5 NP Completeness'

(Garey-Johnson slide)

We first give a small overview, and then in the remainder of the chapter, we will
give exact definitions.

e P - class of problems that can be solved efficiently (i.e., in polynomial time)

e NP - class of problems that can solved in polynomial time by a non-
deterministic Turing machine (nicer definition to follow)

e NP-complete problems - maximally difficult problems in NP: every other prob-
lem can be transformed into these in polynomial time

e NP-hard problems - like NP-complete problems, but not necessarily in NP

It is customary to depict these classes of problems in the following way (Fig. 5.1).

NP-complete
problems

NP-hard
problems

Figure 5.1: The classes of P and NP.

The big open question of theoretical computer science, and arguably of all of
computer science is the following:

Is P = NP?

'Chapter 5 of Lecture notes by Zsuzsanna Liptak, zsuzsa@cebitec.uni-bielefeld.de, for "Selected
Topics in Algorithmic Bioinformatics,” Winter 2008/09, Bielefeld University - preliminary version
of December 17, 2008

25

5 NP Completeness®

In other words, can every problem in NP be solved efficiently? Looking at Fig. 5.1,
is the shaded part, the set NP \ P, empty? If you answer this question, you will
instantly become the single most famous person in computer science, and you will
also win a very large sum of money. The general consensus is that the answer is
negative, i.e.,

Most people believe: P # NP.

Why do we believe this? Because there is a very interesting class of problems,
the NP-complete problems, which are in some sense maximally difficult in NP. They
have the following property:

Theorem 5.1. Let X be an NP-complete problem. If we find a polynomial time algo-
rithm for X, then P = NP.

The reason is that every problem in NP can be "translated” into these problems
(in polynomial time), so if we could solve these efficiently, then we could solve all
other problems in NP efficiently, implying P = NP.

Many of the most interesting and widely applicable problems are NP-complete.
But in spite of the huge amount of effort that has gone into trying to find efficient
algorithms for these problems, over many decades by a large number of scientists,
none have so far been found. This doesn’t prove that there are none (we may just
be too stupid), but it makes it appear more likely that there may be an inherent
reason for this consistent failure: namely, that P # NP and therefore no efficient
algorithms exist for these problems.

A simple corollary from Theorem 5.1 is the following:

Theorem 5.2. Let X be an NP-complete problem. Then there is no polynomial time
algorithm for X, unless P = NP.

The practical upshot of all this is: If we have established that a problem is NP-
complete, then it is very unlikely that we will ever find an efficient algorithm solving
it.

And what are NP-hard problems? They are just like NP-complete problems, ex-
cept that we do not require that they be in NP themselves. They have the same
"unlikely-to-be-efficiently-solvable” property:

Theorem 5.3. Let X be an NP-hard problem. Then there is no polynomial time algo-
rithm for X, unless P = NP.

In the rest of the chapter, we will make these ideas precise.

5.1 Polynomial time transformations/reductions

So what do we mean by “translating” one problem into another?

(Little Prince example)

26

5.2 A polynomial time transformation

We will now define polynomial time reduction/transformation?. The idea is that
X <, Y means: Any instance of X can be tranformed into an instance of Y in poly-
nomial time, such that the new instance gives YES if and only if the old instance
gives YES. The < is supposed to imply that X is no more difficult than Y, and the p
in the subscript refers to 'polynomial time.” More formally:

Definition 5.4 (polytime reducible). We say that problem X is polynomial time re-
ducible to problem Y, X <,, VY, if there is a polynomial p, and for every instance I of
X, we can construct an instance] of Y in time p(|I|) such that:

I is a YES-instance of X & Jis a YES-instance of Y.

One can think of X <, Y as meaning: X is "not harder” than Y (with respect to
polynomial time). Note that we are still paying for the reduction/transformation: it
takes polynomial time!

Remark 1. By |I|, the size of [, we mean the actual number of bits it takes to encode
I in binary encoding. For most practical purposes, though, it is enough to consider
simpler parameters: [V|+ |[E| for graphs G = (V,E), number of entries for matrices,
length |[s| for strings s, log, N for positive integers N, etc. This is o.k. because they
only differ from the length of the binary encoding by a (usually constant) factor,
which is not important in most cases.

We can use polynomial time transformations to find polynomial time algorithms
for new problems:

Lemma 5.5. If X <,, Y and Y is polynomial time solvable, then so is X.
The contraposition of this fact is what is used for NP-completeness proofs:
Lemma 5.6. [/ X <,, Y and X cannot be solved in polynomial time, then neither can'y.

We will now look at an example.

5.2 A polynomial time transformation

We will show that CLIQUE <,, COMPATIBILITY. We first need a formal definition of
the two decision problems.

CLIQUE (DECISION):
Given a graph G = (V,E), and an integer k < |V|, does G have a clique of
size at least k?

COMPATIBILITY (DECISION):

Given a character state matrix M of dimension n x m, and an integer
k < m, is there a subset of the characters of size at least k which are
pairwise compatible?

