Algoritmi per la Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9) a.a. 2014/15, spring term

Computational efficiency II

Computational efficiency of an algorithm is measured in terms of running time and storage space.

To abstract from

- specific computers (processor speed, computer architecture, \dots)
- specific programming languages
- ...

we measure

- running time in number of (basic) operations (e.g. additions, multiplications, comparisons, ...),
- storage space in number of storage units
- (e.g. 1 unit = 1 integer, 1 character, 1 byte, ...).

2 / 23

Example DP algorithm for global alignment (Needleman-Wunsch), variant which outputs only sim(s, t).

Algorithm DP algorithm for global alignment Input: strings s, t, with |s| = n, |t| = m; scoring function (p, g)Output: value sim(s, t)1. for j = 0 to m do $D(0, j) \leftarrow j \cdot g$; 2. for i = 1 to n do $D(i, 0) \leftarrow i \cdot g$; 3. for i = 1 to n do 4. for j = 1 to m do 4. for j = 1 to m do $D(i, j) \leftarrow \max \begin{cases} D(i - 1, j) + g \\ D(i - 1, j - 1) + p(s_i, t_j) \\ D(i, j - 1) + g \end{cases}$

5. return D(n, m);

3 / 23

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1.)
- for first column: *n* operations (line 2.)
- for each entry D(i, j), where $1 \le i \le n, 1 \le j \le m$: 3 operations; there are $n \cdot m$ such entries: 3nm operations (lines 3.,4.)
- Altogether: 3nm + n + m + 1 operations

Analysis of DP algorithm for global alignment:

Time

- for first row: m + 1 operations (line 1.)
- for first column: *n* operations (line 2.)
- for each entry D(i,j), where $1 \le i \le n, 1 \le j \le m$: 3 operations; there are $n \cdot m$ such entries: 3nm operations (lines 3.4.)
- Altogether: 3nm + n + m + 1 operations

Space

• matrix of size (n + 1)(m + 1) = nm + n + m + 1 entries (units)

Equal length strings

If n = m then time $= 3n^2 + 2n + 1$, space $= n^2 + 2n + 1$

Let's compare this with the other algorithm we saw for global alignment:

Exhaustive search

- 1. consider every possible alignment of \boldsymbol{s} and \boldsymbol{t}
- 2. for each of these, compute its score
- 3. output the maximum of these

Algorithm Exhaustive search for global alignment **Input:** strings s, t, with |s| = n, |t| = m; scoring function (p, g)**Output:** value sin(s, t)

- 1. int max = (n + m)g;
- 2. for each alignment A of s and t (in some order)
- 3. **do if** score(A) > max4. **then** $max \leftarrow score(A)$;
- 5. return max;

Note:

- 1. The variable max is needed for storing the highest score so far seen.
- 2. The initial value of max is the score of *some* alignment of s, t (which one?)

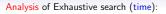
6 / 23

8 / 23

Analysis of Exhaustive search:

- Time: next slides
- Space: exercise

7 / 23



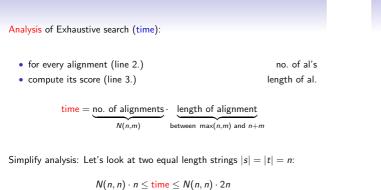
- for every alignment (line 2.)
- compute its score (line 3.)

Analysis of Exhaustive search (time):

 for every alignment (line 2.) 	no. of al's
• compute its score (line 3.)	length of al.

 $time = \underbrace{\text{no. of alignments}}_{N(n,m)} \cdot \underbrace{\text{length of alignment}}_{\text{between } \max(n,m) \text{ and } n+m}$

8 / 23



So we have, for |s| = |t| = n:

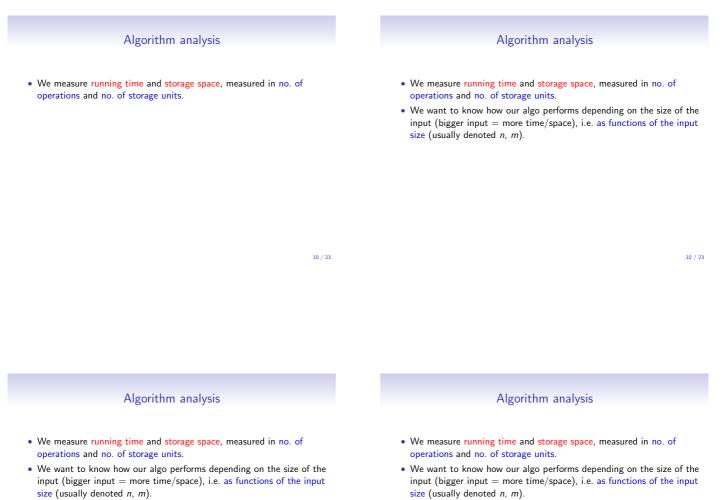
- DP algo: $3n^2 + 2n + 1$ operations
- Exhaustive search: at least $N(n, n) \cdot n$ operations

Let's compare the two functions for increasing *n*:

n	1	2	3	4	5	 10	100	1000
$3n^2 + 2n + 1$	6	17	34	57	86	 321	30 201	3 002 001
$\frac{3n^2+2n+1}{N(n,n)\cdot n}$	3	26	189	1284	8415	 $pprox 80 \cdot 10^6$	$\approx 2\cdot 10^{77}$	$pprox 10^{700}$

The DP algorithm is much faster than the exhaustive search algorithm, because its running time increases much slower as the input size increases. But how much?

