
16.09.2010 - SAS2010

Modeling metamorphism by
abstract interpretation
Roberto Giacobazzi

Mila Saumya Kevin GreggGiaco

Thursday, September 16, 2010

The problem

Thursday, September 16, 2010

Malware analysis: signature checking

✤ Malware refers to malicious software

✤ Signature checking: identify a sequence of instructions which is
unique to a malware (virus signature) then scan program for
signatures

✤ Example: Chernobyl signature:

E800 0000 005B 8D4B 4251 5050

0F01 4C24 FE5B 83C3 1CFA 882B

✤ Cumbersome, inaccurate, easy to foil....

Thursday, September 16, 2010

Anti-anti malware

✤ How can we escape signature checking?

✤ ...by dynamically modifying malware structure!

✤ Polymorphic malware contain decryption routines
which decrypt encrypted constant parts of their
body.

✤ Metamorphic malware typically do not use
encryption, but mutates (obfuscate) forms in
subsequent generations.

Thursday, September 16, 2010

file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle
file://localhost/Users/giaco/Desktop/forme2.graffle

Metamorphism as obfuscation

Loop:
 pop ecx
 jecxz SFModMark
 mov esi, ecx
 mov eax, 0d601h
 pop edx
 pop ecx
 call edi
 jmp Loop

Loop:
 pop ecx
 nop
 jecxz SFModMark
 xor ebx, ebx
 beqz N1
N1: mov esi, ecx
 nop
 mov eax, 0d601h
 pop edx
 pop ecx
 nop
 call edi
 xor ebx, ebx
 beqz N2
N2: jmp Loop

From Chernobyl CIH 1.4

Thursday, September 16, 2010

Metamorphism as obfuscation

Loop:
 pop ecx
 jecxz SFModMark
 mov esi, ecx
 mov eax, 0d601h
 pop edx
 pop ecx
 call edi
 jmp Loop

Loop:
 pop ecx
 nop

 call edi
 xor ebx, ebx
 beqz N2
N2: jmp Loop

 nop
 mov eax, 0d601h
 pop edx
 pop ecx
 nop

 jecxz SFModMark
 xor ebx, ebx
 beqz N1
N1: mov esi, ecx

From Chernobyl CIH 1.4

Thursday, September 16, 2010

Metamorphism as obfuscation

Loop:
 pop ecx
 jecxz SFModMark
 mov esi, ecx
 mov eax, 0d601h
 pop edx
 pop ecx
 call edi
 jmp Loop

Loop:
 pop ecx
 nop
 jmp L1
L3: call edi
 xor ebx, ebx
 beqz N2
N2: jmp Loop
 jmp L4
L2: nop
 mov eax, 0d601h
 pop edx
 pop ecx
 nop
 jmp L3
L1: jecxz SFModMark
 xor ebx, ebx
 beqz N1
N1: mov esi, ecx
 jmp L2
L4:

From Chernobyl CIH 1.4

Thursday, September 16, 2010

Metamorphism: an example

mov [ebp - 3], eax

push ecx
mov ecx,ebp
add ecx,33
mov [ecx-36],eax
pop ecx

push ecx
mov ecx,ebp
add ecx,33
push esi
mov esi,ecx
sub esi,34
mov [esi-2],eax
pop esi
pop ecx

push ecx
mov ecx, ebp
push eax
mov eax, 33
add ecx, eax
pop eax

push esi
mov esi, ecx
push edx

mov edx, 34
sub esi, edx
pop edx
mov [esi - 2], eax
pop esi
pop ecx

push ecx
mov ecx, [ebp + 10]
mov ecx, ebp
push eax
add eax, 2342
mov eax, 33
add ecx, eax
pop eax
mov eax, esi
push eax
mov esi, ecx
push edx
xor edx, 778f
mov edx, 34
sub esi, edx
pop edx
mov [esi-2], eax
pop esi
pop ecx

Malware evolution

✤ How can we model and compute signatures for metamorphism?

Thursday, September 16, 2010

Metamorphism: some (public) history
! ! ! ! ! ! ! ! http://vx.netlux.org/

Win32.Evol
swaps instructions with equivalents
inserts junk code between essential instructions

Regswap (Win32)
same code different register names

BadBoy (DOS) and Ghost (Win32)
same code different subroutine order (n! possible mutations: 10 modules ~3.6M
possible signatures)

Zmorph (Win95)
decrypt virus body instruction by instruction
push instructions on stack
insert and remove jumps
rebuild body on stack

Zperm (Win95)
..

by Peter Szor

Thursday, September 16, 2010

http://vx.netlux.org
http://vx.netlux.org

Attacking metamorphism

✤ Idea: Behavior Monitors

✤ Run suspect program in an emulator and extract a DB of relevant
signatures (huge DB)

✤ Look for changes in file structure: Some viruses modify files in a
consistent way (inaccurate)

✤ Disassemble and look for virus-like instructions: reverse engineering
malware (expensive)

Thursday, September 16, 2010

Problems

✤ The code may contain its own metamorphic engine ME

✤ The metamorphic engine can be used when engineering malware

✤ Metamorphic signature: is a language L of possible signatures
generated by a metamorphic malware:

✤ Is there a way for extracting a metamorphic signatures?

σ ∈ L ⇒ σ is a possible signature

ME

V

ME

V

ME

V

ME

V

Thursday, September 16, 2010

Related works

✤ Specify some abstraction (CFG, instruction equivalence, rewrite rules
towards normal form - undo metamorphism)

✤ [Dalla Preda et al POPL07, Filiol PWASET07, Zbitsky JCV 09, Bonfante et al JCV 09]

✤ Existing semantics-based approach to malware detection are
promising but they still rely on a priori knowledge of the
metamorphic transformations used by malware writers

✤ Need to model the self-modifying behavior of a metamorphic
malware without any a priori knowledge of the transformations it
uses

ME

V

ME

V

ME

V

ME

V

Thursday, September 16, 2010

Idea

✤ Idea: Extract L as a abstract interpretation of the metamorphic malware!

