Algoritmi per la Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9)
a.a. 2014/15, spring term

Computational efficiency II

Computational efficiency of an algorithm is measured in terms of running time and storage space.

To abstract from

- specific computers (processor speed, computer architecture, ...)
- specific programming languages
we measure
- running time in number of (basic) operations (e.g. additions, multiplications, comparisons, ...),
- storage space in number of storage units (e.g. 1 unit $=1$ integer, 1 character, 1 byte, \ldots).

Example DP algorithm for global alignment (Needleman-Wunsch), variant which outputs only $\operatorname{sim}(s, t)$.

Algorithm DP algorithm for global alignment
Input: strings s, t, with $|s|=n,|t|=m$; scoring function (p, g)
Output: value $\operatorname{sim}(s, t)$

1. for $j=0$ to m do $D(0, j) \leftarrow j \cdot g$;
2. for $i=1$ to n do $D(i, 0) \leftarrow i \cdot g$;
3. for $i=1$ to n do
4. for $j=1$ to m do

$$
D(i, j) \leftarrow \max \left\{\begin{array}{l}
D(i-1, j)+g \\
D(i-1, j-1)+p\left(s_{i}, t_{j}\right) \\
D(i, j-1)+g
\end{array}\right.
$$

5. return $D(n, m)$;

Analysis of DP algorithm for global alignment:
Time

- for first row: $m+1$ operations
(line 1.)
- for first column: n operations
- for each entry $D(i, j)$, where $1 \leq i \leq n, 1 \leq j \leq m$: 3 operations; there are $n \cdot m$ such entries: $3 n m$ operations
- Altogether: $3 n m+n+m+1$ operations

Analysis of DP algorithm for global alignment:
Time

- for first row: $m+1$ operations
(line 1.)
- for first column: n operations
- for each entry $D(i, j)$, where $1 \leq i \leq n, 1 \leq j \leq m$: 3 operations; there are $n \cdot m$ such entries: $3 n m$ operations
- Altogether: $3 n m+n+m+1$ operations

Space

- matrix of size $(n+1)(m+1)=n m+n+m+1$ entries (units)

Analysis of DP algorithm for global alignment:
Time

- for first row: $m+1$ operations
(line 1.)
- for first column: n operations
- for each entry $D(i, j)$, where $1 \leq i \leq n, 1 \leq j \leq m$: 3 operations; there are $n \cdot m$ such entries: $3 n m$ operations
- Altogether: $3 n m+n+m+1$ operations

Space

- matrix of size $(n+1)(m+1)=n m+n+m+1$ entries (units)

Equal length strings
If $n=m$ then time $=3 n^{2}+2 n+1$, space $=n^{2}+2 n+1$

Let's compare this with the other algorithm we saw for global alignment:

Exhaustive search

1. consider every possible alignment of s and t
2. for each of these, compute its score
3. output the maximum of these

Algorithm Exhaustive search for global alignment
Input: strings s, t, with $|s|=n,|t|=m$; scoring function (p, g)
Output: value $\operatorname{sim}(s, t)$

1. int $\max =(n+m) g$;
2. for each alignment A of s and t (in some order)
3. do if $\operatorname{score}(A)>\max$
4. then $\max \leftarrow \operatorname{score}(A)$;
5. return max;

Note:

1. The variable max is needed for storing the highest score so far seen.
2. The initial value of max is the score of some alignment of s, t (which one?)

Analysis of Exhaustive search:

- Time: next slides
- Space: exercise

Analysis of Exhaustive search (time):

- for every alignment (line 2.)
- compute its score (line 3.)

Analysis of Exhaustive search (time):

- for every alignment (line 2.) no. of al's
- compute its score (line 3.)

Analysis of Exhaustive search (time):

- for every alignment (line 2.)
- compute its score (line 3.)
no. of al's
length of al.

Analysis of Exhaustive search (time):

- for every alignment (line 2.)
- compute its score (line 3.)
no. of al's
length of al.

Analysis of Exhaustive search (time):

- for every alignment (line 2.)
- compute its score (line 3.)
no. of al's
length of al.

$$
\text { time }=\underbrace{\text { no. of alignments }}_{N(n, m)} . \underbrace{\text { length of alignment }}_{\text {between } \max (n, m) \text { and } n+m}
$$

Simplify analysis: Let's look at two equal length strings $|s|=|t|=n$:

$$
N(n, n) \cdot n \leq \text { time } \leq N(n, n) \cdot 2 n
$$

We have seen: $N(n, n)>2^{n}$, so time $\geq 2^{n} \cdot n$.

