Example-Guided
Abstraction Simplification

Francesco Ranzato
University of Padova

Abstraction Refinements

% Widely used paradigm in static analysis and
verification, e.g. CEGAR

Abstraction Refinements

% Widely used paradigm in static analysis and
verification, e.g. CEGAR

< Basic principles

Abstraction Refinements

% Widely used paradigm in static analysis and
verification, e.g. CEGAR

< Basic principles

Abstraction Refinements

% Widely used paradigm in static analysis and
verification, e.g. CEGAR

< Basic principles

+ ldentify when and how to refine the underlying
abstraction, e.g. abstract domain

+ Goal: remove some false alarms or spurious traces

Abstraction Simplifications

% Few examples in static analysis and verification

Abstraction Simplifications

% Few examples in static analysis and verification

< Basic principles

Abstraction Simplifications

% Few examples in static analysis and verification

< Basic principles

Abstraction Simplifications

% Few examples in static analysis and verification

< Basic principles

Example in abstract model checking

Example in abstract model checking

Example in abstract model checking

Example in abstract model checking

Spurious abstract path: [1,2] — [4,5] — [7] — [8,9]

Example in abstract model checking

Example in abstract model checking

A 5

e 6

Example in abstract model checking

A

/ N\ 6

<)

)
8
2

—/

Spurious abstract path: [1,2] — [3,4,5] — [7] — [8,9]

Example in abstract model checking

Example in abstract model checking

Not spurious abstract path in A4’:[1,2] — [3,4,5] — [6] — [8,9]

Example in abstract model checking

Not spurious abstract path in A4’:[1,2] — [3,4,5] — [6] — [8,9]

Not spurious abstract path in 4:[1,2] = [3] — [6] — [8,9]

Example in abstract model checking

A
y3
N\
rj] 6 rj]
9 2 W 7 9

Not spurious abstract path in A4’:[1,2] — [3,4,5] — [6] — [8,9]

Not spurious abstract path in 4:[1,2] = [3] — [6] — [8,9]

Not spurious abstract path in 4: [1,2] — [4,5] — [6] — [8,9]

Example in abstract model checking

‘A’ keeps the same examples of A:

if TU is spurious in A’ then there exists a spurious TT in A such that x(1T)= TT

‘g’

I
2

Example in abstract model checking

A
W ~
N
| 3 |
*4/ 7 2 2 *4/ 7

‘g’

I
2

Example in abstract model checking

A
)
»73;

6
f]
9

7 25—,
/7
>

‘A” keeps the same examples of A’

Example in abstract model checking

Example in abstract model checking

‘A doesn’t keep the same examples of ‘A

Example in abstract model checking

‘A doesn’t keep the same examples of ‘A
Spurious loop path in A:[1,2,3] — [1,2,3] — [1,2,3] — ...

BUT no corresponding spurious path in ‘A

Example in abstract interpretation

r++ : p(Z) — p(Z)

Example in abstract interpretation

r++ : p(Z) — p(Z)

Z

/.
N /
./,E—|_—|_ 1 :ZsO ZZO —> ZsO
N

N
Z
/

=

0

O++ =Z-o
Leptt =1
L=ott = 2=
7+ =7

Example in abstract interpretation

r++ : p(Z) — p(Z)

Z Z O++ = Z-o
A 7N /. '\ R I
xr-++1 : Ze<o ls) —> i< /=0 _
NZ T J=0T+ = 7o
0 -0 Z++ =7

Z;O—l__l_ — ZZO
Z++ =7

Example in abstract interpretation

Z Z O++ = Z-0
Ay Z/ \Z Z/ \Z A=
:E_I__I_ <0 / =) —> <0 / =0 Z;0++ - Z;Q
0 0 7++ =17
Z Z Z20++ — Z;O

Z++ =12

Example in abstract interpretation

4
TN
m—l__|_ . :Zs() /e

/

0

0

4

r++42 |
Z;O

:U—l——l—Al :E—I——I—A2 encode the same function in

)

Z
RN
L

ZsO
4
0

_

— |

ZBO

0

O++ = Z-o
Leot+ = 2
L0ttt = Zso
/++ =7

Z20++ — Z;O
J++ =7

(Z) — p(Z)

Example in abstract interpretation

4
TN
m—l__|_ . :Zs() Lo

/

0

0

4

r++42 |
Z;O

:U—l——l—Al :E—I——I—A2 encode the same function in

)

7
/7
/=

ZsO
4
0

—

— |

ZBO

0

O = 2
<ot + = 27
Lsott = Zso
/++ =7

Z>O++ — ZZO
Z++ =7

(Z) — p(Z)

(7141 © aAl) O X+ O (7141 © aAl) — (7142 © aA2) O X+ O (7142 © aA2)

Example in abstract interpretation

4
TN
m—l__|_ . :Zs() Lo

/

0

0

4

r++42 |
Z;O

:U—l——l—Al :E—I——I—A2 encode the same function in £

)

/.
/7 N\
_ ZsO Za
A
0
|
Z;O

0

O = 2
<ot + = 27
Lsott = Zso
/++ =7

Z>O++ — ZZO
Z++ =7

(Z) — p(Z)

0 and Z<o are “irrelevant” in A; for approximating x++

Example in abstract interpretation

4
TN
m—l__|_ . :Zs() Lo

/

0

0

4

r++42 |
Z;O

7
/7
/=

ZsO
4
0

—

— |

ZBO

0

O = 2
<ot + = 27
Lsott = Zso
/++ =7

Z>O++ — ZZO
Z++ =7

0 and Z<o are “irrelevant” in A; for approximating x+-

Example in abstract interpretation

4
TN
m—l__|_ . :Zs() Lo

/

0

0

4

r++42 |
Z;O

7
/7
/=

ZsO
4
0

—

— |

Z;O

0

O = 2
<ot + = 27
Lsott = Zso
/++ =7

Z>O++ — ZZO
Z++ =7

0 and Z<o are “irrelevant” in A; for approximating x+-

0 =27 2 2y o Ioesil 287

{09_29

VA& g

e
—

7 A& 4

Abstract interpretation

% Problem formalized in abstract interpretation

Abstract interpretation

% Problem formalized in abstract interpretation

% Main ingredients

Abstract interpretation

% Problem formalized in abstract interpretation

% Main ingredients

+ Approximation formalized by partial orders

Abstract interpretation

% Problem formalized in abstract interpretation
% Main ingredients

+ Approximation formalized by partial orders

+ Concrete domain C.

Abstract interpretation

% Problem formalized in abstract interpretation
% Main ingredients

+ Approximation formalized by partial orders

4+ Concrete domain C.

+ Abstractions A< formalized by Galois connections &/y

Abstract interpretation

% Problem formalized in abstract interpretation
% Main ingredients

+ Approximation formalized by partial orders

4+ Concrete domain C<

+ Abstractions A< formalized by Galois connections &/y

+ Concrete objects ¢ have best correct approximations (c)

Abstract interpretation

% Problem formalized in abstract interpretation
% Main ingredients
+ Approximation formalized by partial orders
+ Concrete domain C<

+ Abstractions A< formalized by Galois connections &/y

+ Concrete objects ¢ have best correct approximations (c)

4+ Semantic functions f : C — C have best correct
approximations fA £ (tofoy : A 9 A

Correctness Kernel

Concrete semantic function f: C = C

Abstract domain A € Abs(C)
daC—=>A yYaA—C

Abstract domain B € Abs(C)
og:C—B vyeB—C

Correctness Kernel

Concrete semantic function f: C = C

Abstract domain A € Abs(C)
Xa:C—>A yaA—C

Abstract domain B € Abs(C)
g:C—=>B vyeB—C

fA = when

(YaOa)-f-(YaOa) = (YBOB)-f-(YBOB)

That is, the best correct approximations of function f in A and B
coincide when encoded within C

Correctness Kernel

A= when

(YAOA)-f-(YAOA) = (YBOB)-f-(YBOB)

Correctness Kernel

A= when

(YAOA)-f-(YAOA) = (YBOB)-f-(YBOB)

Correctness kernel K¢(A) of A for f:

K¢((A) = most abstract domain B such that f8 = fA

Correctness Kernel

fA=f when
(YAOA)-f-(YATKA) = (YBOB)-f-(YBXB)

Main Technical Result
If f-(Yaxa) is continuous then K¢(A) exists and

Ki(A) = img(f) U Uyeimge) max({x € A | fA(x) = y})

Correctness Kernel

fA=f when
(YAOA)-f-(YATKA) = (YBOB)-f-(YBXB)

Main Technical Result
If f-(Yaxa) is continuous then K¢(A) exists and

Ki(A) = img(f) U Uyeimge) max({x € A | fA(x) = y})

Proof relies on the notion of complete abstract interpretation

Z Z O++ = Z.0
PN /7 '\ T = 7
ZC"—‘" ZsO ZBO —_> ZSO ZZO .
/ / Z;O++ — ZBO

0 0 J++ =17

7 7 O++ = Zz
N\ /N |zt =2
ZC_|_—|_ ZSO Z?O _— ZsO Z?O .
/ / Lo+t = Zsg
0 0 7+ =7

Ki(A) = img(f) U Useimge) max({x € A | fA(x) = y})

img(++2) ={Z,7Z-0}
max({x € A | ++A(x) = Z}) = max({Z<o, Z}) = Z
max({x € A | ++A(x) = Z=0}) = max({0, Z-0}) = Z=0

Z
/.
<0 Za

4
0 0

0

O = 2
<ot + = 27
Lsott = Zso
/++ =7

Ki(A) = img(f) U Useimge) max({x € A | fA(x) = y})

img(++4) ={Z,Z-0}

max({x € A | ++A(x) = Z}) = max({Z<o, Z}) = Z
max({x € A | ++A(x) = Z=0}) = max({0, Z-0}) = Z=0

Kit(A) = { Z, 70}

Abstract Model Checking

Concrete Kripke structure <3,—, £ >

Abstract Model Checking

Concrete Kripke structure <3,—, 4 >

Abstract state space P is a partition of >

Abstract Model Checking

Concrete functions:

predecessor pre: p(3) = ©(3)
successor post: p(3) = ©(3)

Abstract Model Checking

Concrete functions:

predecessor pre: p(3) = ©(3)
successor post: p(3) = ©(3)

Abstract Model Checking

Concrete functions:

predecessor pre: o(3) — ©(3)
successor post: 9(3) = @)

Partition P can be viewed as an abstraction of ((2)

What is the correctness kernel of P for pre and post!?