Extracting metamorphic signatures is approximating malware semantics

✤ data objects are code slices

✤ abstraction acts on code structure (code may be as complex as data!!)

✤ invariants on mutational code structure describe the metamorphic
engine behavior!!

✤ fix-point abstraction approximate invariants, i.e. generates
metamorphic signatures....

ME

V

ME

V

ME

V

ME

V

Thursday, September 16, 2010

Modeling metamorphism

Thursday, September 16, 2010

Phase semantics

✤ States: no distinction between code and data

✤ Phase semantics: partition the trace of execution states into phases,
each collecting the computation of a particular code variant

✤ Maximal trace semantics:

Phases

P = (a, m) where m : N → N⊥ and a ∈ N. Let P be the set of programs, Σ the set of
program states, and T : ℘(Σ) → ℘(Σ) transition relation over states

maximal finite trace semantics: S[[P]] = lfpFT [[P]], where FT [[P]] : ℘(Σ∗) → ℘(Σ∗) is:
FT [[P]](X) = Init[[P]] ∪ {σsisj | sj ∈ T (si), σσi ∈ X}

!"!#!$!%!&!' !(!) !* !+

,-.

,-. ,-.

/01!23& /01!23(/01!23) /01!23*

/' /& /(/)451623-73
/5-851,!

451623-73
!4142!

!"#$%&'()*+ !"#$%&'()*+!"#$%&'()*+!"#$%&'()*+

Phases in a trace s = s0s1 . . . are delimited by phase boundaries, let Ii be the instruction
memorized at location ai and executed at state si, and let MOD(si) be the locations whose
content is modified by the execution of Ii:

bound(s) = {s0} ∪ {si | MOD(si−1) ∩ {aj | i ≤ j ≤ n} %= ∅}

phases(s) = {si . . . sj | si, sj+1 ∈ bound(s),∀l ∈ [i + 1, j] : sl %∈ bound(s)}

Each phase collects the computation of a particular code variant

– p. 5

Phases

P = (a, m) where m : N → N⊥ and a ∈ N. Let P be the set of programs, Σ the set of
program states, and T : ℘(Σ) → ℘(Σ) transition relation over states

maximal finite trace semantics: S[[P]] = lfpFT [[P]], where FT [[P]] : ℘(Σ∗) → ℘(Σ∗) is:
FT [[P]](X) = Init[[P]] ∪ {σsisj | sj ∈ T (si), σσi ∈ X}

!"!#!$!%!&!' !(!) !* !+

,-.

,-. ,-.

/01!23& /01!23(/01!23) /01!23*

/' /& /(/)451623-73
/5-851,!

451623-73
!4142!

!"#$%&'()*+ !"#$%&'()*+!"#$%&'()*+!"#$%&'()*+

Phases in a trace s = s0s1 . . . are delimited by phase boundaries, let Ii be the instruction
memorized at location ai and executed at state si, and let MOD(si) be the locations whose
content is modified by the execution of Ii:

bound(s) = {s0} ∪ {si | MOD(si−1) ∩ {aj | i ≤ j ≤ n} %= ∅}

phases(s) = {si . . . sj | si, sj+1 ∈ bound(s),∀l ∈ [i + 1, j] : sl %∈ bound(s)}

Each phase collects the computation of a particular code variant

– p. 5

S9S8S7S6S1S0 S2 S3 S4 S5

MOD

MOD MOD

PHASE 1 PHASE 2 PHASE 3 PHASE 4
P0 P1 P2 P3TRACE OF

PROGRAMS

TRACE OF
STATES

PHASE BOUND PHASE BOUNDPHASE BOUNDPHASE BOUND

I[[if e1 goto e2]]〈a,m, θ, I〉 =

{

〈E [[e2]]m,m, θ, I〉 if E [[e1]]m #= 0
〈a + 1,m, θ, I〉 otherwise

I[[pop e]]〈a,m, n :: θ, I〉 = 〈a + 1,m[E [[e]]m ← n], θ, I〉
I[[goto e]]〈a,m, θ, I〉 = 〈E [[e]]m,m, θ, I〉
I[[push e]]〈a,m, θ, I〉 = 〈a + 1,m, E [[e]]m :: θ, I〉
I[[halt]]〈a,m, θ, I〉 = 〈⊥,m, θ, I〉
I[[nop]]〈a,m, θ, I〉 = 〈a + 1,m, θ, I〉

A program state is a tuple 〈a,m, θ, I〉where m is the memorymap, a is the address of the
next instruction to be executed, θ ∈ N∗ is the stack and I ∈ N∗ is the input string. Let
Σ = N⊥ ×M×N∗×N∗ be the set of possible program states and T : ℘(Σ) → ℘(Σ)
be the transition relation between states, which is given by the point-wise extension
of T (〈a,m, θ, I〉) = I[[decode(m(a))]]〈a,m, θ, I〉. As usual [11], the maximal finite
trace semantics S[[P]] ∈ ℘(Σ∗) of a program P = (m, a) is given by the least fixpoint
of FT [[P]] : ℘(Σ∗) → ℘(Σ∗) where Init [[P]] = {〈a,m, ε, I〉 | I is an input stream}
and FT [[P]](X) = Init [[P]] ∪ {σσiσj | σj ∈ T (σi), σσi ∈ X}.

Phase Semantics. Intuitively, a phase is a maximal sequence of states in an execution
trace that does not overwrite any memory location storing an instruction that is going
to be executed later in the same trace. Given an execution trace σ = σ0 . . . σn, we
can identify phase boundaries by considering the sets of memory locations modified
by each state σi = 〈ai,mi, θi, Ii〉 with i ∈ [0, n]: every time that a location aj , with
i < j ≤ n, of a future instruction is modified by the execution of state σi, then the
successive state σi+1 is a phase boundary, since it stores a modified version of the
code. We consider the set mod(σi) ⊆ N of memory locations that are modified by the
instruction executed in state σi:

mod(σi) =







{E [[e1]]m} if decode(mi(ai)) = MEM[e1] := e2

{E [[e]]m} if decode(mi(ai)) ∈ {input⇒ MEM[e],pop e}
∅ otherwise

This allows us to formally define the phase boundaries and the phases of a trace.

