
Algoritmi di Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9)
a.a. 2014/15, spring term

Computational e�ciency I

2 / 18

Computational E�ciency

As we will see later in more detail, the e�ciency of algorithms is measured
w.r.t.

• running time

• storage space

We will make these concepts more concrete later on, but for now want to
give some intuition, using an example.

3 / 18

Example: Computation of nth Fibonacci number

Fibonacci numbers: model for growth of populations (simplified model)

• Start with 1 pair of rabbits in a field

• each pair becomes mature at age of 1 month and mates

• after gestation period of 1 month, a female gives birth to 1 new pair

• rabbits never die1

Definition

F (n) = number of pairs of rabbits in field at the beginning of the n’th
month.

1
This unrealistic assumption simplifies the mathematics; however, it turns out that

adding a certain age at which rabbits die does not significantly change the behaviour of

the sequence, so it makes sense to simplify.

4 / 18

Computation of nth Fibonacci number

• month 1: there is 1 pair of rabbits in the field F (1) = 1

• month 2: there is still 1 pair of rabbits in the field F (2) = 1

• month 3: there is the old pair and 1 new pair F (3) = 1 + 1 = 2

• month 4: the 2 pairs from previous month, plus
the old pair has had another new pair F (4) = 2 + 1 = 3

• month 5: the 3 from previous month, plus
the 2 from month 3 have each had a new pair F (5) = 3 + 2 = 5

Recursion for Fibonacci numbers

F (1) = F (2) = 1
for n > 2: F (n) = F (n � 1) + F (n � 2).

5 / 18

Computation of nth Fibonacci number

source: Fibonacci numbers and nature
(http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html)

.

6 / 18

Computation of nth Fibonacci number

The first few terms of the Fibonacci sequence are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
F (n) 1 1 2 3 5 8 13 21 34 55 89 144 233 377

n 15 16 17 18 19 20 21 22 23
F (n) 610 987 1 597 2 584 4 181 6 765 10 946 17 711 28 657

7 / 18

Fibonacci numbers in nature

21 spirals left 34 spirals right

source: Plant Spiral Exhibit
(http://cs.smith.edu/ phyllo/Assets/Images/ExpoImages/ExpoTour/index.htm)

On these pages it is explained how these plants develop. Very interesting!

8 / 18

Fibonacci numbers in nature

8 spirals left 13 spirals right

source: Plant Spiral Exhibit
(http://cs.smith.edu/ phyllo/Assets/Images/ExpoImages/ExpoTour/index.htm)

.

9 / 18

Fibonacci numbers in nature

21 spirals left 13 spirals right

source: Fibonacci numbers and nature
(http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html)

very nice page! recommended!

10 / 18

Growth of Fibonacci numbers

Theorem

For n > 6: F (n) > (1.5)n�1.

Proof:

Note that from n = 3 on, F (n) strictly increases, so for n � 4, we have
F (n � 1) > F (n � 2). Therefore, F (n � 1) > 1

2F (n).

We prove the theorem by induction:
Base: For n = 6, we have F (6) = 8 > 7.59 . . . = (1.5)5.

Step: Now we want to show that F (n + 1) > (1.5)n. By the I.H. (induction

hypothesis), we have that F (n) > (1.5)n�1. Since F (n � 1) > 0.5F (n), it follows

that F (n + 1) = F (n) + F (n � 1) > 1.5 · F (n) > (1.5) · (1.5)n�1 = (1.5)n.

11 / 18

Computation of nth Fibonacci number

Algorithm 1 (let’s call it fib1) works exactly along the recursive definition:

Algorithm fib1(n)
1. if n = 1 or n = 2
2. then return 1
3. else

4. return fib1(n � 1) + fib1(n � 2)

12 / 18

Computation of nth Fibonacci number

Analysis

(sketch) Looking at the computation tree, we can see that the tree for
computing F (n) has F (n) many leaves (show by induction), where we
have a lookup for F (2) or F (1). A binary rooted tree has one fewer
internal nodes than leaves (see second part of course, or show by
induction), so this tree has F (n)� 1 internal nodes, each of which entails
an addition. So for computing F (n), we need F (n) lookups and F (n)� 1
additions, altogether 2F (n)� 1 operations (additions, lookups etc.).

The algorithm has exponential running time, since it makes 2F (n)� 1, i.e.
at least 2 · (1.5)n�1 � 1 steps (operations).

13 / 18

Computation of nth Fibonacci number

Algorithm 2 (let’s call it fib2) computes every F (k), for k = 1 . . . n,
iteratively (one after another), until we get to F (n).

Algorithm fib2(n)
1. array of int F [1 . . . n];
2. F [1] 1; F [2] 1;
3. for k = 3 . . . n
4. do F [k] F [k � 1] + F [k � 2];
5. return F [n];

Analysis

(sketch) One addition for every k = 1, . . . , n. Uses an array of integers of
length n.—The algorithm has linear running time and linear storage space.

14 / 18

Computation of nth Fibonacci number

Algorithm 3 (let’s call it fib3) computes F (n) iteratively, like Algorithm 2,
but using only 3 units of storage space.

Algorithm fib3(n)
1. int a, b, c ;
2. a 1; b 1; c 1;
3. for k = 3 . . . n
4. do c a+ b;
5. a b; b c ;
6. return c ;

Analysis

(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and
c).—The algorithm has linear running time and constant storage space.

15 / 18

Comparison of running times

n 1 2 3 4 5 6 7 10 20 30 40
F (n) 1 1 2 3 5 8 13 55 6 765 832 040 102 334 155
fib1 1 1 3 5 9 15 25 109 13 529 1 664 079 204 668 309
fib2 1 2 3 4 5 6 7 10 20 30 40
fib3 1 2 3 4 5 6 7 10 20 30 40

The number of steps each algorithm makes to compute F (n).

16 / 18

Summary

• We saw 3 di↵erent algorithms for the same problem (computing the
nth Fibonacci number).

• They di↵er greatly in their e�ciency:
• Algo fib1 has exponential running time.
• Algo fib2 has linear running time and linear storage space.
• Algo fib3 has linear running time and constanct storage space.

• We saw on an example computation (during class) that exponential
running time is not practicable.

17 / 18

Summary (2)

Take-home message

• There may be more than one way of computing something.

• It is very important to use e�cient algorithms.

• E�ciency is measured in terms of running time and storage space.

• Computation time is important for obvious reasons: the faster the
algorithm, the more problems we can solve in the same amount of
time.

• In computational biology, inputs are often very large, therefore storage
space is at least as important as running time.

18 / 18