So we have, for $|s|=|t|=n$:

- DP algo: $3 n^{2}+2 n+1$ operations
- Exhaustive search: at least $N(n, n) \cdot n$ operations

Let's compare the two functions for increasing n :

n	1	2	3	4	5	\ldots	10	100	1000
$3 n^{2}+2 n+1$	6	17	34	57	86	\cdots	321	30201	3002001
$N(n, n) \cdot n$	3	26	189	1284	8415	\ldots	$\approx 80 \cdot 10^{6}$	$\approx 2 \cdot 10^{77}$	$\approx 10^{700}$

The DP algorithm is much faster than the exhaustive search algorithm, because its running time increases much slower as the input size increases. But how much?

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input $=$ more time/space), i.e. as functions of the input size (usually denoted n, m).

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input $=$ more time/space), i.e. as functions of the input size (usually denoted n, m).
- We are interested in the algorithm's behaviour for large inputs.

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input $=$ more time/space), i.e. as functions of the input size (usually denoted n, m).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.

Algorithm analysis

- We measure running time and storage space, measured in no. of operations and no. of storage units.
- We want to know how our algo performs depending on the size of the input (bigger input $=$ more time/space), i.e. as functions of the input size (usually denoted n, m).
- We are interested in the algorithm's behaviour for large inputs.
- We want to know the growth behaviour, i.e. how time/space requirements change as input increases.
- We want an upper bound, i.e. on any input how much time/space needed at most? (worst-case analysis)

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10		
\mathcal{B}	n^{2}	100		
\mathcal{C}	2^{n}	1024		

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	
\mathcal{B}	n^{2}	100	400	
\mathcal{C}	2^{n}	1024	1048576	

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n^{2}	100	400	
\mathcal{C}	2^{n}	1024	1048576	

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n^{2}	100	400	quadrupled
\mathcal{C}	2^{n}	1024	1048576	

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n^{2}	100	400	quadrupled
\mathcal{C}	2^{n}	1024	1048576	squared

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n^{2}	100	400	quadrupled
\mathcal{C}	2^{n}	1024	1048576	squared

Now 3 algorithms $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \mathcal{C}^{\prime}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}^{\prime}	$3 n$	30	60	
\mathcal{B}^{\prime}	$3 n^{2}$	300	1200	
\mathcal{C}^{\prime}	$3 \cdot 2^{n}$	3072	3145728	

Consider 3 algorithms $\mathcal{A}, \mathcal{B}, \mathcal{C}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}	n	10	20	doubled
\mathcal{B}	n^{2}	100	400	quadrupled
\mathcal{C}	2^{n}	1024	1048576	squared

Now 3 algorithms $\mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \mathcal{C}^{\prime}$:

		input size n		
	running t.	10	20	What happened when input doubled?
\mathcal{A}^{\prime}	$3 n$	30	60	doubled
\mathcal{B}^{\prime}	$3 n^{2}$	300	1200	quadrupled
\mathcal{C}^{\prime}	$3 \cdot 2^{n}$	3072	3145728	$1 / 3$ of squared

The O-notation allows us to abstract from constants ($3 n$ vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f: \mathbb{N} \rightarrow \mathbb{R}$, then $O(f(n))$ is the class (set) of functions $g(n)$ s.t.:

There exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.

The O-notation allows us to abstract from constants ($3 n$ vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f: \mathbb{N} \rightarrow \mathbb{R}$, then $O(f(n))$ is the class (set) of functions $g(n)$ s.t.:

There exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.

We then say that

$$
g(n) \in O(f(n)) \quad \text { or } \quad \underbrace{g(n)=O(f(n))}_{\text {Careful, this is not an "equality" }}
$$

The O-notation allows us to abstract from constants ($3 n$ vs. n) and other details which are not important for the growth behaviour of functions.

Definition (O-classes)

Given a function $f: \mathbb{N} \rightarrow \mathbb{R}$, then $O(f(n))$ is the class (set) of functions $g(n)$ s.t.:

There exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.
We then say that

$$
g(n) \in O(f(n)) \quad \text { or } \quad \underbrace{g(n)=O(f(n))}_{\text {Careful, this is not an "equality" ! }}
$$

Meaning: " g is smaller or equal than f (w.r.t. growth behaviour)" " g does not grow faster than f "

Example

 $3 n^{2}+2 n+1 \in O\left(n^{2}\right)$
Example

$3 n^{2}+2 n+1 \in O\left(n^{2}\right)$
Recall definition
$g(n) \in O(f(n))$ if
there exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.