>The difference between ‘reduction’ and ‘transformation’ is subtle and is due to the fact that they
have been introduced by different authors (Cook, 1971) and (Karp, 1972) - but of no importance
for our purposes. We will slightly abuse notation <,, and use the terms interchangeably.

27

5 NP Completeness®

Now given an instance of CLIQUE, we want to construct an instance of COMPAT -
IBILITY. We will equate the vertices with characters, and will want to fill the matrix
in such a way that two columns are compatible if and only if the corresponding
vertices are connected by an edge.

The transformation:

Given an instance G = (V,E) and k < |V| of CLIQUE, we define a compatiblity matrix:
The set of characters (the columns) equal V, and for each pair of vertices u # v where
{u,v}is notin E, we define three objects ay,,, by v, cuv. Now we construct a forbidden
submatrix for columns u,v and rows a,, by, ¢y, specifically: We set M(a ., u) =
1,M(ayy,v) = 0,M(byyv,u) = 0,M(by,y,v) = 1,M(cyy,u) = 1, and M(cy,,v) = 1. All
other entries of M are 0.4

Claim: In order to show that this is a valid transformation, we have to prove:

1. The answer is YES for the original instance (the graph has a clique of size at
least k) if and only if the answer is YES for the new instance (there is a subset
of compatible characters of size at least k).

2. The transformation can be done in polynomial time.

Proof. 1. It suffices to show: {u,v} € E if and only if ¢, c, are compatible. Clearly,
if {u,v} ¢ E, then by construction, c,,c, are not compatible, since we have created
a forbidden submatrix in the corresponding columns. Now assume that {u,v} € E.
We will show that for any row i, if M, = 1, then M;, = 0, and, symmetrically,
if My, = 1, then My, = 0. This implies that O, and O, are disjoint and thus
compatible. So let i be a row s.t. M, = 1. Then, i = ay, or i = by, or i = ¢y for
some w # v. Thus, M;, = 0.

2. For the transformation, we have to create 3 objects for each pair of vertices

which are not connected by an edge, i.e., at most 3(‘\24) many. The number of

columns is |V|. Let n = |V|. So we have to fill in < 3(“{') -|V| = O(n?) many entries in
the matrix, which is clearly polynomial in the input size |V|+|[E[: n < |V|+[E| < n+ %2
since 0 < [E| < (5) < “72 O

5.3 Decision versus optimization problems

NP-complete problems are decision problems. The corresponding optimization
problems are called NP-hard: They are not in NP (by definition, NP contains only
decision problems), but they have the same property that they are unlikely to have
an efficient algorithm (Theorem 5.3).

“The transformation works just as well if we define these 3 objects for all u # v. Then the forbidden
submatrix is only created for those u # v where {u,v} ¢ E. For {u,v} € E, all entries in rows
Qu,v,bu,v,Cu,v are 0. The only difference is that the matrix has more rows.

28

5.4 NP: Polynomial time checkable problems

optimization decision
some Small Parsimony Does M allow a PP?
examples (Find value of best labelling)

Large Parsimony Is M an ultrametric?

(Find best tree)

COMPATIBILITY-opt COMPATIBILITY-dec
(What is the size of a largest (Is there a compatible
compatible subset?) subset of size k?)

In many cases, if we can solve the decision version of a problem efficiently, then
we can also solve the optimization version efficiently: If there is a known upper
bound which is polynomial in n for possible values of k, then we can do binary
search on possible values of k. Such an upper bound is, for example, n for the
size of a clique, resulting in O(logn) calls to the polytime algorithm for the decision
problem.

Thus, we only consider decision problems from now on.

5.4 NP: Polynomial time checkable problems

The reason why the "P=NP”-question is so important is this: Many problems of
interest for which there is no efficient algorithm known are in the class NP: These
are problems which are efficiently checkable (or certifiable). What does this mean?
Given an instance I of a problem X. Let’s assume that someone claims I is a YES-
instance. If X is in NP, then there is a certificate v (also called proof) such that y
proves that [is a YES-instance, and, moreover, this can be verified in polynomial
time.

Some examples

problem instance certificate

CLIQUE G=(V,E),k a clique of size k

COMPATIBILITY char-state matrix M, k a compatible character set of size k
Small Parsimony phylogenetic tree, cost c a labelling with cost < ¢

Large Parsimony char-state matrix M, cost ¢ a labelled tree with cost < c

PP char-state matrix M a PP

ultrametric dist. matrix M a rooted tree

additive dist. matrix M an unrooted tree

We now need some definitions:

Definition 5.7 (polytime algorithm). Let A be an algorithm solving decision problem
X. A is polynomial time if there is a polynomial p such that, for every instance I of
X, A terminates in at most p(|I|) many steps on input [.

Let X be a decision problem.

