no
f 6= f 0 2 F s.t. f is a substring of f 0.

If F is not substring-free, then make it substring-free: define
F 0 := F \ {f : 9f 0 2 F , f 0 6= f , f substring of f 0}. Then F 0 is
substring-free and has the same superstrings as F (why?). So we can
replace F by F 0 and receive the same solutions.

3 / 18

Overlap graphs

Definition
Given F , the overlap graph OG (F) = (V ,E) is a weighted directed graph,
where V = F , E = {(u, v) : u 6= v 2 V }, and w : E 7! R is a weight
function, with w(uv) = max{|t| : t su�x of u, t prefix of v}.

a = TACC

b = ACTAC

c = CGGACT

d = ACGGA

1

1

1
3

0
0

03 4 0

1

2

4 / 18

Overlap graphs

Definition
Given F , the overlap graph OG (F) = (V ,E) is a weighted directed graph,
where V = F , E = {(u, v) : u 6= v 2 V }, and w : E 7! R is a weight
function, with w(uv) = max{|t| : t su�x of u, t prefix of v}.

a = TACC

b = ACTAC

c = CGGACT

d = ACGGA

1

1

1
3

3 4

1

2

In the drawing, we omit edges with 0 weight.

4 / 18

Hamiltonian paths

We are looking for paths in OG (F) which use every vertex exactly once.
Such paths are called Hamiltonian paths.

Examples
E.g. P

1

= (b, d , c , a), P
2

= (d , c , b, a), P
3

= (a, c , b, d).

Definition
For a path P in OG (F), let S(P) be the string defined by P , e.g.
S(P

1

) = ACTACGGACTACC , S(P
2

) = ACGGAACTACC ,
S(P

3

) = TACCGGACTACGGA.

(Defined inductively on the length of the path: for a path of length 0, P = (f),

S(P) = f . Let P = (f
0

, . . . , fk+1

) and let S = S(P 0), where P 0 = (f
0

, . . . , fk), be already

constructed. Then S(P) = Sv where v is the su�x of fk+1

of length |fk+1

|�w(fk , fk+1

).)

5 / 18

Hamiltonian paths and superstrings

Question
Does every Hamiltonian path correspond to a superstring of F (i.e. one
that is a superstring of all f 2 F)?

Answer
Yes, since it traverses every vertex f , so by construction S(P) is a
superstring of f .

Question
Does every superstring of F correspond to a Hamiltonian path?

Answer
No, e.g. F = {a, b} where a = ACAC , b = CACT . Then w(a, b) = 3 and
w(b, a) = 0, and there are only two Hamiltonian paths: P

1

= (a, b) and
P
2

= (b, a), with S(P
1

) = ACACT and S(P
2

) = CACTACAC . So the
superstrings ACACGGCACT and ACACACT do not correspond to any
Hamiltonian paths. (First has extra characters, second less than maximum
overlap.)

6 / 18

Hamiltonian paths and superstrings

Minimality
A superstring S of F is called minimal if no proper subsequence of S is a
superstring of F . (I.e. if you remove some characters, it is no longer a
superstring).

Shortest superstrings (= there is no superstring which is shorter) are also
minimal: otherwise there would be a shorter one which is also a
superstring.

N.B.
All shortest superstrings correspond to Hamiltonian paths.

7 / 18

Weights of Hamiltonian paths and superstrings

Weight of paths
For a path P = (f

0

, . . . , fk), let w(P) =
Pk�1

i=0

w(fi , fi+1

).

Examples
E.g. w(P

1

) = 7, w(P
2

) = 10, w(P
3

) = 6.

Lemma
Let P be a Hamiltonian path in OG (F). Then

|S(P)| = ||F||� w(P),

where ||F|| =
P

f 2F |f | is the total length of strings in F .

Therefore what we are looking for are heaviest paths in OG (F)
(heavier path $ shorter superstring).

8 / 18

Greedy algorithm

Warning
Remember, we will not be able to find an algorithm that is both e�cient
and always produces a heaviest path.

Our greedy algorithm is conceptually simple, e�cient, and approximates
the optimal solution (however, does not always solve the problem exactly,
i.e. may not always produce a heaviest path = shortest superstring).

9 / 18

Greedy algorithm

The algorithm builds up a Hamiltonian path by selecting edges one by one.

Ideas

1. always try to take heaviest edge so far not selected

2. every node must have no more than one incoming and one outgoing
selected edge

3. avoid cycles

10 / 18

Greedy algorithm

We are building up a partial path by adding edges one by one.

Avoiding cycles
When do we obtain a cycle by adding an edge (u, v) to a partial path? If
and only if there was already a path (directed or undirected) between u
and v . I.e. if and only if u and v belonged to the same connnected
component in the partial path.

11 / 18

Connected components

Connected graphs
An undirected graph G = (V ,E) is called connected if for every u, v 2 V
there exists a path between u and v .

Connected digraphs
A directed graph is called connected if the underlying undirected graph
(i.e. take away the orientation from the edges) is connected.