Definition 1 The set of phase boundaries of σ = σ0 . . . σn ∈ Σ∗, where ∀i ∈ [0, n] :
σi = 〈ai,mi, θi, Ii〉, is: bound(σ) = {σ0}∪{σi | mod(σi−1)∩{aj | i ≤ j ≤ n} #= ∅}.
The set of phases of a trace σ ∈ Σ∗ is:

phases(σ) =

{

σi . . . σj

∣

∣

∣

∣

σ = σ0 . . . σi . . .σjσj+1 . . . σn,
σi, σj+1 ∈ bound(σ), ∀l ∈ [i + 1, j] : σl #∈ bound(σ)

}

Observe that, by definition, the memory map of the first state of a phase always spec-
ifies the code snapshot that is executed in the same phase. Hence, the sequence of the
initial states of the phases of a trace highlights the different code snapshots encountered
during code execution. In general, different executions of a program give rise to dif-
ferent sequences of code snapshots. A complete characterization of all code snapshots
of a self-modifying program can be obtained by organizing phases in a program evo-
lution graph. Here, each vertex is a code snapshot Pi corresponding to a phase, and an
edge Pi → Pj indicates that in some execution trace of the program, a phase with code
snapshot Pi can be followed by a phase with code snapshot Pj .

5

entry point memory stack input

Thursday, September 16, 2010

Fix-point phase semantics

✤ Program evolution graph:

✤ Nodes = Phases

✤ Edges = Phase transitions

✤ The phase semantics of a program P0 is given by the set of all possible
paths of its program evolution graph

P0 P1 P2

P3
P4

P5

P6

P7

P8
P9

Phase Semantics
Program Evolution Graph: G[[P0]] = (V, E)

!" !# !$

!%
!&

!'

!(

!)

!*
!+

The phase semantics of a program P0 is given by the set of all possible paths of its program
evolution graph G[[P0]]

PHASE SEMANTICS
SPh[[P0]] = {P0...Pn | ∀i ∈ [0, n − 1] : (Pi, Pi+1) ∈ E}

SPh[[P0]] ∈ ℘(P∗)

– p. 6

Phase Semantics
Program Evolution Graph: G[[P0]] = (V, E)

!" !# !$

!%
!&

!'

!(

!)

!*
!+

The phase semantics of a program P0 is given by the set of all possible paths of its program
evolution graph G[[P0]]

PHASE SEMANTICS
SPh[[P0]] = {P0...Pn | ∀i ∈ [0, n − 1] : (Pi, Pi+1) ∈ E}

SPh[[P0]] ∈ ℘(P∗)

– p. 6

Thursday, September 16, 2010

Fix-point phase semantics

✤ Phase transition:

✤ Fix-point iteration:

Fix-point Computation of Phase Semantics

Define a transition relation over programs T Ph : ℘(P) → ℘(P). Let Pi be the program
executed at state si:

T Ph
(P0) =

{

Pi

˛

˛

˛

˛

˛

s = s0 . . . si . . . sn ∈ S[[P0]], si ∈ bound(s),

∀l ∈ [1, i − 1] : sl #∈ bound(s)

}

FT Ph [[P0]] : ℘(P∗) → ℘(P∗) is: FT Ph [[P0]](Z) = P0 ∪ {zPiPj | Pj ∈ T Ph(Pi), zPi ∈ Z}

fixpoint computation of phase semantics:

SPh[[P]] = lfpFT Ph [[P]]

!"!#!$!%!&!' !(!) !* !+

,-.

,-. ,-.

/' /& /(/)012345-65
/1-712,!

012345-65
!0204!

T TTTTTTTT

T
Ph

T
Ph

T
Ph

∈ S[[P0]]

∈ S
Ph [[P0]]

012345
!4,28093!

/:2!45!4,28093!

– p. 7

Fix-point Computation of Phase Semantics

Define a transition relation over programs T Ph : ℘(P) → ℘(P). Let Pi be the program
executed at state si:

T Ph
(P0) =

{

Pi

˛

˛

˛

˛

˛

s = s0 . . . si . . . sn ∈ S[[P0]], si ∈ bound(s),

∀l ∈ [1, i − 1] : sl #∈ bound(s)

}

FT Ph [[P0]] : ℘(P∗) → ℘(P∗) is: FT Ph [[P0]](Z) = P0 ∪ {zPiPj | Pj ∈ T Ph(Pi), zPi ∈ Z}

fixpoint computation of phase semantics:

SPh[[P]] = lfpFT Ph [[P]]

!"!#!$!%!&!' !(!) !* !+

,-.

,-. ,-.

/' /& /(/)012345-65
/1-712,!

012345-65
!0204!

T TTTTTTTT

T
Ph

T
Ph

T
Ph

∈ S[[P0]]

∈ S
Ph [[P0]]

012345
!4,28093!

/:2!45!4,28093!

– p. 7

S9S8S7S6S1S0 S2 S3 S4 S5

MOD

MOD MOD

P0 P1 P2 P3TRACE OF
PROGRAMS

TRACE OF
STATES

T TTTTTTTT

T
Ph

T
Ph

T
Ph

∈ S[[P0]]

∈ S
Ph [[P0]]

TRACE
SEMANTICS

PHASE SEMANTICS

Thursday, September 16, 2010

Correctness of phase semantics

✤ Trace semantics and phase semantics are related by abstraction:

✤ keeps only phase bounds

✤ Locally incomplete.....