29

5 NP Completeness®

Definition 5.8 (P). X € P if there is a polynomial time algorithm A solving X.
Definition 5.9 (NP). X € NP if
1. There is a polynomial time algorithm B that takes two arguments I and vy, and

2. There is a polynomial p s.t. for every instance I of X: I is a YES-instance of X
if and only if there exists a certificate ("proof”) v s.t.

lyil < p(]I]) and B(I,y;) = YES.

In particular, B is polynomial time in [I], i.e., there is a polynomial q s.t. B termi-
nates after at most q(|I|) many steps on input (I, vy1).

Now the "P=NP”-question becomes: Can every problem for which a potential so-
lution can be checked in polynomial time also be solved in polynomial time?

5.5 NP-complete problems

NP-complete problems are those problems in NP to which all other NP-problems
can be reduced, i.e., if X is an NP-complete problem and Y € NP, then Y <, X. We
recall the theorem from the beginning of this chapter:

Theorem 5.1 Let X be an NP-complete problem. If we find a polynomial time algo-
rithm for X, then P = NP.

Proof. (Sketch) Let Y be any problem in NP. Since X is NP-complete, Y can be
reduced to X (transformed into an instance of X) in polynomial time. But we have
just found an algorithm for X which solves it in polynomial time. Polynomial time
(transforming Y into X) plus polynomial time (solving the transformed Y) equals
polynomial time. Altogether we have a polynomial time algorithm for Y, soY € P. 0O

In order to show that a problem X is NP-complete, we have to do two things:

1. Show that X is in NP.

2. Find a known NP-complete problem Y and a polynomial transformation of Y to
X (i.e., show that Y <, X).

When we say that a problem is NP-complete we are always implicitly referring to
the theorem from the beginning of the chapter:

Theorem 5.2 Let X be an NP-complete problem. Then there is no polynomial time
algorithm for X, unless P = NP.

And, since we all believe that P # NP, what people actually mean is this:

General Belief Let X be an NP-complete problem. Then there is no polynomial time
algorithm for X, fullstop.

30

5.6 What now?

5.5.1 Proving that COMPATIBILITY is NP-complete

We have to first prove that COMPATIBILITY is in NP.

Given an instance M of COMPATIBILITY (decision) of size m x n and a number
k < m, what would be a certificate for this instance? A subset of the character set
of size k. Let C be such a subset. Then, |C| = k < m and is thus polynomial in the
input size (which is mn), choose e.g. polynomial p(x) = x. Checking the certificate

takes time ('g') -n = O(m?n), which is polynomial in mn + k, using e.g. polynomial

q(x) = x2.
Secondly, we have already shown that CLIQUE can be polynomially reduced to
COMPATIBILITY. But CLIQUE is known to be NP-complete (see, e.g. the book by

Garey and Johnson [GJ79]).

5.6 What now?

Let’'s assume we have established that the problem we are trying to solve is NP-
complete or NP-hard. So we know that we are extremely unlikely to find an efficient
algorithm for solving it. And now?

What to do when faced with an NP-complete or NP-hard problem:

e Despair/give up.

e Run an exhaustive search algorithm: This is often feasible on small instances
(e.g. up ton =10).

e Verify that your instances are really general. Often, the general case is NP-
complete, but some special cases are not:

For example, CLIQUE on general graphs is NP-complete, but for CLIQUE on
planar graphs (graphs that can be drawn on a piece of paper without crossing
edges), there is a polynomial-time algorithm.

For example, PP is NP-complete, but PP for binary characters is not (recall the
O(nm) time algorithm from Section 4.2).

e Devise heuristics: algorithms that work well in practice but without a guaran-
tee. (Runtime heuristics will often but not always run reasonably fast; other
heuristics often but not always give a good output. Both without guaranteeing
to do so!)

e Devise a polynomial time approximation algorithm: Here we compromise on
the quality of the output but we usually have information about how much
(approximation ratio).

e Devise a randomized algorithm: a non-deterministic algorithm, using random

bits. Either the correctness or the running time are only given with a certain
(known) probability. Thus, no guarantee but may work well in practice.

31

5 NP Completeness’

e Devise a pseudo-polynomial time algorithm: The runtime is a polynomial in the
largest number of the input, e.g. if the input is a number K (thus, the input
size is log K, the runtime may be O(K). This may be acceptable as long as the
input numbers are not too large. (See Chapter 9 for an example.)

Literature for this chapter

The books by Kleinberg and Tardos [KT06] and by Cormen et al. [CLR90] have
very nice chapters on NP completeness. The Garey-Johnson [GJ79] contains a
huge list of NP complete problems; even though it is from 1979, it contains many
problems that one encounters. Extended lists can be found on the internet. The
transformation of CLIQUE to COMPATIBILITY was taken from the book by Setubal
and Meidanis [SM97].

32

Bibliography

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, 1990.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability (A Guide to
Theory of NP-Completeness). Freeman, New York, 1979.

[KT06] John Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

[SM97] Joao Setubal and Jodao Meidanis. Introduction to Computational Molecular
Biology. PWS Boston, 1997.

33

