Similarity vs. distance

Algoritmi per la Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9)
a.a. 2014/15, spring term

String Distance Measures

Two ways of measuring the same thing:

1. How similar are two strings?
2. How different are two strings?
3. Similarity: the higher the value, the closer the two strings.
4. Distance: the lower the value, the closer the two strings.

Similarity vs. distance

Example
$\mathrm{s}=$ TATTACTATC
$\mathrm{t}=$ CATTAGTATC

- number of equal positions: $\left|\left\{i: s_{i}=t_{i}\right\}\right|=8$ (out of 10) 80% similarity ($s=t$ if 100%, i.e. if high)
- number of different positions: $\left|\left\{i: s_{i} \neq t_{i}\right\}\right|=2$ (out of 10) Hamming distance 2 ($s=t$ if 0 , i.e. if low)
(Note that both are defined only if $|s|=|t|$.)

Alignment score and edit distance

Edit operations

- substitution: a becomes b, where $a \neq b$
- deletion: delete character a
- insertion: insert character a

Often one views alignments in this way:

ACCT	ACCT--	-ACCT
CACT	--CACT	CA-CT
2 substitutions	2 deletions, 1 substition, 2 insertions	1 insertion 1 deletion

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)
Definition
The edit distance $d(s, t)$ is the minimum number of edit operations needed to transform s into t.
Example
$\mathrm{s}=$ TACAT, $\mathrm{t}=$ TGATAT

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT 4 edit op's

The edit distance

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)
Definition
The edit distance $d(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example
$s=$ TACAT, $\mathrm{t}=$ TGATAT

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT 4 edit op's
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGAGAT $\xrightarrow{\text { subst }}$ TGATAT 3 edit op's

Edit distance, also called Levenshtein distance, or unit-cost edit distance (Levenshtein, 1965)
Definition
The edit distance $d(s, t)$ is the minimum number of edit operations needed to transform s into t.

Example
$\mathrm{s}=$ TACAT, $\mathrm{t}=$ TGATAT

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT 4 edit op's
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGAGAT $\xrightarrow{\text { subst }}$ TGATAT 3 edit op's
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT 2 edit op's

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT
-TAC-AT
TGA-TAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGAGAT $\xrightarrow{\text { subst }}$ TGATAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT

T-ACAT TGATAT

Alignments vs. edit operations

Take the following scoring function: match $=0$, mismatch $=-1$, gap $=-1$. If alignment \mathcal{A} corresponds to the series of operations \mathcal{S}, then:

$$
\operatorname{score}(\mathcal{A})=-|\mathcal{S}|
$$

where $|\mathcal{S}|=$ no. of operations in \mathcal{S}.
Example

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT
-TAC-AT

TGA-TAT

- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT

Alignments vs. edit operations

Not every series of operations corresponds to an alignment:

- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGAGAT $\xrightarrow{\text { subst }}$ TGATAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT

Alignments vs. edit operations

But every alignment corresponds to a series of operations:

- match \mapsto do nothing
- mismatch \mapsto substitution
- gap below \mapsto deletion
- gap on top \mapsto insertion

Example
T-ACAT-
TGAT-AT
TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT $\xrightarrow{\text { del }}$ TGATT $\xrightarrow{\text { subst }}$ TGATA $\xrightarrow{\text { ins }}$ TGATAT

Minimum length (shortest) series of edit operations

We are looking for a series of operations of minimum length:
$\operatorname{dist}(s, t)=\min \{|\mathcal{S}|: \mathcal{S}$ is a series of operations transforming s into $t\}$

Exercises

- If t is a substring of s, then what is $\operatorname{dist}(s, t)$?
- What is $\operatorname{dist}(s, \epsilon)$?
- If we can transform s into t by using only deletions, then what can we say about s and t ?
- If we can transform s into t by using only substitutions, then what can we say about s and t ?

What is a distance?

A distance function (metric) on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x, y) \geq 0$, and $d(x, y)=0 \Leftrightarrow x=y$
(positive definite)
2. $d(x, y)=d(y, x)$
3. $d(x, y) \leq d(x, z)+d(z, y)$
(symmetric)
(triangle inequality)

Examples

- Euclidean distance on $\mathbb{R}^{2}: d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
- Manhattan distance on $\mathbb{R}^{2}: d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
- Hamming distance on $\Sigma^{n}: d_{H}(s, t)=\left\{i: s_{i} \neq t_{i}\right\}$.

What is a distance?

A distance function (metric) on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ s.t. for all $x, y, z \in X$:

1. $d(x, y) \geq 0$ and $d(x, y)=0 \Leftrightarrow x=y$	(positive definite)
2. $d(x, y)=d(y, x)$	(symmetric)
3. $d(x, y) \leq d(x, z)+d(z, y)$	(triangle inequality)

The edit distance is a distance

The edit distance is a metric (distance function):
Let $s, t, u \in \Sigma^{*}$ (strings over Σ):

1. $\operatorname{dist}(s, t) \geq 0$: to transform s to t, we need 0 or more edit op's. Also, we can transform s into t with 0 edit op's if and only if $s=t$.
2. Since every edit operation can be inverted, we get $\operatorname{dist}(s, t)=\operatorname{dist}(t, s)$.
3. (by contradiction) Assume that $\operatorname{dist}(s, u)+\operatorname{dist}(u, t)<\operatorname{dist}(s, t)$, and \mathcal{S} transforms s into u in $\operatorname{dist}(s, u)$ steps, and \mathcal{S}^{\prime} transforms u into t in $\operatorname{dist}(u, t)$ steps. Then the series of op's $\mathcal{S}^{\prime} \circ \mathcal{S}$ (first \mathcal{S}, then \mathcal{S}^{\prime}) transforms s into t, but is shorter than $\operatorname{dist}(s, t)$, a contradiction to the definition of dist.
(Exercise: Show that the Hamming distance is a metric.)

Computing the edit distance

We will need a DP-table (matrix) E of size $(n+1) \times(m+1)$
(where $n=|s|$ and $m=|t|$).

$$
\text { Definition: } \quad E(i, j)=\operatorname{dist}\left(s_{1} \ldots s_{i}, t_{1} \ldots t_{j}\right)
$$

Computation of $E(i, j)$:

- Fill in first row and column: $E(0, j)=j$ and $E(i, 0)=i$
- for $i, j>0$: now $E(i, j)$ is the minimum of 3 entries plus 1 or plus 0 , depending (on what?)
- return entry on bottom right $E(n, m)$
- backtrace for shortest series of edit operations

Algorithm for computing the edit distance

Algorithm DP algorithm for edit distance
Input: strings s, t, with $|s|=n,|t|=m$
Output: value $\operatorname{dist}(s, t)$

$$
\begin{aligned}
& \text { for } j=0 \text { to } m \text { do } E(0, j) \leftarrow j ; \\
& \text { for } i=1 \text { to } n \text { do } E(i, 0) \leftarrow i ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \\
& \text { for } j=1 \text { to } m \text { do } \\
& \qquad E(i, j) \leftarrow \min \begin{cases}E(i-1, j)+1 & \begin{array}{ll}
E(i-1, j-1) & \text { if } s_{i}=t_{j} \\
E(i-1, j-1)+1 & \text { if } s_{i} \neq t_{j} \\
E(i, j-1)+1
\end{array}\end{cases}
\end{aligned}
$$

5. return $E(n, m)$;

Again alignment vs. edit distance
$\operatorname{sim}(s, t)$ vs. $\operatorname{dist}(s, t)$
Recall the scoring function from before
match $=0$, mismatch $=-1$, gap $=-1$. Then we have

$$
\operatorname{sim}(s, t)=-\operatorname{dist}(s, t)
$$

(This seems obvious but it actually needs to be proved. Formal proof see Setubal \& Meidanis book, Sec. 3.6.1.)

Again alignment vs. edit distance

$\operatorname{sim}(s, t)$ vs. $\operatorname{dist}(s, t)$
Recall the scoring function from before:
match $=0$, mismatch $=-1$, gap $=-1$. Then we have:

$$
\operatorname{sim}(s, t)=-\operatorname{dist}(s, t)
$$

(This seems obvious but it actually needs to be proved. Formal proof see Setubal \& Meidanis book, Sec. 3.6.1.)

General cost functions
General cost edit distance: different edit operations can have different cost (but some conditions must hold, e.g. cost(insert) $=\operatorname{cost}($ delete), why?). Also computable with same algorithm in same time and space.
-

LCS distance

Given two strings s and t,
$\operatorname{LCS}(s, t)=\max \{|u|: u$ is a subsequence of s and $t\}$
is the length of a longest common subsequence of s and t
Example
Let $s=$ TACAT and $t=$ TGATAT

- Space: $O(n m)$ for the DP-table
- Time:
- computing $\operatorname{dist}(s, t): 3 n m+n+m+1 \in O(n m)$ (resp. $O\left(n^{2}\right)$ if $n=m$)
- finding an optimal series of edit op's: $O(n+m)$ (resp. $O(n)$ if $n=m$)

LCS distance

LCS distance

Given two strings s and t,

$$
\operatorname{LCS}(s, t)=\max \{|u|: u \text { is a subsequence of } s \text { and } t\}
$$

is the length of a longest common subsequence of s and t.
Example
Let $s=$ TACAT and $t=$ TGATAT, then we have $\operatorname{LCS}(s, t)=4$.
$\mathrm{s}=$ TACAT, $\mathrm{t}=$ TGATAT
LCS-distance

$$
d_{L C S}(s, t)=|s|+|t|-2 L C S(s, t)
$$

N.B.

There may be more than one longest common subsequence, but the length $\operatorname{LCS}(s, t)$ is unique! E.g. $s^{\prime}=$ TAACAT, $t^{\prime}=$ ATCTA, then $\operatorname{LCS}\left(s^{\prime}, t^{\prime}\right)=3$, and ACA, TCA, TCT, ACT are all longest common subsequences.

Example

In the examples above, we have $d_{L C S}(s, t)=5+6-2 \cdot 4=3$, and $d_{L C S}\left(s^{\prime}, t^{\prime}\right)=6+5-2 \cdot 3=5$.

Exercise (*)
(1) Prove or disprove that this is a metric. (2) Find a DP-algorithm that computes $\operatorname{LCS}(s, t)$.
(*) means: for particularly motivated students

Summary: Similarity and distance

Similarity measures for strings

- $\operatorname{sim}(s, t)$ - score of an optimal alignment of s, t
- percent similarity (only for equal length strings!)

Distance measures for strings

- edit distance (Levenshtein distance) - minimum no. of edit operations to transform s into t
- Hamming distance (only for equal length strings!)
- LCS distance
- (q-gram distance)
- two ways of expressing the same thing (similarity vs. distance)
- similarity: the higher the value, the more similar the strings
- distance: the lower the value, the more similar the strings
- optimal alignment \cong minimum length edit transformation
- both computable in quadratic time and quadratic space

