Algoritmi di Bioinformatica

Zsuzsanna Lipták

Laurea Magistrale Bioinformatica e Biotechnologie Mediche (LM9) a.a. 2014/15, spring term

Computational efficiency I

2 / 18

Computational Efficiency

As we will see later in more detail, the efficiency of algorithms is measured wirt

- running time
- storage space

We will make these concepts more concrete later on, but for now want to give some intuition, using an example.

3 / 18

Example: Computation of nth Fibonacci number

Fibonacci numbers: model for growth of populations (simplified model)

- Start with 1 pair of rabbits in a field
- each pair becomes mature at age of 1 month and mates
- after gestation period of 1 month, a female gives birth to 1 new pair
- ullet rabbits never ${
 m die}^1$

Definition

F(n) = number of pairs of rabbits in field at the beginning of the n'th month.

 1 This unrealistic assumption simplifies the mathematics; however, it turns out that adding a certain age at which rabbits die does not significantly change the behaviour of the sequence, so it makes sense to simplify.

4 / 18

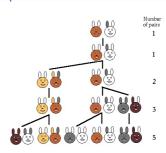
Computation of nth Fibonacci number

• month 1: there is 1 pair of rabbits in the field F(1)=1• month 2: there is still 1 pair of rabbits in the field F(2)=1• month 3: there is the old pair and 1 new pair F(3)=1+1=2• month 4: the 2 pairs from previous month, plus the old pair has had another new pair F(4)=2+1=3• month 5: the 3 from previous month, plus the 2 from month 3 have each had a new pair F(5)=3+2=5

Recursion for Fibonacci numbers

F(1) = F(2) = 1for n > 2: F(n) = F(n-1) + F(n-2).

Computation of nth Fibonacci number



source: Fibonacci numbers and natur (http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.htm

Computation of nth Fibonacci number

The first few terms of the Fibonacci sequence are:

n	1	2	3	4	5	6	7	8	9	10	11	12	13 233	14	
F(n)	1	1	2	3	5	8	13	21	34	55	89	144	233	377	-
n	1	5	16		17		18	1	9	20		21	22		23
F(n)	61	0	987	1	597	2	584	4 18	31	6 765	10	946	17711	28 (557

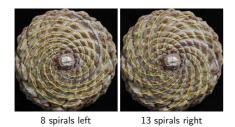
Fibonacci numbers in nature

source: Plant Spiral Exhibit (http://cs.smith.edu/ phyllo/Assets/Images/Expolmages/ExpoTour/index.htm)

On these pages it is explained how these plants develop. Very interesting!

7 / 18

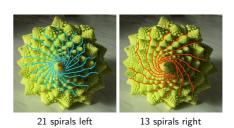
Fibonacci numbers in nature



source: Plant Spiral Exhibit (http://cs.smith.edu/ phyllo/Assets/Images/ExpoImages/ExpoTour/index.htm)

9 / 18

Fibonacci numbers in nature



source: Fibonacci numbers and natur (http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

10 / 18

Growth of Fibonacci numbers

Theorem

For n > 6: $F(n) > (1.5)^{n-1}$.

Proof:

Note that from n=3 on, F(n) strictly increases, so for $n\geq 4$, we have F(n-1)>F(n-2). Therefore, $F(n-1)>\frac{1}{2}F(n)$.

We prove the theorem by induction:

Base: For n = 6, we have $F(6) = 8 > 7.59... = (1.5)^5$.

Step: Now we want to show that $F(n+1)>(1.5)^n$. By the I.H. (induction hypothesis), we have that $F(n)>(1.5)^{n-1}$. Since F(n-1)>0.5F(n), it follows that $F(n+1)=F(n)+F(n-1)>1.5\cdot F(n)>(1.5)\cdot (1.5)^{n-1}=(1.5)^n$.

Computation of nth Fibonacci number

Algorithm 1 (let's call it fib1) works exactly along the recursive definition:

Algorithm fib1(n)

- 1. **if** n = 1 or n = 2
- 2. then return 1
- 3. else
- 4. **return** fib1(n-1) + fib1(n-2)

11 / 18 12 / 18

Computation of nth Fibonacci number

Analysis

(sketch) Looking at the computation tree, we can see that the tree for computing F(n) has F(n) many leaves (show by induction), where we have a lookup for F(2) or F(1). A binary rooted tree has one fewer internal nodes than leaves (see second part of course, or show by induction), so this tree has F(n)-1 internal nodes, each of which entails an addition. So for computing F(n), we need F(n) lookups and F(n)-1 additions, altogether 2F(n)-1 operations (additions, lookups etc.).

The algorithm has exponential running time, since it makes 2F(n)-1, i.e. at least $2\cdot (1.5)^{n-1}-1$ steps (operations).

13 / 18

Computation of nth Fibonacci number

Algorithm 3 (let's call it fib3) computes F(n) iteratively, like Algorithm 2, but using only 3 units of storage space.

Algorithm fib3(n)

```
1. int a, b, c;

2. a \leftarrow 1; b \leftarrow 1; c \leftarrow 1;

3. for k = 3 \dots n

4. do c \leftarrow a + b;

5. a \leftarrow b; b \leftarrow c;

6. return c:
```

Analysis

(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and c).—The algorithm has linear running time and constant storage space.

15 / 1

Summary

- We saw 3 different algorithms for the same problem (computing the nth Fibonacci number).
- They differ greatly in their efficiency:
 - Algo fib1 has exponential running time.
 - Algo fib2 has linear running time and linear storage space.
 - Algo fib3 has linear running time and constanct storage space.
- We saw on an example computation (during class) that exponential running time is not practicable.

Computation of nth Fibonacci number

Algorithm 2 (let's call it fib2) computes every F(k), for $k = 1 \dots n$, iteratively (one after another), until we get to F(n).

```
Algorithm fib2(n)
1. array of int F[1 \dots n];
2. F[1] \leftarrow 1; F[2] \leftarrow 1;
3. for k = 3 \dots n
4. do F[k] \leftarrow F[k-1] + F[k-2];
5. return F[n];
```

Analysis

(sketch) One addition for every $k=1,\ldots,n$. Uses an array of integers of length n.—The algorithm has linear running time and linear storage space.

.

Comparison of running times

	n	1	2	3	4	5	6	7	10	20	30	40
-	F(n)	1	1	2	3	5	8	13	55	6 765	832 040	102 334 155
-	fib1	1	1	3	5	9	15	25	109	13 529	1 664 079	204 668 309
	fib2	1	2	3	4	5	6	7	10	20	30	40
	fib3	1	2	3	4	5	6	7	10	20	30	40

The number of steps each algorithm makes to compute F(n).

16 / 18

Summary (2)

Take-home message

- There may be more than one way of computing something.
- It is very important to use efficient algorithms.
- Efficiency is measured in terms of running time and storage space.
- Computation time is important for obvious reasons: the faster the algorithm, the more problems we can solve in the same amount of time.
- In computational biology, inputs are often very large, therefore storage space is at least as important as running time.

17 / 18