We have seen: $N(n, n) > 2^n$, so time $\ge 2^n \cdot n$.



• We are interested in the algorithm's behaviour for large inputs.

10 / 23

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input = more time/space), i.e. as functions of the input size (usually denoted *n*, *m*).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.
- We want an upper bound, i.e. on any input how much time/space needed at most? (worst-case analysis)

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	п	10	20	
\mathcal{B}	n^2	100	400	
\mathcal{C}	2 ⁿ	1024	1 048 576	
-		-		

We are interested in the algorithm's behaviour for large inputs.
We want to know the growth behaviour, i.e. how time/space

requirements change as input increases.

10 / 23

Con	Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:											
		inpu	ut size <i>n</i>									
	running t.	10	20	What happened when input doubled?								
\mathcal{A}	п	10	20	doubled								
\mathcal{B}	n ²	100		quadrupled								
\mathcal{C}	2 ⁿ	1024	1048576	squared								

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
$\overline{\mathcal{A}}$	п	10	20	doubled
\mathcal{B}	n ²	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

Now 3 algorithms $\mathcal{A}', \mathcal{B}', \mathcal{C}'$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}'	3 <i>n</i>	30	60	
\mathcal{B}'	3 <i>n</i> ²	300	1200	
\mathcal{C}'	3 · 2 ⁿ	3072	3 145 728	

11 / 23

11 / 23

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		inpu	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n ²	100	400	quadrupled
\mathcal{C}	2 ⁿ	1024	1048576	squared

Now 3 algorithms $\mathcal{A}', \mathcal{B}', \mathcal{C}'{:}$

		inpi	ut size <i>n</i>	
	running t.	10	20	What happened when input doubled?
\mathcal{A}'	3 <i>n</i>	30	60	doubled
\mathcal{B}'	3 <i>n</i> ²	300	1200	quadrupled
\mathcal{C}'	$3 \cdot 2^n$	3072	3 145 728	1/3 of squared

11 / 23

The O-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f:\mathbb{N}\to\mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

12 / 23

The O-notation allows us to abstract from constants (3n vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f:\mathbb{N}\to\mathbb{R}$, then O(f(n)) is the class (set) of functions g(n) s.t.:

There exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

We then say that

$$g(n) \in O(f(n))$$
 or $\underbrace{g(n) = O(f(n))}_{\text{Careful, this is not an "equality"!}}$

Meaning: "g is smaller or equal than f (w.r.t. growth behaviour)" "g does not grow faster than f"

Example

 $3n^2+2n+1\in O(n^2)$

Recall definition

 $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

Proof

п	1	2	3	4	5	
$3n^2 + 2n + 1$ $4n^2$	6	17	34	57	86	
4 <i>n</i> ²	4	16	36	64	100	

Example

 $3n^2+2n+1\in O(n^2)$

Recall definition

 $g(n) \in O(f(n))$ if there exists a c > 0 and an $n_0 \in \mathbb{N}$ s.t. for all $n \ge n_0$: $g(n) \le c \cdot f(n)$.

Proof

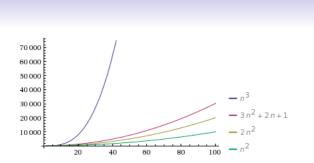
Choose c = 4 and $n_0 = 3$. We have: $\forall n \ge 3$: $3n^2 + 2n + 1 \le 4n^2$.

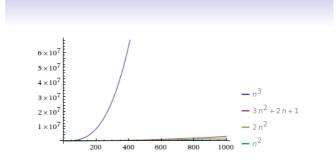
							$3n^2+2n+1\leq 4n^2$
		2				\Leftrightarrow	$n^2-2n-1\geq 0$
$3n^2 + 2n + 1$ $4n^2$	6	17	34	57	86	⇔	$(n-1)^2-2\geq 0$
4 <i>n</i> ²	4	16	36	64	100	⇔	$(n-1)^2 \geq 2$
						\Leftrightarrow	$n \ge 3$

 $3n^{2} + 2n + 1 \in O(n^{2}): \quad \forall n \ge 3: \quad 3n^{2} + 2n + 1 \le 4n^{2}$

13 / 23

15 / 23





plot: WolframAlpha

plot: WolframAlpha

16 / 23

14 / 23

In practice:

- identify which input parameters are important—no. months *n* for Fibonacci numbers; length of strings *n*, *m* for pairwise al.
- order additive terms according to these in decreasing growth order: $3n^5 + 2n^3 + n + 7$, 3nm + n + m + 1
- take largest without multiplicative constant: $3n^5 + 2n^3 + n + 7 \in O(n^5),$ $3nm + n + m + 1 \in O(nm)$

Important O-classes

The most important functions, ordered by increasing *O*-classes: each function f_i is in the *O*-class of the next function f_{i+1} , but $f_{i+1}(n) \notin O(f_i(n))$.