✤ Fix-point complete:

Soundness and Completeness of SPh[[P0]]

phase semantics is a sound and complete approximation of trace semantics:

There exists a Galois connection: 〈℘(Σ∗),⊆〉 −→←−
αPh

γPh

〈℘(P∗),⊆〉. Let Pi be the

program executed in state si, then abstraction αPh can be defined as follows:

αPh(s0 . . . sn) = P0αPh(si . . . sn) : si ∈ bound(s),∀l ∈ [0, i − 1] : sl &∈ bound(s)

Soundness: ∀X ∈ ℘(Σ∗) : αPh(X ∪ FT [[P0]](X)) ⊆ αPh(X) ∪ FT Ph [[P0]](αPh(X))

Fix-point Completeness: αPh(lfpFT [[P0]]) = lfpFT Ph [[P0]], namely
αPh(S[[P0]]) = SPh[[P0]]

– p. 8

αPh

Soundness and Completeness of SPh[[P0]]

phase semantics is a sound and complete approximation of trace semantics:

There exists a Galois connection: 〈℘(Σ∗),⊆〉 −→←−
αPh

γPh

〈℘(P∗),⊆〉. Let Pi be the

program executed in state si, then abstraction αPh can be defined as follows:

αPh(s0 . . . sn) = P0αPh(si . . . sn) : si ∈ bound(s),∀l ∈ [0, i − 1] : sl &∈ bound(s)

Soundness: ∀X ∈ ℘(Σ∗) : αPh(X ∪ FT [[P0]](X)) ⊆ αPh(X) ∪ FT Ph [[P0]](αPh(X))

Fix-point Completeness: αPh(lfpFT [[P0]]) = lfpFT Ph [[P0]], namely
αPh(S[[P0]]) = SPh[[P0]]

– p. 8

Abstracting Metamorphism

SPh[[P0]] precisely expresses the evolution of the self-modifying program P0 during execution:

CONCRETE TEST FOR METAMORPHISM
P0 !Ph Q ⇔ ∃P0, P1, ..., Pn ∈ SPh[[P0]], ∃i ∈ [0, n] : Pi = Q

no false positives, no false negatives

abstracting metamorphism

design GC: 〈℘(P∗),⊆〉 −→←−
αA

γA
〈A,&A〉

define the abstract transition relation T A : A → ℘(A)

define F
T A [[P0]] : A → A whose fixpoint computation lfp"AF

T A [[P0]] = SA[[P0]]

corresponds to the abstract specification of the metamorphic behavior

prove that SA[[P0]] is a correct approximation of phase semantics SPh[[P0]], i.e.,
αA(lfp⊆FT Ph [[P0]]) &A lfp"AFT A [[P0]]

ABSTRACT TEST FOR METAMORPHISM
P0 !A Q ⇔ αA(Q) &A SA[[P0]]

no false negatives

– p. 9

Thursday, September 16, 2010

Abstracting metamorphism

Thursday, September 16, 2010

Abstracting phases

Abstracting Metamorphism

SPh[[P0]] precisely expresses the evolution of the self-modifying program P0 during execution:

CONCRETE TEST FOR METAMORPHISM
P0 !Ph Q ⇔ ∃P0, P1, ..., Pn ∈ SPh[[P0]], ∃i ∈ [0, n] : Pi = Q

no false positives, no false negatives

abstracting metamorphism

design GC: 〈℘(P∗),⊆〉 −→←−
αA

γA
〈A,&A〉

define the abstract transition relation T A : A → ℘(A)

define F
T A [[P0]] : A → A whose fixpoint computation lfp"AF

T A [[P0]] = SA[[P0]]

corresponds to the abstract specification of the metamorphic behavior

prove that SA[[P0]] is a correct approximation of phase semantics SPh[[P0]], i.e.,
αA(lfp⊆FT Ph [[P0]]) &A lfp"AFT A [[P0]]

ABSTRACT TEST FOR METAMORPHISM
P0 !A Q ⇔ αA(Q) &A SA[[P0]]

no false negatives

– p. 9

✤ Need abstraction for approximating phases!!!

Thursday, September 16, 2010

Phases as FSA
Programs as FSA

P0 1: MEM[f] := 100 8: MEM[MEM[f]] := MEM[4]

2: input ⇒ MEM[a] 9: MEM[MEM[f] + 1] := MEM[5]

3: if (MEM[a] mod 2) goto 7 10: MEM[MEM[f] + 2] := encode(goto 6)

4: MEM[b] := MEM[a] 11: MEM[4] := encode(nop)

5: MEM[a] := MEM[a]/2 12: MEM[5] := encode(goto MEM[f])

6: goto 8 13: MEM[f] := MEM[f] + 3

7: MEM[a] := (MEM[a] + 1)/2 14: goto 2

! "

#

$

% &

!'!!!%!"

()(*+,-.
!''

/01234.54
()(*6,

()(*6,47894%

: ;

<

()(*=,-.
()(*6,

()(*6,-.
()(*6,>%

?838
()(*()(*+,,-.
44444()(*#,

()(*()(*+,@!,-.
4444444()(*:,

()(*()(*+,@%,-.
444A0B89AC?8384;D4()(*#,-.

A0B89AC081D4
()(*:,-.
A0B89AC?8384()(*+,D4

()(*+,-.
()(*+,4@4"4

!#

?838

α̊(P0)

– p. 10

1 3

4

7

2 9

10111213

MEM[f]:=
100

input =>
MEM[a] MEM[a] mod 2

5 6

8

MEM[b]:=
MEM[a]

MEM[a]:=
MEM[a]/2

goto
MEM[MEM[f]]:=
 MEM[4]

MEM[MEM[f]+1]:=
 MEM[5]MEM[MEM[f]+2]:=

 encode(goto 6) MEM[4]:=
encode(nop)

MEM[5]:=
encode(goto MEM[f])

MEM[f]:=
MEM[f] + 3

14

goto

α̊(P0)

Sequences of FSA

Let F denote the set of FSA and let α̊ : P → F be the function that associates with each
program P0 its FSA α̊(P0).

