The Bridges of Königsberg Problem

De Bruijn Graphs for DNA Sequencing (Part 1)

These slides based on:
An Introduction to Bioinformatics Algorithms (Jones and Pevzner, 2004)

Eulerian Cycle Problem

- Find a cycle that visits every edge exactly once
- Linear time

More complicated Königsberg
Find a tour crossing every bridge just once
Leonhard Euler, 1735

Bridges of Königsberg

Modelli Biologici Discreti

Hamiltonian Cycle Problem

- Find a cycle that visits every vertex exactly once
- NP-complete

Game invented by Sir William Hamilton in 1857

Shortest Superstring Problem

- Problem: Given a set of strings, find a shortest string that contains all of them
- Input: Strings $f_{1}, f_{2}, \ldots, f_{n}$
- Output: A string s that contains all strings $f_{1}, f_{2}, \ldots, f_{n}$ as substrings, such that the length of s is minimized
- Complexity: NP-complete
- Note: this formulation does not take into account sequencing errors

Modelli Biologici Discreti

How SBH Works

- Attach all possible DNA probes of length k to a flat surface, each probe at a distinct and known location. This is called a DNA array.
- Apply a solution containing fluorescently labeled DNA fragment (many many copies!) to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length k of the fragment.

Sequencing by Hybridization (SBH): History

- 1988: SBH suggested as an an alternative sequencing method. Nobody believed it will ever work
- 1991: Light directed polymer synthesis developed by Steve
Fodor and colleagues.
- 1994: Affymetrix develops first 64-kb DNA microarray

First microarray prototype (1989)

Modelli Biologici Discreti

How SBH Works (cont' d)

- Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the k-mer composition of the target DNA fragment.
- Apply the combinatorial algorithm (below) to reconstruct the sequence of the target DNA fragment from the k-mer composition.

Modelli Biologici Discreti
k-mer composition

- Spectrum(s,k): unordered multiset of all possible $(n-k+1) k$-mers in a string s of length n
- The order of individual elements in $\operatorname{Spectrum}(s, k)$ does not matter (it's a set!)
- For $s=$ TATGGTGC the following is Spectrum($s, 3$):
\{ATG, GGT, GTG, TAT, TGC, TGG\}
- NB: for now, we are assuming that every k-mer occurs exactly once.

The SBH Problem

- Goal: Reconstruct a string from its k-mer composition
- Input: A set S, representing all k-mers from an (unknown) string s
- Output: String s such that $\operatorname{Spectrum}(s, k)=S$

SBH: Hamiltonian Path Approach
$s=\{$ ATG AGG TGC TCC GTC GGT GCA CAG $\}$

ATG CAGGTCC
Path visited every VERTEX once
Modelli Biologici Discreti
13

SBH: Hamiltonian Path Approach

$S=\{$ ATG TGG TGC GTG GGC GCA GCG CGT $\}$

Path 1:

Path 2:

SBH: Hamiltonian Path Approach
A more complicated graph:

$$
S=\{\text { ATG TGG TGC GTG GGC GCA GCG CGT }\}
$$

H

Modelli Biologici Discreti

SBH: Eulerian Path Approach

 $S=\{$ ATG, TGC, GTG, GGC, GCA, GCG, CGT $\}$Vertices correspond to ($k-1$)-mers: \{ AT, TG, GC, GG, GT, CA, CG \} Edges correspond to k-mers from S

Modelli Biologici Discreti

SBH: Eulerian Path Approach

$S=\{$ AT, TG, GC, GG, GT, CA, CG $\}$ corresponds to two different

 paths:

ATGGCGTGCA

Euler Theorem: Proof

- Eulerian \rightarrow balanced
for every edge entering v (incoming edge)
there exists an edge leaving v (outgoing
edge). Therefore

$$
\operatorname{in}(v)=o u t(v)
$$

- Balanced \rightarrow Eulerian
???

Euler Theorem

- A digraph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

$$
\text { in }(v)=\text { out }(v)
$$

- Theorem: A connected digraph is Eulerian if and only if each of its vertices is balanced.

Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting
 point, i.e., vertex v.
b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges (G connected). Perform step (a) again, using vertex w as the starting point. Once again,

(b)
we will end up in the starting vertex w.

Modelli Biologici Discreti

Euler Theorem: Extension

- Theorem: A connected digraph has an Eulerian path if
- a) it is balanced (in this case, it contains an Eulerian cycle), or
- b) by adding one edge, it becomes balanced (in this case, it contains an Eulerian path which is not a cycle).
N.B.: b) is equivalent to: all but two vertices, say s and t, are balanced, while in $(s)=o u t(s)-1$ and in $(t)=0 u t(t)-1$.
Algorithm for Constructing an Eulerian Cycle (cont'd)
c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).

(c)
N.B.: The proof gives an algorithm for constructing an Eulerian cycle: Hierholzer's algorithm. Running time: $O(m)$, where $m=n o$. of edges.

Modelli Biologici Discreti

Some Difficulties with SBH

- Fidelity of Hybridization: difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches
- Array Size: Effect of low fidelity can be decreased with longer k-mers, but array size increases exponentially in k. Array size is limited with current technology.
- Practicality: SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future
- Practicality again: Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques

