
Example-Guided
Abstraction Simplification

Francesco Ranzato
University of Padova

❖ Widely used paradigm in static analysis and
verification, e.g. CEGAR

Abstraction Refinements

❖ Widely used paradigm in static analysis and
verification, e.g. CEGAR

❖ Basic principles

Abstraction Refinements

❖ Widely used paradigm in static analysis and
verification, e.g. CEGAR

✦ Identify when and how to refine the underlying
abstraction, e.g. abstract domain

❖ Basic principles

Abstraction Refinements

❖ Widely used paradigm in static analysis and
verification, e.g. CEGAR

✦ Identify when and how to refine the underlying
abstraction, e.g. abstract domain

❖ Basic principles

✦ Goal: remove some false alarms or spurious traces

Abstraction Refinements

❖ Few examples in static analysis and verification

Abstraction Simplifications

❖ Few examples in static analysis and verification

❖ Basic principles

Abstraction Simplifications

❖ Few examples in static analysis and verification

✦ Identify when and how to simplify the underlying
abstraction

❖ Basic principles

Abstraction Simplifications

❖ Few examples in static analysis and verification

✦ Identify when and how to simplify the underlying
abstraction

❖ Basic principles

✦ Goal: maintain the same approximate behaviour

Abstraction Simplifications

Example in abstract model checking

1

2
4

5

3
6

7

8

9

Example in abstract model checking

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A

Spurious abstract path: [1,2] → [4,5] → [7] → [8,9]

1

2
4

5

3
6

7

8

9

A

Example in abstract model checking

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’

Spurious abstract path: [1,2] → [3,4,5] → [7] → [8,9]

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’

1

2
4

5

3
6

7

8

9

1

2
4

5

3
6

7

8

9

Example in abstract model checking

A’A

1

2
4

5

3
6

7

8

9

1

2
4

5

3
6

7

8

9

Example in abstract model checking

A’A

Not spurious abstract path in A’: [1,2] → [3,4,5] → [6] → [8,9]

1

2
4

5

3
6

7

8

9

1

2
4

5

3
6

7

8

9

Example in abstract model checking

A’A

Not spurious abstract path in A’: [1,2] → [3,4,5] → [6] → [8,9]

Not spurious abstract path in A: [1,2] → [3] → [6] → [8,9]

1

2
4

5

3
6

7

8

9

1

2
4

5

3
6

7

8

9

Not spurious abstract path in A’: [1,2] → [3,4,5] → [6] → [8,9]

Example in abstract model checking

A’

Not spurious abstract path in A: [1,2] → [3] → [6] → [8,9]

Not spurious abstract path in A: [1,2] → [4,5] → [6] → [8,9]

A

 A’ keeps the same examples of A:

if π’ is spurious in A’ then there exists a spurious π in A such that α(π)= π’

Example in abstract model checking

1

2
4

5

3
6

7

8

9

1

2
4

5

3
6

7

8

9

A’A

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’’
1

2
4

5

3
6

7

8

9

A’

 A’’ keeps the same examples of A’

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’’
1

2
4

5

3
6

7

8

9

A’

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’’’
1

2
4

5

3
6

7

8

9

A

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’’’
1

2
4

5

3
6

7

8

9

 A’’’ doesn’t keep the same examples of A

A

 A’’’ doesn’t keep the same examples of A

Spurious loop path in A’’’: [1,2,3] → [1,2,3] → [1,2,3] → ...

BUT no corresponding spurious path in A

Example in abstract model checking

1

2
4

5

3
6

7

8

9

A’’’
1

2
4

5

3
6

7

8

9

A

Example in abstract interpretation

x++ : ℘(Z)→ ℘(Z)

Example in abstract interpretation

x++ : ℘(Z)→ ℘(Z)

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 :

ℤ

0

ℤ⩾0 ℤ⩽0

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

Example in abstract interpretation

x++ : ℘(Z)→ ℘(Z)

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 :

ℤ

0

ℤ⩾0 ℤ⩽0

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

x++A1 , x++A2 encode the same function in ℘(Z)→ ℘(Z)

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

x++A1 , x++A2 encode the same function in ℘(Z)→ ℘(Z)

(γA1 ◦ αA1) ◦ x++ ◦ (γA1 ◦ αA1) = (γA2 ◦ αA2) ◦ x++ ◦ (γA2 ◦ αA2)

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

x++A1 , x++A2 encode the same function in ℘(Z)→ ℘(Z)