Abstract Model Checking

What is the correctness kernel K(P) of P for pre and post?

Abstract Model Checking

What is the correctness kernel K(P) of P for pre and post?

K(P) merges two blocks B and B iff for any A € P,
A 23 3B o A 3B, and B 23FA & B, 2FA

Abstract Model Checking

What is the correctness kernel K(P) of P for pre and post?

K(P) merges two blocks B and B iff for any A € P,
A 23 3B o A 3B, and B 23FA & B, 2FA

K(A) —

y3 =

N
,E] |
9 2 s g 7

EGAS

EGAS: Example-Guided Abstraction Simplification

EGAS

EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P, 33>
Correctness Kernel <K(P) , =33>

EGAS

EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P, =33>
Correctness Kernel <K(P) , =33>

Correctness kernels do not add spurious paths

if TT is a spurious path in K(P) then there exists a spurious path
O in P such that x(0)= 11

CEGAR

|) Model checker provides an abstract path (i.e. a counterexample)
=B »3B, »3¥ B3 . % B

2) CEGAR determines whether TT is spurious or not

3) Spuriousness of TT depends on some block By of TT with bad and
dead-end states. Thus, CEGAR splits Bk in order to separate bad and
dead-end states.

CEGAR

) TT /;\
4

dead-end

dead-end

CEGAR

bad

o TT 7\
9 b
%’4‘>@ N 4 irrelevant

N <5

__/ L\ |

dead-end

CEGAR

bad
TT
%’4 ‘>@ \5 4 irrelevant
N 5
__/ L\ |
dead-end

Finding the coarsest refinement is NP-hard

|]
GAR heuris - split into dead-end and bad |

CEGAR

bad
) TT)
™ O E®
%’4‘>@ 4 irrelevant
35— "5
__/ L\ / |
dead-end

Finding the coarsest refinement is NP-hard
CEGAR heuristics: split into dead-end and bad U irrelevant

CEGAR

bad
) TT)
™ O E®
&’4‘>@ 4 irrelevant
35— "5
__/ L\ / |
dead-end

Finding the coarsest refinement is NP-hard
CEGAR heuristics: split into dead-end and bad U irrelevant

o
@/dead-end

bad | 3
r4)

CEGAR

%m\@ B 0,6
=™ pca-e=3

No spuriousness

CEGAR

%h\@ B 0,6
W= oy pca-e=3

No spuriousness

When irrelevant are joined with dead-end:

CEGAR

%h\@ B 0,6
=™ pca-e=3

No spuriousness

When irrelevant are joined with dead-end:

B €
N N

No spuriousness

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

@ The state irrelevant 4 is dead-irrelevant

\@ 1) can be reached from a block that

° ‘:* also reaches a dead-end
e‘.m a 2) can reach a block that is also

reached by a dead-end

dead-end

EGAS and CEGAR

CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

@ The state irrelevant 4 is dead-irrelevant

\@ 1) can be reached from a block that

° ‘:* also reaches a dead-end
e‘.m a 2) can reach a block that is also

reached by a dead-end

dead-end

Thus, by EGAS, merging dead-irrelevant states with dead-end states
does not add spurious paths wrt keeping them separate

EGAS Refinement Heuristics

Dead-irrelevant states
|) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

EGAS Refinement Heuristics

Dead-irrelevant states
|) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
|) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

EGAS Refinement Heuristics

Dead-irrelevant states
|) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
|) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

Fully-irrelevant states
|) neither bad- nor dead-irrelevant OR
2) both bad- and dead-irrelevant

EGAS Refinement Heuristics

EGAS Refinement Heuristics

N —> N
’*‘5—: 8 5—

EGAS Refinement
. .4 fo)

Related Work

Related Work

% Core of an abstract domain [Giacobazzi et al.]

+ Given an abstract domain property P, this is the most
concrete simplification of A that satisfies P

Related Work

% Core of an abstract domain [Giacobazzi et al.]

+ Given an abstract domain property P, this is the most
concrete simplification of A that satisfies P

+ Compressor of an abstract domain [Giacobazzi et al.]

+ Given a refinement Ref, this is the most abstract
simplification of A such that: Ref(Compressor(A))=Ref(A)

Conclusions

Conclusions

% First step in studying abstraction simplifications
in static analysis and model checking

Conclusions

% First step in studying abstraction simplifications
in static analysis and model checking

<+ Future work

Conclusions

% First step in studying abstraction simplifications
in static analysis and model checking

<+ Future work