We define a transition relation T F : ℘(F) → ℘(F) as the BCA of T Ph : ℘(P) → ℘(P)

Given T F we can define the iterative function F
T F [[P0]] : ℘(F∗) → ℘(F∗)

F
T F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈ K, Mj ∈ T F(Mi)}

From the correctness of T F it follows the correctness of the fix-point computation on ℘(F∗):

αF(lfpFT Ph [[P0]]) ⊆ lfpF
T F [[P0]] = SF[[P0]]

T F may not be computable. In order to provide a static approximation of phase semantics we
define a static approximation T ! : F → F of T Ph : ℘(P) → ℘(P) over FSA

Given T ! we can define the iterative function F
T ! [[P0]] : ℘(F∗) → ℘(F∗)

F
T ! [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈ K, Mj ∈ T !(Mi)}

S![[P0]] = lfpF
T ! [[P0]] may play the role of abstract metamorphic signature of P0:

– p. 11

Thursday, September 16, 2010

Phase semantics as traces of FSA

Sequences of FSA

Let F denote the set of FSA and let α̊ : P → F be the function that associates with each
program P0 its FSA α̊(P0).

We define a transition relation T F : ℘(F) → ℘(F) as the BCA of T Ph : ℘(P) → ℘(P)

Given T F we can define the iterative function F
T F [[P0]] : ℘(F∗) → ℘(F∗)

F
T F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈ K, Mj ∈ T F(Mi)}

From the correctness of T F it follows the correctness of the fix-point computation on ℘(F∗):

αF(lfpFT Ph [[P0]]) ⊆ lfpF
T F [[P0]] = SF[[P0]]

T F may not be computable. In order to provide a static approximation of phase semantics we
define a static approximation T ! : F → F of T Ph : ℘(P) → ℘(P) over FSA

Given T ! we can define the iterative function F
T ! [[P0]] : ℘(F∗) → ℘(F∗)

F
T ! [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈ K, Mj ∈ T !(Mi)}

S![[P0]] = lfpF
T ! [[P0]] may play the role of abstract metamorphic signature of P0:

– p. 11

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

..........

Thursday, September 16, 2010

Phase semantics as traces of FSA:

✤ We need a static approximation of the Phase transfer function

✤ Stack analysis: approximating the values on top of the stack

✤ Memory analysis: approximating the values stored in memory

✤ We emulate the run of a phase generating a superset of FSA that may
be generated (over approximation!)

determines the possible successors of a given instruction at a given location, namely
ρ(I, b) associates with instruction I stored at memory location b the set of locations of
its possible successors. Let F be the set of FSA over the alphabet I̊ of abstract instruc-
tions where every state is considered to be final. Each FSA in F is specified as a graph
M = (Q, E, S). We define function α̊ : P → F that associates with each program
P = (m, a) its corresponding FSA-representation as follows: α̊(P) = (QP , EP , {a})
where QP = {b | decode(m(b)) ∈ I} is the set of locations that store an instruction
of P , and the set of edges EP ⊆ QP × I̊ × QP is computed by the algorithm Edges in
Fig. 3. This algorithm, given P = (m, a), starts by initializing EP to the empty set and
then for every memory location b that stores an instruction I it adds an edge labeled with
ι(I), whose source is the location b and whose destinations are the locations in ρ(I, b).
As an example, at the top of Fig. 3 we show the automaton α̊(P0) corresponding to pro-
gram P0 of Fig. 2. We say that π = a0[I̊0] . . . [I̊n−1]an[I̊n]an+1 is a path of automaton
M = (Q, E, S), denoted π ∈ Π(M), if a0 ∈ S and ∀i ∈ [0, n[: (ai, I̊i, ai+1) ∈ E.
Observe that even if the alphabet I̊ is unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every program uses only a finite subset of
alphabet I̊. By point-wise extension of function α̊ we obtain the GC (℘(P), α̊, γ̊, ℘(F)).
Note that abstraction ι defined above makes the FSA-representation of programs inde-
pendent (up to renaming) from program position.

Theorem 4 If P1 and P2 differ only in their memory position then α̊(P1) and α̊(P2)
are equivalent up to address renaming.

Abstract phase semantics as traces of FSA. Let αF : P∗ → F∗ be the extension of
α̊ : P → F to sequences: αF(ε) = ε and αF(P0P1 . . . Pn) = α̊(P0)αF(P1 . . . Pn). αF

can be lifted point-wise to ℘(P∗) and it gives rise to the GC (℘(P∗), αF, γF, ℘(F∗)).
In order to compute a correct approximation of the phase semantics on 〈℘(F∗),⊆〉,
we need to define an abstract transition relation T F : ℘(F) → ℘(F) on FSA that
correctly approximates T Ph : ℘(P) → ℘(P). One possibility is to define T F as the
best correct approximation of T Ph on ℘(F), namely T F = α̊ ◦ T Ph ◦ γ̊, and function
FT F [[P0]] : ℘(F∗) → ℘(F∗) as follows: FT F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈
K, Mj ∈ T F(Mi)}. From T F correctness we have SF[[P0]] = lfpFT F [[P0]] correctness.

Theorem 5 αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]] = SF[[P0]].

