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% Widely used paradigm in static analysis and
verification, e.g. CEGAR

< Basic principles

+ ldentify when and how to refine the underlying
abstraction, e.g. abstract domain

+ Goal: remove some false alarms or spurious traces
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Spurious abstract path: [1,2] — [3,4,5] — [7] — [8,9]
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Not spurious abstract path in A4’:[1,2] — [3,4,5] — [6] — [8,9]

Not spurious abstract path in 4:[1,2] = [3] — [6] — [8,9]

Not spurious abstract path in 4: [1,2] — [4,5] — [6] — [8,9]
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‘A’ keeps the same examples of A:

if TU is spurious in A’ then there exists a spurious TT in A such that x(1T)= TT
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‘A doesn’t keep the same examples of ‘A
Spurious loop path in A:[1,2,3] — [1,2,3] — [1,2,3] — ...

BUT no corresponding spurious path in ‘A
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r++ : p(Z) — p(Z)

Z Z O++ = Z-o
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Z Z O++ = Z-0
Ay Z/ \Z Z/ \Z A=
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% Problem formalized in abstract interpretation
% Main ingredients
+ Approximation formalized by partial orders
+ Concrete domain C<

+ Abstractions A< formalized by Galois connections &/y

+ Concrete objects ¢ have best correct approximations (c)

4+ Semantic functions f : C — C have best correct
approximations fA £ (tofoy : A 9 A
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Correctness Kernel

Concrete semantic function f: C = C

Abstract domain A € Abs(C)
Xa:C—>A  yaA—C

Abstract domain B € Abs(C)
g:C—=>B vyeB—C

fA = when

(YaOa)-f-(YaOa) = (YBOB)-f-(YBOB)

That is, the best correct approximations of function f in A and B
coincide when encoded within C
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Correctness Kernel

A= when

(YAOA)-f-(YAOA) = (YBOB)-f-(YBOB)

Correctness kernel K¢(A) of A for f:

K¢((A) = most abstract domain B such that f8 = fA
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Correctness Kernel

fA=f when
(YAOA)-f-(YATKA) = (YBOB)-f-(YBXB)

Main Technical Result
If f-(Yaxa) is continuous then K¢(A) exists and

Ki(A) = img(f) U Uyeimge) max({x € A | fA(x) = y})

Proof relies on the notion of complete abstract interpretation
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Ki(A) = img(f) U Useimge) max({x € A | fA(x) = y})

img(++2) ={Z,7Z-0}
max({x € A | ++A(x) = Z}) = max({Z<o, Z}) = Z
max({x € A | ++A(x) = Z=0}) = max({0, Z-0}) = Z=0
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Ki(A) = img(f) U Useimge) max({x € A | fA(x) = y})

img(++4) ={Z,Z-0}

max({x € A | ++A(x) = Z}) = max({Z<o, Z}) = Z
max({x € A | ++A(x) = Z=0}) = max({0, Z-0}) = Z=0

Kit(A) = { Z, 70}
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Abstract Model Checking

Concrete functions:

predecessor pre: o(3) — ©(3)
successor post: 9(3) = @)

Partition P can be viewed as an abstraction of ((2)

What is the correctness kernel of P for pre and post!?
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Abstract Model Checking

What is the correctness kernel K(P) of P for pre and post?

K(P) merges two blocks B and B iff for any A € P,
A 23 3B o A 3B, and B 23FA & B, 2FA
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EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P, =33>
Correctness Kernel <K(P) , =33>

Correctness kernels do not add spurious paths

if TT is a spurious path in K(P) then there exists a spurious path
O in P such that x(0)= 11




CEGAR

|) Model checker provides an abstract path (i.e. a counterexample)
=B »3B, »3¥ B3 . % B

2) CEGAR determines whether TT is spurious or not

3) Spuriousness of TT depends on some block By of TT with bad and
dead-end states. Thus, CEGAR splits Bk in order to separate bad and
dead-end states.
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No spuriousness

When irrelevant are joined with dead-end:

B €
N N

No spuriousness
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EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

@ The state irrelevant 4 is dead-irrelevant

\@ 1) can be reached from a block that

° ‘:* also reaches a dead-end
e‘.m a 2) can reach a block that is also

reached by a dead-end

dead-end

Thus, by EGAS, merging dead-irrelevant states with dead-end states
does not add spurious paths wrt keeping them separate
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EGAS Refinement Heuristics

Dead-irrelevant states
|) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
|) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

Fully-irrelevant states
|) neither bad- nor dead-irrelevant OR
2) both bad- and dead-irrelevant
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Related Work

% Core of an abstract domain [Giacobazzi et al.]

+ Given an abstract domain property P, this is the most
concrete simplification of A that satisfies P

+ Compressor of an abstract domain [Giacobazzi et al.]

+ Given a refinement Ref, this is the most abstract
simplification of A such that: Ref(Compressor(A))=Ref(A)
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