0 and ℤ⩽0 are “irrelevant” in A1 for approximating x++

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

0 and ℤ⩽0 are “irrelevant” in A1 for approximating x++

Example in abstract interpretation

ℤ⩾0 ℤ⩽0

ℤ

0

x++A1 : ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0

ℤ
x++A2 :

ℤ⩾0

ℤ

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

0 and ℤ⩽0 are “irrelevant” in A1 for approximating x++

{0,-2,-7} ⟶ ℤ⩽0 ⟶ {x⩽1} ⟶ ℤA1 A1++

{0,-2,-7} ⟶ ℤ ⟶ ℤ ⟶ ℤA2 A2++

Abstract interpretation

❖ Problem formalized in abstract interpretation

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

✦ Concrete domain C⩽

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

✦ Concrete domain C⩽

✦ Abstractions A⩽ formalized by Galois connections α/γ

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

✦ Concrete domain C⩽

✦ Abstractions A⩽ formalized by Galois connections α/γ

✦ Concrete objects c have best correct approximations α(c)

Abstract interpretation

❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

✦ Concrete domain C⩽

✦ Abstractions A⩽ formalized by Galois connections α/γ

✦ Concrete objects c have best correct approximations α(c)

✦ Semantic functions f : C ➝ C have best correct
approximations fA ≝ α○f○γ : A ➝ A

Correctness Kernel
Concrete semantic function f: C → C

Abstract domain A ∈ Abs(C)
αA: C → A γA: A → C

Abstract domain B ∈ Abs(C)
αB: C → B γB: B → C

Correctness Kernel
Concrete semantic function f: C → C

Abstract domain A ∈ Abs(C)
αA: C → A γA: A → C

Abstract domain B ∈ Abs(C)
αB: C → B γB: B → C

fA = fB when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)

That is, the best correct approximations of function f in A and B
coincide when encoded within C

Correctness Kernel

fA = fB when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)

Correctness Kernel

fA = fB when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)

Correctness kernel Kf(A) of A for f:

 Kf(A) ≝ most abstract domain B such that fB = fA

Correctness Kernel

Main Technical Result
If f∘(γAαA) is continuous then Kf(A) exists and

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y})

fA = fB when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)

Correctness Kernel

Main Technical Result
If f∘(γAαA) is continuous then Kf(A) exists and

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y})

Proof relies on the notion of complete abstract interpretation

fA = fB when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)

Example

ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0 ℤ⩽0

ℤ

0

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y})

x++A :

Example

ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0 ℤ⩽0

ℤ

0

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y})

 img(++A) = { ℤ, ℤ⩾0 }

max({x ∈ A | ++A(x) = ℤ}) = max({ℤ⩽0, ℤ}) = ℤ
max({x ∈ A | ++A(x) = ℤ⩾0}) = max({0, ℤ⩾0}) = ℤ⩾0

x++A :

Example

ℤ⩾0 ℤ⩽0

ℤ

0

ℤ⩾0 ℤ⩽0

ℤ

0

0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y})

 img(++A) = { ℤ, ℤ⩾0 }

max({x ∈ A | ++A(x) = ℤ}) = max({ℤ⩽0, ℤ}) = ℤ
max({x ∈ A | ++A(x) = ℤ⩾0}) = max({0, ℤ⩾0}) = ℤ⩾0

x++A :

 K++(A) = { ℤ, ℤ⩾0 }

Abstract Model Checking

Concrete Kripke structure <∑,→,ℓ>

Abstract Model Checking

Concrete Kripke structure <∑,→,ℓ>

Abstract Kripke structure <P,→∃∃,ℓ>

Abstract state space P is a partition of ∑

B →∃∃ C iff there exist x∈B and y∈C s.t. x → y

Abstract Model Checking

Concrete functions:
 predecessor pre: ℘(∑) → ℘(∑)
 successor post: ℘(∑) → ℘(∑)

Abstract Model Checking

Concrete functions:
 predecessor pre: ℘(∑) → ℘(∑)
 successor post: ℘(∑) → ℘(∑)

Partition P can be viewed as an abstraction of ℘(∑)

Abstract Model Checking

Concrete functions:
 predecessor pre: ℘(∑) → ℘(∑)
 successor post: ℘(∑) → ℘(∑)

Partition P can be viewed as an abstraction of ℘(∑)

What is the correctness kernel of P for pre and post?

Abstract Model Checking
What is the correctness kernel K(P) of P for pre and post?