SF[[P0]] approximates phase semantics by abstracting programs with FSA, while the
transitions, i.e., the effect of the metamorphic engine, follow directly from T Ph and are
not approximated. For this reason SF[[P0]] is not computable in general. In the follow-
ing we introduce a static computable approximation of the transition relation on FSA
that allows us to obtain a static approximation S![[P0]] of the phase semantics of P0 on
〈℘(F∗),⊆〉. S![[P0]] may play the role of abstract metamorphic signature of P0. To this
end, we introduce the notion of limits of a path that approximates the notion of bounds
of a trace, and the notion of transition edge that approximates the notion of mutating
transition. Moreover, we assume to have access to the following sound program analy-
ses for P0:
– a stack analysis StackVal : N → ℘(N) that approximates the set of possible values
on the top of the stack when control reaches a given location (e.g. [1, 2]);

9

determines the possible successors of a given instruction at a given location, namely
ρ(I, b) associates with instruction I stored at memory location b the set of locations of
its possible successors. Let F be the set of FSA over the alphabet I̊ of abstract instruc-
tions where every state is considered to be final. Each FSA in F is specified as a graph
M = (Q, E, S). We define function α̊ : P → F that associates with each program
P = (m, a) its corresponding FSA-representation as follows: α̊(P) = (QP , EP , {a})
where QP = {b | decode(m(b)) ∈ I} is the set of locations that store an instruction
of P , and the set of edges EP ⊆ QP × I̊ × QP is computed by the algorithm Edges in
Fig. 3. This algorithm, given P = (m, a), starts by initializing EP to the empty set and
then for every memory location b that stores an instruction I it adds an edge labeled with
ι(I), whose source is the location b and whose destinations are the locations in ρ(I, b).
As an example, at the top of Fig. 3 we show the automaton α̊(P0) corresponding to pro-
gram P0 of Fig. 2. We say that π = a0[I̊0] . . . [I̊n−1]an[I̊n]an+1 is a path of automaton
M = (Q, E, S), denoted π ∈ Π(M), if a0 ∈ S and ∀i ∈ [0, n[: (ai, I̊i, ai+1) ∈ E.
Observe that even if the alphabet I̊ is unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every program uses only a finite subset of
alphabet I̊. By point-wise extension of function α̊ we obtain the GC (℘(P), α̊, γ̊, ℘(F)).
Note that abstraction ι defined above makes the FSA-representation of programs inde-
pendent (up to renaming) from program position.

Theorem 4 If P1 and P2 differ only in their memory position then α̊(P1) and α̊(P2)
are equivalent up to address renaming.

Abstract phase semantics as traces of FSA. Let αF : P∗ → F∗ be the extension of
α̊ : P → F to sequences: αF(ε) = ε and αF(P0P1 . . . Pn) = α̊(P0)αF(P1 . . . Pn). αF

can be lifted point-wise to ℘(P∗) and it gives rise to the GC (℘(P∗), αF, γF, ℘(F∗)).
In order to compute a correct approximation of the phase semantics on 〈℘(F∗),⊆〉,
we need to define an abstract transition relation T F : ℘(F) → ℘(F) on FSA that
correctly approximates T Ph : ℘(P) → ℘(P). One possibility is to define T F as the
best correct approximation of T Ph on ℘(F), namely T F = α̊ ◦ T Ph ◦ γ̊, and function
FT F [[P0]] : ℘(F∗) → ℘(F∗) as follows: FT F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈
K, Mj ∈ T F(Mi)}. From T F correctness we have SF[[P0]] = lfpFT F [[P0]] correctness.

Theorem 5 αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]] = SF[[P0]].

SF[[P0]] approximates phase semantics by abstracting programs with FSA, while the
transitions, i.e., the effect of the metamorphic engine, follow directly from T Ph and are
not approximated. For this reason SF[[P0]] is not computable in general. In the follow-
ing we introduce a static computable approximation of the transition relation on FSA
that allows us to obtain a static approximation S![[P0]] of the phase semantics of P0 on
〈℘(F∗),⊆〉. S![[P0]] may play the role of abstract metamorphic signature of P0. To this
end, we introduce the notion of limits of a path that approximates the notion of bounds
of a trace, and the notion of transition edge that approximates the notion of mutating
transition. Moreover, we assume to have access to the following sound program analy-
ses for P0:
– a stack analysis StackVal : N → ℘(N) that approximates the set of possible values
on the top of the stack when control reaches a given location (e.g. [1, 2]);

9

⊆ S
![[P0]]

Thursday, September 16, 2010

Widening phases: regular metamorphism

✤ Regular metamorphism: mutation constrained in a regular language
of instructions

✤ Collapsing a (static) trace of FSA into a single FSA: widening

✤ where

Regular Metamorphism

Further abstract SF[[P0]] in an unique FSA on the domain 〈F/≡,"F〉, where
M1 "F M2 ⇔ L(M1) ⊆ L(M2)

According to "F there is no unique least upper bound of two automata M1 and M2. Let
M1 ! M2 be an approximation of the least upper bound on F

This allows us to define the iterative function F!

T ! [[P0]] : F/≡ → F/≡ as:

F!

T ! [[P0]](M) = α̊(P0) ! M ! (!{M ′ | M ′ ∈ T !(M)})

〈F/≡,"F〉 is a lattice but it is not complete since FSA are not closed for infinite union

We need to use the widening operator " to force convergence:

W0 = α̊(P0) Wi+1 = Wi"F!

T ! [[P0]](Wi)

let W[[P0]] be the limit of the widening sequence

ABSTRACT TEST FOR METAMORPHISM on F/≡

P0 !F Q ⇔ α̊(Q) "F W[[P0]]

no false negatives

– p. 13

Regular Metamorphism

Further abstract SF[[P0]] in an unique FSA on the domain 〈F/≡,"F〉, where
M1 "F M2 ⇔ L(M1) ⊆ L(M2)

According to "F there is no unique least upper bound of two automata M1 and M2. Let
M1 ! M2 be an approximation of the least upper bound on F

This allows us to define the iterative function F!

T ! [[P0]] : F/≡ → F/≡ as:

F!

T ! [[P0]](M) = α̊(P0) ! M ! (!{M ′ | M ′ ∈ T !(M)})

〈F/≡,"F〉 is a lattice but it is not complete since FSA are not closed for infinite union

We need to use the widening operator " to force convergence:

W0 = α̊(P0) Wi+1 = Wi"F!

T ! [[P0]](Wi)

let W[[P0]] be the limit of the widening sequence

ABSTRACT TEST FOR METAMORPHISM on F/≡

P0 !F Q ⇔ α̊(Q) "F W[[P0]]

no false negatives

– p. 13

Regular Metamorphism

Further abstract SF[[P0]] in an unique FSA on the domain 〈F/≡,"F〉, where
M1 "F M2 ⇔ L(M1) ⊆ L(M2)

According to "F there is no unique least upper bound of two automata M1 and M2. Let
M1 ! M2 be an approximation of the least upper bound on F

This allows us to define the iterative function F!

T ! [[P0]] : F/≡ → F/≡ as:

F!

T ! [[P0]](M) = α̊(P0) ! M ! (!{M ′ | M ′ ∈ T !(M)})

〈F/≡,"F〉 is a lattice but it is not complete since FSA are not closed for infinite union

We need to use the widening operator " to force convergence:

W0 = α̊(P0) Wi+1 = Wi"F!

T ! [[P0]](Wi)

let W[[P0]] be the limit of the widening sequence

ABSTRACT TEST FOR METAMORPHISM on F/≡

P0 !F Q ⇔ α̊(Q) "F W[[P0]]

no false negatives

– p. 13

Regular Metamorphism

Further abstract SF[[P0]] in an unique FSA on the domain 〈F/≡,"F〉, where
M1 "F M2 ⇔ L(M1) ⊆ L(M2)

According to "F there is no unique least upper bound of two automata M1 and M2. Let
M1 ! M2 be an approximation of the least upper bound on F

This allows us to define the iterative function F!

T ! [[P0]] : F/≡ → F/≡ as:

F!

T ! [[P0]](M) = α̊(P0) ! M ! (!{M ′ | M ′ ∈ T !(M)})

〈F/≡,"F〉 is a lattice but it is not complete since FSA are not closed for infinite union

We need to use the widening operator " to force convergence:

W0 = α̊(P0) Wi+1 = Wi"F!

T ! [[P0]](Wi)

let W[[P0]] be the limit of the widening sequence

ABSTRACT TEST FOR METAMORPHISM on F/≡

P0 !F Q ⇔ α̊(Q) "F W[[P0]]

no false negatives

– p. 13

Thursday, September 16, 2010

Widening phases: regular metamorphism

✤ Let M1 and M2 be two FSA

✤ is a state relation

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are !-closed for finite sets, and the following result shows that ! approx-
imates any upper bound with respect to the ordering$F.

Lemma 1 Given two FSA M1 andM2 we have:L (M1) ∪ L (M2) ⊆ L (M1 ! M2).

We can now define F!

T ! [[P0]] : F → F as follows: F!

T ! [[P0]](M) = α̊(P0) ! M !

(!{M ′ | M ′ ∈ T !(M)}). Observe that the set of possible successors of a given au-
tomatonM , i.e., T !(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are !-closed for fi-
nite sets, then F!

T ! [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . . Mk) =
!{Mi | 0 ≤ i ≤ k} and αS(K) = !{αS(M0 . . .Mk) | M0 . . .Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F!

T ! [[P0]]
correctly approximatesFT ! [[P0]] on F.

Theorem 7 For anyK ∈ ℘F (F∗) we have αS(FT ! [[P0]](K)) $F F!

T ! [[P0]](αS(K)).

The domain 〈F,$F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F!

T ! [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates of F!

T ! [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSAM1 = (Q1, E1, S1) andM2 = (Q2, E2, S2) over a finite alphabetA is formalized
in terms of an equivalence relationR ⊆ Q1 ×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦ R−1. The widening betweenM1 andM2 is then given by the
quotient ofM2 with respect to the partition induced by ≡R: M1"M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation Rn ⊆ Q1 × Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
"n denotes the widening operator that uses Rn as widening seed. "n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For
simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or

13

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are !-closed for finite sets, and the following result shows that ! approx-
imates any upper bound with respect to the ordering$F.

Lemma 1 Given two FSA M1 andM2 we have:L (M1) ∪ L (M2) ⊆ L (M1 ! M2).

We can now define F!

T ! [[P0]] : F → F as follows: F!

T ! [[P0]](M) = α̊(P0) ! M !

(!{M ′ | M ′ ∈ T !(M)}). Observe that the set of possible successors of a given au-
tomatonM , i.e., T !(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are !-closed for fi-
nite sets, then F!

T ! [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . . Mk) =
!{Mi | 0 ≤ i ≤ k} and αS(K) = !{αS(M0 . . .Mk) | M0 . . .Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F!

T ! [[P0]]
correctly approximatesFT ! [[P0]] on F.

Theorem 7 For anyK ∈ ℘F (F∗) we have αS(FT ! [[P0]](K)) $F F!

T ! [[P0]](αS(K)).

The domain 〈F,$F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F!

T ! [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates of F!

T ! [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSAM1 = (Q1, E1, S1) andM2 = (Q2, E2, S2) over a finite alphabetA is formalized
in terms of an equivalence relationR ⊆ Q1 ×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦ R−1. The widening betweenM1 andM2 is then given by the
quotient ofM2 with respect to the partition induced by ≡R: M1"M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation Rn ⊆ Q1 × Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
"n denotes the widening operator that uses Rn as widening seed. "n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For
simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or

13

n

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are !-closed for finite sets, and the following result shows that ! approx-
imates any upper bound with respect to the ordering$F.

Lemma 1 Given two FSA M1 andM2 we have:L (M1) ∪ L (M2) ⊆ L (M1 ! M2).

We can now define F!

T ! [[P0]] : F → F as follows: F!

T ! [[P0]](M) = α̊(P0) ! M !

(!{M ′ | M ′ ∈ T !(M)}). Observe that the set of possible successors of a given au-
tomatonM , i.e., T !(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are !-closed for fi-
nite sets, then F!

T ! [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . . Mk) =
!{Mi | 0 ≤ i ≤ k} and αS(K) = !{αS(M0 . . .Mk) | M0 . . .Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F!

T ! [[P0]]
correctly approximatesFT ! [[P0]] on F.

Theorem 7 For anyK ∈ ℘F (F∗) we have αS(FT ! [[P0]](K)) $F F!

T ! [[P0]](αS(K)).

