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❖ Widely used paradigm in static analysis and 
verification, e.g. CEGAR

✦ Identify when and how to refine the underlying 
abstraction, e.g. abstract domain

❖ Basic principles

✦ Goal: remove some false alarms or spurious traces

Abstraction Refinements
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❖ Few examples in static analysis and verification

✦ Identify when and how to simplify the underlying 
abstraction

❖ Basic principles

✦ Goal: maintain the same approximate behaviour

Abstraction Simplifications
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A’

Not spurious abstract path in A: [1,2] → [3] → [6] → [8,9]   

Not spurious abstract path in A: [1,2] → [4,5] → [6] → [8,9]   

A 



 A’ keeps the same examples of A:

if π’ is spurious in A’ then there exists a spurious π in A such that α(π)= π’
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 A’’’ doesn’t keep the same examples of A 

Spurious loop path in A’’’: [1,2,3] → [1,2,3] → [1,2,3] → ...

BUT no corresponding spurious path in A 

Example in abstract model checking
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ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

x++A1 , x++A2 encode the same function in ℘(Z)→ ℘(Z)

(γA1 ◦ αA1) ◦ x++ ◦ (γA1 ◦ αA1) = (γA2 ◦ αA2) ◦ x++ ◦ (γA2 ◦ αA2)
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0++ = ℤ⩾0

ℤ⩽0++ = ℤ
ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

ℤ⩾0++ = ℤ⩾0

ℤ++ = ℤ

0 and ℤ⩽0 are “irrelevant” in A1 for approximating x++

{0,-2,-7} ⟶  ℤ⩽0 ⟶ {x⩽1} ⟶ ℤA1 A1++

{0,-2,-7} ⟶   ℤ  ⟶  ℤ  ⟶  ℤA2 A2++
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❖ Problem formalized in abstract interpretation

❖ Main ingredients

✦ Approximation formalized by partial orders

✦ Concrete domain C⩽

✦ Abstractions A⩽ formalized by Galois connections α/γ

✦ Concrete objects c have best correct approximations α(c)

✦ Semantic functions f : C ➝ C have best correct 
approximations fA ≝ α○f○γ :  A ➝ A
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Abstract domain A ∈ Abs(C)
αA: C → A      γA: A → C

Abstract domain B ∈ Abs(C)
αB: C → B      γB: B → C

fA = fB   when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)  

That is, the best correct approximations of function f in A and B 
coincide when encoded within C
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Correctness Kernel

fA = fB   when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)  

Correctness kernel Kf(A) of A for f: 

 Kf(A) ≝ most abstract domain B such that fB = fA 
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Correctness Kernel

Main Technical Result
If f∘(γAαA) is continuous then Kf(A) exists and

 Kf(A) = img(fA) U Uy∈img(fA) max({x ∈ A | fA(x) = y}) 

Proof relies on the notion of complete abstract interpretation

fA = fB   when
(γAαA)∘f∘(γAαA) = (γBαB)∘f∘(γBαB)  
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 img(++A) = { ℤ, ℤ⩾0 } 

max({x ∈ A | ++A(x) = ℤ}) = max({ℤ⩽0, ℤ}) = ℤ
max({x ∈ A | ++A(x) = ℤ⩾0}) = max({0, ℤ⩾0}) = ℤ⩾0

x++A :

 K++(A) = { ℤ, ℤ⩾0 }
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Concrete Kripke structure <∑,→,ℓ>

Abstract Kripke structure <P,→∃∃,ℓ>

Abstract state space P is a partition of ∑

B →∃∃ C iff there exist x∈B and y∈C s.t. x → y
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EGAS

EGAS: Example-Guided Abstraction Simplification

Abstract Kripke structure <P , →∃∃>
Correctness Kernel <K(P) , →∃∃>

Correctness kernels do not add spurious paths

if π is a spurious path in K(P) then there exists a spurious path 
σ in P such that α(σ)= π



CEGAR

1) Model checker provides an abstract path (i.e. a counterexample) 
π = B1 →∃∃ B2 →∃∃ B3 .... →∃∃ Bn

2) CEGAR determines whether π is spurious or not

3) Spuriousness of π depends on some block Bk of π with bad and 
dead-end states. Thus, CEGAR splits Bk in order to separate bad and 
dead-end states.
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CEGAR heuristics may lead to ineffective abstraction refinements

EGAS suggests a sharper refinement heuristics

Thus, by EGAS, merging dead-irrelevant states with dead-end states 
does not add spurious paths wrt keeping them separate
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The state irrelevant 4 is dead-irrelevant
1) can be reached from a block that 
also reaches a dead-end
2) can reach a block that is also 
reached by a dead-end
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EGAS Refinement Heuristics

Dead-irrelevant states
1) can be reached from a block that also reaches a dead-end
2) can reach a block that is also reached by a dead-end

Bad-irrelevant states
1) can be reached from a block that also reaches a bad
2) can reach a block that is also reached by a bad

Fully-irrelevant states
1) neither bad- nor dead-irrelevant OR 
2) both bad- and dead-irrelevant
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❖ Core of an abstract domain [Giacobazzi et al.]

✦ Given an abstract domain property P, this is the most 
concrete simplification of A that satisfies P  

❖ Compressor of an abstract domain [Giacobazzi et al.]

✦ Given a refinement Ref, this is the most abstract 
simplification of A such that: Ref(Compressor(A))=Ref(A)  

Related Work
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❖ First step in studying abstraction simplifications 
in static analysis and model checking

❖ Future work

✦ precise relationship between EGAS and CEGAR 

Conclusions

✦ integrating EGAS in CEGAR