Abstract Model Checking
What is the correctness kernel K(P) of P for pre and post?

 K(P) merges two blocks B1 and B2 iff for any A ∈ P,
A →∃∃ B1 ⇔ A →∃∃ B2 and B1 →∃∃ A ⇔ B2 →∃∃ A

Abstract Model Checking
What is the correctness kernel K(P) of P for pre and post?

 K(P) merges two blocks B1 and B2 iff for any A ∈ P,
A →∃∃ B1 ⇔ A →∃∃ B2 and B1 →∃∃ A ⇔ B2 →∃∃ A

1

2
4

5

3
6

7

8

9

A

1

2
4

5

3
6

7

8

9

 K(A)

EGAS

EGAS: Example-Guided Abstraction Simplification

EGAS

EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P , →∃∃>
Correctness Kernel <K(P) , →∃∃>

EGAS

EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P , →∃∃>
Correctness Kernel <K(P) , →∃∃>

Correctness kernels do not add spurious paths

if π is a spurious path in K(P) then there exists a spurious path
σ in P such that α(σ)= π

CEGAR

1) Model checker provides an abstract path (i.e. a counterexample)
π = B1 →∃∃ B2 →∃∃ B3 →∃∃ Bn

2) CEGAR determines whether π is spurious or not

3) Spuriousness of π depends on some block Bk of π with bad and
dead-end states. Thus, CEGAR splits Bk in order to separate bad and
dead-end states.

CEGAR

1

2

3

4

5

6

7

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

bad

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

bad

irrelevant

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

bad

irrelevant

Finding the coarsest refinement is NP-hard
CEGAR heuristics: split into dead-end and bad U irrelevant

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

bad

irrelevant

Finding the coarsest refinement is NP-hard
CEGAR heuristics: split into dead-end and bad U irrelevant

1

2

3

4

5

6

7

CEGAR

π
1

2

3

4

5

6

7

1

3

4

5

6

dead-end

bad

irrelevant

Finding the coarsest refinement is NP-hard
CEGAR heuristics: split into dead-end and bad U irrelevant

1

2

3

4

5

6

7

2

3

4

6

bad

dead-end

CEGAR

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

No spuriousness

CEGAR

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

When irrelevant are joined with dead-end:

No spuriousness

CEGAR

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

When irrelevant are joined with dead-end:

No spuriousness

1

2

3

4

5

6

7

1

2

3

4

5

6

7

No spuriousness

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

1

2

3

4

5

6

7

dead-end

bad
The state irrelevant 4 is dead-irrelevant
1) can be reached from a block that
also reaches a dead-end
2) can reach a block that is also
reached by a dead-end

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

Thus, by EGAS, merging dead-irrelevant states with dead-end states
does not add spurious paths wrt keeping them separate

1

2

3

4

5

6

7

dead-end

bad
The state irrelevant 4 is dead-irrelevant
1) can be reached from a block that
also reaches a dead-end
2) can reach a block that is also
reached by a dead-end

EGAS Refinement Heuristics

Dead-irrelevant states
1) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

EGAS Refinement Heuristics

Dead-irrelevant states
1) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
1) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

EGAS Refinement Heuristics

Dead-irrelevant states
1) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
1) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

Fully-irrelevant states
1) neither bad- nor dead-irrelevant OR
2) both bad- and dead-irrelevant

EGAS Refinement Heuristics

1

2

3

4

5

6

7

EGAS Refinement Heuristics

1

2

3

4

5

6

7

1

2

3

4

5

6

7

EGAS Refinement

Related Work

❖ Core of an abstract domain [Giacobazzi et al.]

✦ Given an abstract domain property P, this is the most
concrete simplification of A that satisfies P

Related Work

❖ Core of an abstract domain [Giacobazzi et al.]

✦ Given an abstract domain property P, this is the most
concrete simplification of A that satisfies P

❖ Compressor of an abstract domain [Giacobazzi et al.]

✦ Given a refinement Ref, this is the most abstract
simplification of A such that: Ref(Compressor(A))=Ref(A)

Related Work

Conclusions

❖ First step in studying abstraction simplifications
in static analysis and model checking

Conclusions

❖ First step in studying abstraction simplifications
in static analysis and model checking

❖ Future work

✦ precise relationship between EGAS and CEGAR

Conclusions

❖ First step in studying abstraction simplifications
in static analysis and model checking

❖ Future work

✦ precise relationship between EGAS and CEGAR

Conclusions

✦ integrating EGAS in CEGAR

