De Bruijn Graphs for DNA Sequencing (Part 1)

These slides based on: An Introduction to Bioinformatics Algorithms (Jones and Pevzner, 2004)

Eulerian Cycle Problem

- Find a cycle that visits every edge exactly once
- Linear time

More complicated Königsberg

The Bridges of Königsberg Problem

Find a tour crossing every bridge just once *Leonhard Euler, 1735*

Bridges of Königsberg

Modelli Biologici Discreti

-

Hamiltonian Cycle Problem

- Find a cycle that visits every vertex exactly once
- NP-complete

Game invented by Sir William Hamilton in 1857

Modelli Biologici Discreti 3 Modelli Biologici Discreti

Shortest Superstring Problem

- <u>Problem:</u> Given a set of strings, find a shortest string that contains all of them
- <u>Input</u>: Strings f₁, f₂,..., f_n
- Output: A string s that contains all strings f_1, f_2, \ldots, f_n as substrings, such that the length of s is minimized
- Complexity: NP-complete
- Note: this formulation does not take into account sequencing errors

Modelli Biologici Discreti

How SBH Works

- Attach all possible DNA probes of length k to a flat surface, each probe at a distinct and known location. This is called a **DNA array**.
- Apply a solution containing fluorescently labeled DNA fragment (many many copies!) to the array.
- The DNA fragment hybridizes with those probes that are complementary to substrings of length k of the fragment.

Sequencing by Hybridization (SBH): History

 1988: SBH suggested as an an alternative sequencing method. Nobody believed it will ever work

First microarray prototype (1989)

First commercial DNA microarray prototype w/16,000 features (1994)

synthesis developed by Steve Fodor and colleagues.

500,000 features per chip **(2002)**

• **1994:** Affymetrix develops first 64-kb DNA microarray

Modelli Biologici Discreti

How SBH Works (cont'd)

- Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the k—mer composition of the target DNA fragment.
- Apply the combinatorial algorithm (below) to reconstruct the sequence of the target DNA fragment from the k-mer composition.

Modelli Biologici Discreti 7 Modelli Biologici Discreti

Hybridization on DNA Array

Modelli Biologici Discreti

Different sequences – the same spectrum

 Different sequences may have the same spectrum:

> Spectrum(GTATCT,2)= Spectrum(GTCTAT,2)= {AT, CT, GT, TA, TC}

k-mer composition

- Spectrum(s,k): unordered multiset of all possible (n - k + 1) k-mers in a string s of length n
- The order of individual elements in Spectrum(s,k) does not matter (it's a set!)
- For s = TATGGTGC the following is Spectrum(s,3):
 {ATG, GGT, GTG, TAT, TGC, TGG}
- NB: for now, we are assuming that every k-mer occurs exactly once.

Modelli Biologici Discreti

10

The SBH Problem

- Goal: Reconstruct a string from its k-mer composition
- <u>Input</u>: A set S, representing all k-mers from an (unknown) string s
- Output: String s such that Spectrum(s,k) = S

SBH: Hamiltonian Path Approach

S = { ATG AGG TGC TCC GTC GGT GCA CAG }

ATGCAGGTCC

Path visited every VERTEX once

Modelli Biologici Discreti

13

15

SBH: Hamiltonian Path Approach

S = { ATG TGG TGC GTG GGC GCA GCG CGT }

Modelli Biologici Discreti

SBH: Hamiltonian Path Approach

A more complicated graph:

S = { ATG TGG TGC GTG GGC GCA GCG CGT }

Modelli Biologici Discreti

14

SBH: Eulerian Path Approach

 $S = \{ ATG, TGC, GTG, GGC, GCA, GCG, CGT \}$

Vertices correspond to (k-1)-mers: { AT, TG, GC, GG, GT, CA, CG } Edges correspond to k-mers from S

Modelli Biologici Discreti

SBH: Eulerian Path Approach

S = { AT, TG, GC, GG, GT, CA, CG } corresponds to two different paths:

Modelli Biologici Discreti

Euler Theorem: Proof

Eulerian → balanced for every edge entering *v* (incoming edge) there exists an edge leaving v (outgoing edge). Therefore

$$in(v) = out(v)$$

Balanced → Eulerian ???

Euler Theorem

 A digraph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

$$in(v)=out(v)$$

 Theorem: A connected digraph is Eulerian if and only if each of its vertices is balanced.

Modelli Biologici Discreti

Algorithm for Constructing an Eulerian Cycle

Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.

(a)

Algorithm for Constructing an Eulerian Cycle (cont'd)

b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges (G connected).
Perform step (a) again, using vertex w as the starting point. Once again, we will end up in the starting vertex w.

Modelli Biologici Discreti

Euler Theorem: Extension

- Theorem: A connected digraph has an Eulerian path if
- a) it is balanced (in this case, it contains an Eulerian cycle), or
- b) by adding one edge, it becomes balanced (in this case, it contains an Eulerian path which is not a cycle).
- N.B.: b) is equivalent to: all but two vertices, say s and t, are balanced, while in(s)=out(s)-1 and in(t)=out(t)-1.

Algorithm for Constructing an Eulerian Cycle (cont'd)

c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).

N.B.: The proof gives an algorithm for constructing an Eulerian cycle: Hierholzer's algorithm. Running time: O(m), where m=no. of edges.

Modelli Biologici Discreti

22

Some Difficulties with SBH

- Fidelity of Hybridization: difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches
- **Array Size:** Effect of low fidelity can be decreased with longer *k*-mers, but array size increases exponentially in *k*. Array size is limited with current technology.
- Practicality: SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future
- Practicality again: Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques