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!These slides mainly based on Compeau, Pevzner, Tesler: How to apply de Bruijn
graphs to genome assembly, Nature Biotechnology 29 (11).

Solution: Use Euler cycle/path approach

Solution:
Use Euler cycle/path in de Bruijn graph approach instead of finding
heaviest Hamiltonian cycle/path in overlap graph.

Finding an Euler cycle (or Euler path) can be solved in polynomial time.

But:
We have to find a way of modelling our problem in the right way.
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Sanger sequencing vs. short read sequencing

NGS
Next generation sequencing technologies (Illumina, 454, SOLID, ...)
generate a much larger number of reads

high-throughput: fast acquisition, low cost

lower quality (more errors)
short reads (lllumina: typically 60-100 bp)

much higher number of reads

While overlap graph approach (with many additional details and
modifications!) worked for Sanger type sequences, it no longer works for
NGS data. Reason: Input too large, no efficient (= polynomial time in
input size) algorithms known, since all problem variants NP-hard.
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Modelling our problem with de Bruijn graphs

N.B.
For simplicity, for now our sequence to be reconstructed is assumed to be
circular. E.g. bacterial genomes are circular.

a v
A
String can be read as: ATGGCGTGCA,
TGGCGTGCAA, GGCGTGCAAT,
4 5 )

4/17



Definition of de Bruijn graphs

Let X be our alphabet.

(E.g. ¥ ={A,C,G, T} or X ={0,1} or ¥ = {a,b,c})

Definition

A digraph G = (V, E) is called a de Bruijn graph of order k if V C ¥k~1
and for all u,v € V: if (u,v) € E then there exists a word w € ¥ s.t. uis
the (k — 1)-length prefix of w and v is the (k — 1)-length suffix of w.

Example

U= GCA, v = CAA, w = GCAA.

Note that this graph can have loops, e.g. if u = AAA, then (u,u) € E is
possible.

N.B.
Named after Nicolaas de Bruijn, who introduced a related class of graphs
in 1946, for a different problem.
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Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F.

Example

F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:

AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG.
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Modelling our problem with de Bruijn graphs

Input: A collection F of strings.
First step: Generate all k-length substrings of fragments in F.

Example
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}.
For k = 3, we get:
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Modelling our problem with de Bruijn graphs

Now from the k-mers, we generate the (k — 1)-length prefixes and suffixes:
AA, AT, CA, CG, GC, GG, GT, TG. These are the vertices. The edges
are the k-mers.

e F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
e vertices: AA, AT, CA, CG, GC, GG, GT, TG
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Modelling our problem with de Bruijn graphs

e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge is the k-mer is present!)
e vertices: AA AT, CA, CG, GC, GG, GT, TG
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Comparison to other models

Compare to modelling the same problem with overlap graphs:
F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}

b v
ATGGCGT
RN
GGCGTGC
N
ATGGCGT O
TGCAATG
5 111
CAATGGC

(GGeaTaGC ( CAATGGC] NN

Genome: ATGGCGTGCAATGGCGT

Note that not all non-zero weight edges are included in the figure. The numbers
on the edges give a Hamiltonian cycle: ATGGCGTGCA.
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Modelling our problem with de Bruijn graphs

e edges: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG
(remember to only put an edge is the k-mer is present!)
e vertices: AA, AT, CA, CG, GC, GG, GT, TG

The numbers on the edges give an Eulerian cycle in this graph: ATGGCGTGCA
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Comparison to other models
Compare to modelling the same problem with overlap graphs using k-mers
as nodes:

e F = {ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG}, k = 3
e k-mers are nodes: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

Put an edge if the overlap equals k — 1. The numbers on the edges give a

Hamiltonian cycle: ATGGCGTGCA.
10 / 17



Practical strategies for applying de Bruijn graphs: all
k-mers

Generating nearly all k-mers

In reality, only a small fraction of all 100-mers (e.g.) are really sampled.
Solution: Take shorter k than readlength. E.g. if reads have length approx.
100, then taking k = 55 will yield nearly all k-mers of the genome.

Ex.
In the example, not all 7-mers are present as reads, but all 3-mers are:

e genome: ATGGCGTGCA
e 7-mers: ATGGCGT, CAATGGC, CGTGCAA, GGCGTGC, TGCAATG
e 3-mers: AAT, ATG, CAA, CGT, GCA, GCG, GGC, GTG, TGC, TGG

11 /17

Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This can be
detected and handled, via multiplicity of k-mers (multigraphs!) or of (k — 1)-mers

linear stretches (blocks) GATT
1
('*I
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. - Tips
GATCCGATGA AGRR /
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. + . . . . . Bubble
GAGG “\AGGCT . TAGH AGAGA AGACAG
. GCTTTAG
CGACGC

E.g. the software Velvet (Zerbino and Birney, 2008) uses detection and

elimination of bubbles and tips.
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Practical strategies for applying de Bruijn graphs: errors

Errors is reads result in bubbles (= bulges) in the de Bruijn graph. This
can be detected and handled, using multiplicity of k-mers (multigraphs!)

a

ATGG TGGC /N GGCG /™ GCGT CGTG /™ GTGC TGCA | 7\ GCAA N CAAT
T @ I @ NV @ O

AATG

CamTaeC
AGTG

GGCG /7 GCGT CGTG O GTGC mGCA () GAn CAAT
GT) GTG GCJ A
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Practical strategies for applying de Bruijn graphs: repeats

GGC
5
o
AAT
ke

Genome: ATGCGGTGCGTGGCAATG

Repeats can be detected using multiplicity of k-mers (edges). Again, using
multigraphs (edges have multiplicities).
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Eulerian cycles in multigraphs

Theorem
A connected multigraph is Eulerian (has an Eulerian cycle) if and only if
every vertex is balanced.

Now indegree = sum of multiplicities of incoming edges (= number of
incoming edges counted with their multiplicities), outdegree defined
similarly.

Recall the Bridges of Konigsberg problem.
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Origins of de Bruijn graphs

0011

1001 0110
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Homework

e On page 8, is this the only Euler tour? If not, find the other circular
string(s) which might give a solution. Do they also yield a superstring

for the input fragments of length 77

e Repeat the algorithm from p. 7-8 with kK = 4. How many Euler tours

exist now?
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