Connected components
In a graph G = (V ,E), a connected component is a maximal subset C of
V s.t. for every u 6= v 2 C , there is a path between u and v . Equivalently,
the induced subgraph (C ,E (C)) is maximally connected. Thus, V can be
uniquely partitioned into connected components: V = C

1

[. . .[Ck , where
k is the number of connected components. G is connected i↵ k = 1.

12 / 18

Connected components

Connected graphs
An undirected graph G = (V ,E) is called connected if for every u, v 2 V
there exists a path between u and v .

Connected digraphs
A directed graph is called connected if the underlying undirected graph
(i.e. take away the orientation from the edges) is connected.

Connected components
In a graph G = (V ,E), a connected component is a maximal subset C of
V s.t. for every u 6= v 2 C , there is a path between u and v . Equivalently,
the induced subgraph (C ,E (C)) is maximally connected. Thus, V can be
uniquely partitioned into connected components: V = C

1

[. . .[Ck , where
k is the number of connected components. G is connected i↵ k = 1.

12 / 18

Connected components

Connected graphs
An undirected graph G = (V ,E) is called connected if for every u, v 2 V
there exists a path between u and v .

Connected digraphs
A directed graph is called connected if the underlying undirected graph
(i.e. take away the orientation from the edges) is connected.

Connected components
In a graph G = (V ,E), a connected component is a maximal subset C of
V s.t. for every u 6= v 2 C , there is a path between u and v . Equivalently,
the induced subgraph (C ,E (C)) is maximally connected1. Thus, V can be
uniquely partitioned into connected components: V = C

1

[. . .[Ck , where
k is the number of connected components. G is connected i↵ k = 1.

1maximal = if you add one element, then the property no longer holds. Here: If you
add an element, then no longer connected.

12 / 18

Connected components

A graph with 3 connected components2.

2source: Wikipedia
13 / 18

Greedy algorithm

Algorithm Greedy algorithm
Input: weighted directed graph OG (F) with n vertices
Output: Hamiltonian path in OG (F)
1. for i 1 to n
2. do in[i] 0; out[i] 0;Conn(i) {i} Initialize
3. Sort edges by weight, heaviest first
4. for each edge (f , g) in sorted order Process edges
5. do if in[g] = 0 and out[f] = 0 and Conn(f) 6= Conn(g) Test
6. then select (f , g);
7. in[g] 1; out[f] 1; Update
8. Union(Conn(f),Conn(g))
9. if there is only one component Terminate
10. then break
11. Return selected edges

14 / 18

Greedy algorithm: data structures

We need the following data structures:

1. arrays in[], out[] of length n

2. sets which maintain the connected components of the partial path
being constructed and a function Conn which, for every element i ,
identifies its connected component

15 / 18

Union-Find

The second can be done e�ciently with a Union-Find data structure.
Given a ground set X , this maintains disjoint subsets of X and supports
these basic operations:

1. MakeSet(x) – generates a singleton set {a} (x 2 X)

2. FindSet(x) – identifies which set x is in

3. Union(S ,T) – makes the union of two sets S and T

For |X | = n, a series of m > n union and/or find operations can be done
in time practically linear in m.

16 / 18

Union-Find

The second can be done e�ciently with a Union-Find data structure.
Given a ground set X , this maintains disjoint subsets of X and supports
these basic operations:

1. MakeSet(x) – generates a singleton set {a} (x 2 X)

2. FindSet(x) – identifies which set x is in

3. Union(S ,T) – makes the union of two sets S and T

For |X | = n, a series of m > n union and/or find operations can be done
in time practically linear3 in m.

3More precisely, in O(m↵(m, n)), where ↵(m, n), the inverse Ackermann function,
grows so slowly that it can be considered a constant.

16 / 18

Analysis of Greedy algorithm

1. Initialization (lines 1,2): 3n constant time operations, O(n) time

2. Sorting edges (line 3): n2 edges4, comparison constant-time, so
O(n2 log n) time

3. Processing edges (lines 4-10): for every edge, 2 lookups (in[g] and
out[f], line 5) and 2 find-operations (Conn(f),Conn(g), line 5), 2
updates (in[g] and out[f], line 7) and 1 union-operation (line 8), and
1 more lookup (line 9, no. of components); so for each edge, 3
union/find operations and 5 constant-time operations (lookups,
updates); altogether there are n2 edges (not all are necessarily
processed but may be); so in total at most 3n2 union/find operations
and 5n2 constant-time operations = O(n2) time

4. Return edges: n � 1 edges = O(n) time

Total time: O(n) + O(n2 log n) + O(n2) + O(n) = O(n2 log n).

4In actual fact, there are n(n � 1) n2 edges, but the analysis is simpler with n2.
17 / 18

Greedy algorithm

Note that this algorithm always returns a Hamiltonian path if the input
graph is an overlap graph, since these are complete graphs. It would not
work on any directed weighted graph (why?) Even on an overlap graph,
the algorithm does not necessarily return a Hamiltonian path with
maximum weight.

However, it is e�cient, since it runs in O(n2 log n) time on a fragment
collection F with |F| = n (n di↵erent fragments).

18 / 18