Example

$3 n^{2}+2 n+1 \in O\left(n^{2}\right)$
Recall definition
$g(n) \in O(f(n))$ if
there exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.

Proof

n	1	2	3	4	5
$3 n^{2}+2 n+1$	6	17	34	57	86
$4 n^{2}$	4	16	36	64	100

Example

$3 n^{2}+2 n+1 \in O\left(n^{2}\right)$
Recall definition
$g(n) \in O(f(n))$ if
there exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.
Proof
Choose $c=4$ and $n_{0}=3$. We have: $\forall n \geq 3: \quad 3 n^{2}+2 n+1 \leq 4 n^{2}$.

n	1	2	3	4	5
$3 n^{2}+2 n+1$	6	17	34	57	86
$4 n^{2}$	4	16	36	64	100

Example

$3 n^{2}+2 n+1 \in O\left(n^{2}\right)$
Recall definition
$g(n) \in O(f(n))$ if
there exists a $c>0$ and an $n_{0} \in \mathbb{N}$ s.t. for all $n \geq n_{0}: g(n) \leq c \cdot f(n)$.
Proof
Choose $c=4$ and $n_{0}=3$. We have: $\forall n \geq 3: \quad 3 n^{2}+2 n+1 \leq 4 n^{2}$.

n	1	2	3	4	5
$3 n^{2}+2 n+1$	6	17	34	57	86
$4 n^{2}$	4	16	36	64	100

$$
\begin{array}{lc}
& 3 n^{2}+2 n+1 \leq 4 n^{2} \\
\Leftrightarrow & n^{2}-2 n-1 \geq 0 \\
\Leftrightarrow & (n-1)^{2}-2 \geq 0 \\
\Leftrightarrow & (n-1)^{2} \geq 2 \\
\Leftrightarrow & n \geq 3
\end{array}
$$

$3 n^{2}+2 n+1 \in O\left(n^{2}\right): \quad \forall n \geq 3: \quad 3 n^{2}+2 n+1 \leq 4 n^{2}$

plot: WolframAlpha

plot: WolframAlpha

In practice:

- identify which input parameters are important-no. months n for Fibonacci numbers; length of strings n, m for pairwise al.
- order additive terms according to these in decreasing growth order: $3 n^{5}+2 n^{3}+n+7$, $3 n m+n+m+1$
- take largest without multiplicative constant:

$$
\begin{aligned}
& 3 n^{5}+2 n^{3}+n+7 \in O\left(n^{5}\right) \\
& 3 n m+n+m+1 \in O(n m)
\end{aligned}
$$

Important O-classes

The most important functions, ordered by increasing O-classes: each function f_{i} is in the O-class of the next function f_{i+1}, but $f_{i+1}(n) \notin O\left(f_{i}(n)\right)$.

1	$\log \log n$	$\log n$	\sqrt{n}	n	$n \log n$	n^{2}	n^{3}		. . .	2^{n}	$n!$	n^{n}
cons- tant		loga- rith- mic		linear		quadratic	cubic			$\begin{gathered} \text { expo- } \\ \text { nen- } \\ \text { tial } \end{gathered}$		
			polynomial (of the form n^{c} for some constant c) (all except $n \log n$ are polynomials)									
E F F ICIE N T ${ }^{1}$									inefficient			

function grows slower faster algorithm

function grows faster slower algorithm
${ }^{1}$ also called feasible vs. infeasible

Amount of time an algorithm of time complexity $f(n)$ would need on a computer that performs one million operations per second:

$f(n)$	$n=50$	$n=100$	$n=200$
n	$5 \cdot 10^{-5} \mathrm{~s}$	$10^{-4} \mathrm{~s}$	
n^{2}	0.0025 s	0.01 s	
n^{3}	0.125 s	1 s	
1.1^{n}	0.0001 s	0.014 s	
2^{n}	35.7 years	$4 \cdot 10^{16}$ years	

Amount of time an algorithm of time complexity $f(n)$ would need on a computer that performs one million operations per second:

$f(n)$	$n=50$	$n=100$	$n=200$
n	$5 \cdot 10^{-5} \mathrm{~s}$	$10^{-4} \mathrm{~s}$	$2 \cdot 10^{-4} \mathrm{~s}$
n^{2}	0.0025 s	0.01 s	0.04 s
n^{3}	0.125 s	1 s	8 s
1.1^{n}	0.0001 s	0.014 s	190 s
2^{n}	35.7 years	$4 \cdot 10^{16}$ years	$5 \cdot 10^{46}$ years

On a 1000 times faster computer:

$f(n)$	$n=50$	$n=100$	$n=200$
n	$5 \cdot 10^{-8} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	$2 \cdot 10^{-7} \mathrm{~s}$
n^{2}	$2.5 \cdot 10^{-6} \mathrm{~s}$	$10^{-5} \mathrm{~s}$	$4 \cdot 10^{-5} \mathrm{~s}$
n^{3}	$1.25 \cdot 10^{-4} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	$8 \cdot 10^{-3} \mathrm{~s}$
1.1^{n}	$1.1 \cdot 10^{-7} \mathrm{~s}$	$1.4 \cdot 10^{-5} \mathrm{~s}$	0.19 s
2^{n}	13 days	$4 \cdot 10^{13}$ years	$5 \cdot 10^{43}$ years

Looking at it in a different way ...

	1	2	3	4	5	\ldots	10	20	100	1000	10^{6}
n	1	2	3	4	5	\ldots	10	20	100	1000	10^{6}
n^{2}	1	4	9	16	25	\ldots	100	400	10000	10^{6}	
2^{n}	2	4	8	16	32	\ldots	1024	$\approx 10^{6}$	$\approx 10^{30}$	$\approx 10^{301}$	

Looking at it in a different way ...

	1	2	3	4	5	\ldots	10	20	100	1000	10^{6}
n	1	2	3	4	5	\ldots	10	20	100	1000	10^{6}
n^{2}	1	4	9	16	25	\ldots	100	400	10000	10^{6}	
2^{n}	2	4	8	16	32	\ldots	1024	$\approx 10^{6}$	$\approx 10^{30}$	$\approx 10^{301}$	

On a computer that can perform one million operations per second, in a second,

- a linear-time algorithm can solve a problem instance of size 10^{6} (one million) (e.g. fib2, fib3),
- a quadratic-time algorithm one of size 1000 (one thousand),
- an exponential-time algorithm one of size 20 (e.g. fib1).

In fact, on any computer, these algorithms need always the same amount of time for problem instances of such different sizes!

Back to the global alignment algorithms:

- $A(n):=3 n^{2}+2 n+1$ running time of DP algo
- $B(n):=n \cdot N(n, n)$ running time of exhaustive search algo

	1	2	3	4	5	\ldots	10	20	100	1000
$A(n)$	6	17	34	57	86	\ldots	321	1241	30201	3002001
$B(n)$	3	26	189	1284	8415	\ldots	$\approx 80 \cdot 10^{6}$	$\approx 5 \cdot 10^{16}$	$\approx 2 \cdot 10^{77}$	$\approx 10^{700}$
n	1	2	3	4	5	\ldots	10	20	100	1000
n^{2}	1	4	9	16	25	\ldots	100	400	10000	10^{6}
2^{n}	2	4	8	16	32	\ldots	1024	$\approx 10^{6}$	$\approx 10^{30}$	$\approx 10^{301}$

- $A(n) \in O\left(n^{2}\right)$ a quadratic time algorithm
- $B(n)$ is super-exponential

Analysis of our alignment algorithms

algorithm	time	space
DP for global alignment, only $\operatorname{sim}(s, t)$	$O(n m)$	$O(n m)$
[equal length strings	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$]

computing an optimal alignment [equal length strings
space saving variant of DP for global alignment, only $\operatorname{sim}(s, t)$ [equal length strings

DP for local alignment [equal length strings

$$
\begin{array}{cc}
O(n+m) & \text { none }^{1} \\
O(n) & \text { none } \left.^{1}\right]
\end{array}
$$

$$
O(n m) \quad O(\min (n, m))
$$

$$
\left.O\left(n^{2}\right) \quad O(n)\right]
$$

$$
O(n m) \quad O(n m)
$$

$$
\left.O\left(n^{2}\right) \quad O\left(n^{2}\right)\right]
$$

${ }^{1}$ assuming the $O\left(n^{2}\right)$ size DP-table is given