The domain 〈F,$F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F!

T ! [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates of F!

T ! [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSAM1 = (Q1, E1, S1) andM2 = (Q2, E2, S2) over a finite alphabetA is formalized
in terms of an equivalence relationR ⊆ Q1 ×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦ R−1. The widening betweenM1 andM2 is then given by the
quotient ofM2 with respect to the partition induced by ≡R: M1"M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation Rn ⊆ Q1 × Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
"n denotes the widening operator that uses Rn as widening seed. "n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For
simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or

13

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are !-closed for finite sets, and the following result shows that ! approx-
imates any upper bound with respect to the ordering$F.

Lemma 1 Given two FSA M1 andM2 we have:L (M1) ∪ L (M2) ⊆ L (M1 ! M2).

We can now define F!

T ! [[P0]] : F → F as follows: F!

T ! [[P0]](M) = α̊(P0) ! M !

(!{M ′ | M ′ ∈ T !(M)}). Observe that the set of possible successors of a given au-
tomatonM , i.e., T !(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are !-closed for fi-
nite sets, then F!

T ! [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . . Mk) =
!{Mi | 0 ≤ i ≤ k} and αS(K) = !{αS(M0 . . .Mk) | M0 . . .Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F!

T ! [[P0]]
correctly approximatesFT ! [[P0]] on F.

Theorem 7 For anyK ∈ ℘F (F∗) we have αS(FT ! [[P0]](K)) $F F!

T ! [[P0]](αS(K)).

The domain 〈F,$F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F!

T ! [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates of F!

T ! [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSAM1 = (Q1, E1, S1) andM2 = (Q2, E2, S2) over a finite alphabetA is formalized
in terms of an equivalence relationR ⊆ Q1 ×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦ R−1. The widening betweenM1 andM2 is then given by the
quotient ofM2 with respect to the partition induced by ≡R: M1"M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation Rn ⊆ Q1 × Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
"n denotes the widening operator that uses Rn as widening seed. "n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For
simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or

13

q ≡R q
′ iff

✤ It is a widening if on finite alphabet: approximate instruction terms!

Thursday, September 16, 2010

Widening phases: regular metamorphism

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

Thursday, September 16, 2010

Widening phases: regular metamorphism

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

MEM[f]:=100;input=>MEM[a];MEM[a] mod 2 = 0; MEM[b]:=MEM[a]; goto; MEM[b]:=MEM[a]; goto;...

Thursday, September 16, 2010

Widening phases: regular metamorphism

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

MEM[f]:=100;input=>MEM[a];MEM[a] mod 2 = 0; MEM[b]:=MEM[a]; goto; MEM[b]:=MEM[a]; goto;...

Thursday, September 16, 2010

Widening phases: regular metamorphism

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

MEM[f]:=100;input=>MEM[a];MEM[a] mod 2 = 0; MEM[b]:=MEM[a]; goto; MEM[b]:=MEM[a]; goto;...

sp
ur

iou
s t

rac
e

Thursday, September 16, 2010

Widening phases: regular metamorphism

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

MEM[f]:=100;input=>MEM[a];MEM[a] mod 2 = 0; MEM[b]:=MEM[a]; goto; MEM[b]:=MEM[a]; goto;...

sp
ur

iou
s t

rac
e

Thursday, September 16, 2010

Example: code permutation + substitution

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P+

0 obtained by enriching the metamorphic engine of program P0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P+

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2,pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nopmakes clear
that the metamorphism could insert an unbounded number of
nop instructions.

!"!#$%&'()&*

+ ,

&&&&&&!"!#-%&./&011

2(3(

&&&&&!"!#$%&./4!"!#$%5067*

2(3(

&&89:;3&/<&!"!#$%

!"

2(3(

9(:

!"!#=%./&!"!#$% 2(3(

!"!#$%./!"!#=%

9(:

!"!#=%&.&/&!"!#$%

!"!#$%&.&/&!"!#$%7*

2(3(

!"!#$%./&!"!#$%7*

!"!#$%./&!"!#$%7*

&&!"!#$%&'()&*

,

&&&&&&&&&&&&&&89:;3&/<&!"!#$%

!"!#=%.&!"!#$%

!"!#$%./!"!#$%7*

+

!"!#-%./!"!#-%5>

&!"!#-%./&011
:;?@&011

:(:&-

9(:

9(:

!"!#=%./!"!#$%

:;?@&!"!#$%
:(:&=

:;?@&!"!#$%

:(:&=

:;?@&!"!#$%7*

:(:&$

!"!#=%./!"!#$%

:;?@&!"!#$%

:(:&=

!"!#$%./4!"!#$%5067*

:;?@&4!"!#$%5067*

:(:&$

4$6

2(3(

4=6
!"

Fig 6.Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

Thursday, September 16, 2010

Conclusions

Thursday, September 16, 2010

What we have done!

✤ What we have:

✤ A formal model of metamorphic code by Phase semantics

✤ A method for approximating the Phase semantics

✤ A computable approximation of regular metamorphism

✤ The approach:

✤ requires no a priori knowledge about the metamorphic engine

✤ is parametric on several abstractions (instructions, phases, metamorphism...)

✤ is likely for refinement (grammars, constraints etc...)

✤ suitable for semi-automatic malware analysis: generation-test-refine

Thursday, September 16, 2010

What is missing?

✤ An adequate experimental evaluation (beyond toy examples....)

✤ Pro: most malware implement relatively simple metamorphic engines
(mostly regular) to foil syntactic signature checking

✤ Con: hacking can easily foil any abstraction

✤ A practical solution: behavioral monitoring + FSA abstraction + widening

✤ More advanced abstractions: e.g., context free metamorphism & grammar widening

✤ The paper is a preliminary approach to a truly hard problem!

✤ Next steps: experimental evaluation of regular metamorphism analysis,
approximate behavioral monitoring.

Thursday, September 16, 2010

Thanks!

Thursday, September 16, 2010