1	log log n	log n	\sqrt{n}	n	n log n	n ²	n ³		 2 ⁿ	<i>n</i> !	n
cons-		loga-		linear		quad-	cubic		expo-		
tant		rith-				ratic			nen-		
		mic							tial		
			poly					ne constant c)			
(all except <i>n</i> log <i>n</i> are polynomials)								omials)			
	EFFICIENT								ineffic	ient	

function grows slower	\longleftrightarrow	function grows faster
faster algorithm		slower algorithm

 $^{1} {\rm also}$ called feasible vs. infeasible

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	<i>n</i> = 100	<i>n</i> = 200
n	$5 \cdot 10^{-5}$ s	10^{-4} s	
n^2	$0.0025 \mathrm{~s}$	0.01 s	
n ³	0.125 s	$1 \mathrm{s}$	
1.1^{n}	0.0001 s	0.014 s	
2 ⁿ	35.7 years	$4\cdot 10^{16}~{\rm years}$	

Amount of time an algorithm of time complexity f(n) would need on a computer that performs one million operations per second:

f(n)	<i>n</i> = 50	<i>n</i> = 100	<i>n</i> = 200
n	$5\cdot 10^{-5}$ s	10 ⁻⁴ s	$2 \cdot 10^{-4} \text{ s}$
n^2	$0.0025~\mathrm{s}$	0.01 s	0.04 s
n ³	0.125 s	$1 \mathrm{s}$	8 s
1.1^{n}	$0.0001 \mathrm{~s}$	0.014 s	190 s
2 ⁿ	35.7 years	$4 \cdot 10^{16}$ years	$5 \cdot 10^{46}$ years

19 / 23

On a 1000 times faster computer:

f(n)	<i>n</i> = 50	<i>n</i> = 100	<i>n</i> = 200
п	$5 \cdot 10^{-8}$ s	10 ⁻⁷ s	$2 \cdot 10^{-7} \text{ s}$
n ²	$2.5\cdot 10^{-6}~{\rm s}$	$10^{-5} { m s}$	$4\cdot 10^{-5}~{ m s}$
n ³	$1.25 \cdot 10^{-4}$ s	$10^{-3} { m s}$	$8\cdot 10^{-3} \mathrm{~s}$
1.1^{n}	$1.1 \cdot 10^{-7} { m s}$	$1.4\cdot10^{-5}~{ m s}$	0.19 s
2 ⁿ	13 days	$4 \cdot 10^{13}$ years	$5 \cdot 10^{43}$ years

Looking at it in a different way ...

	$\ 1$	2	3	4	5	 10	20	100	1000	10 ⁶
n	1	2	3	4	5	 10	20	100	1000	10 ⁶
n ²	1	4	9	16	25	 100	400	10000	10 ⁶	
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	1000 1000 10^{6} $\approx 10^{301}$	

On a computer that can perform one million operations per second, in a second,

- a linear-time algorithm can solve a problem instance of size 10^6 (one million) (e.g. fib2, fib3),
- a quadratic-time algorithm one of size 1000 (one thousand),
- an exponential-time algorithm one of size 20 (e.g. fib1).

In fact, on any computer, these algorithms need always the same amount of time for problem instances of such different sizes!

20 / 23

21 / 23

19 / 23

Back to the global alignment algorithms:

• $A(n) := 3n^2 + 2n + 1$ running time of DP algo

• $B(n) := n \cdot N(n, n)$ running time of exhaustive search algo

	1	2	3	4	5	 10	20	100	1000
A(n)	6	17	34	57	86	 321	1241		3 002 001
B(n)	3	26	189	1284	8415	 $\approx 80\cdot 10^6$	$pprox 5 \cdot 10^{16}$	$pprox 2 \cdot 10^{77}$	$pprox 10^{700}$
п	1	2	3	4	5	 10	20	100	1000
n^2	1	4	9	16	25	 100	400	10 000	10 ⁶
2 ⁿ	2	4	8	16	32	 1024	$pprox 10^{6}$	$pprox 10^{30}$	$pprox 10^{301}$

• $A(n) \in O(n^2)$ a quadratic time algorithm

• B(n) is super-exponential

time

Analysis of our alignment algorithms

algorithm	time	space
DP for global alignment, only $sim(s, t)$	O(nm)	O(nm)
[equal length strings	$O(n^2)$	$O(n^2)$]
computing an optimal alignment	O(n+m)	none ¹
[equal length strings	<i>O</i> (<i>n</i>)	none ¹]
space saving variant of DP for global alignment, only <i>sim</i> (<i>s</i> , <i>t</i>)	O(nm)	$O(\min(n, m))$
[equal length strings	$O(n^2)$	O(n)]
DP for local alignment	O(nm)	O(nm)
[equal length strings	$O(n^2)$	$O(n^2)$]

¹assuming the $O(n^2)$ size DP-table is given